

Vasyl Cherlinka, Michal Gallay, Yuryi Dmytruk

Predictive Modeling
of Soil Types and Their Characteristics

University textbook

Pavol Jozef Šafárik University in Košice

Košice 2025

Doc. Mgr. Michal Gallay, PhD.

Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia

prof. Yuriy Dmytruk, DrSc.

NGO SSELMB "Terra", Chernivtsi, Ukraine

Podillia State University, Kamianets-Podilskyi, Ukraine

Reviewers:

prof. Serhii Chornyy, DrSc.

Doctor of Agricultural Sciences, Professor of the Department of Land Resources Management,

Petro Mohyla Black Sea National University, Ukraine

prof. Myroslav Zaiachuk, DrSc.

Doctor of Geographical Sciences, Professor of the Faculty of Geography, Yuriy

Fedkovych Chernivtsi National University, Ukraine

This publication is licensed under the Creative Commons 4.0 CC BY-NC-ND license. The

authors bear sole responsibility for the scientific and linguistic content. The manuscript has not

been subjected to editorial or language revision.

This book was funded by the European Union’s NextGenerationEU through the Recovery and

Resilience Plan for Slovakia (project No. 09I03-03-V01-00049).

Predictive Modeling of Soil Types and Their Characteristics. University textbook.

Košice: UPJS, 2025, 204 p.

Authors:

doc. Vasyl Cherlinka, DrSc.

Institute of Geography, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia

EOS Data Analytics, Mountain View CA, USA / Kyiv, Ukraine

NGO SSELMB "Terra", Chernivtsi, Ukraine

http://www.unibook.upjs.sk/

PREFACE

Why this book?

Soils underpin food security, climate regulation, biodiversity, and

landscape resilience. Mapping soils and their properties at useful spatial

scales is therefore a central task in environmental management. Over the

last two decades, Digital Soil Mapping (DSM) has matured into a

reproducible, data-driven practice that combines field observations,

covariates from remote sensing and terrain analysis, and modern

statistical learning. This textbook introduces DSM from first principles

and shows how to implement the full workflow—data preparation,

modelling, validation, and uncertainty communication—using open-

source R.

Who this book is for?

The book is intended for graduate and postgraduate students in soil

science, geography, geoinformatics, environmental science, and related

fields, as well as for researchers and practitioners who need a practical,

reproducible route into DSM.

What you will learn?

After completing the book, readers will be able to (i) set up a

reproducible R/RStudio project for spatial analysis; (ii) assemble and

clean soil point data and spatial covariates; (iii) fit, tune, and interpret

local and global predictive models (e.g., regression, tree-based and

ensemble methods); (iv) assess predictive performance and quantify

uncertainty with appropriate diagnostics; (v) generate soil maps and

related products (e.g., SOC, texture classes) and communicate their

limitations.

How the book is organized?

The book consists of three main parts:

Part I. Fundamentals of Working in R and RStudio for Soil Science:

This part lays down the fundamental skills needed for further work. We

will start by setting up the workspace, learn the basics of R syntax,

master the key tools for manipulating (dplyr) and visualizing (ggplot2)

data, and most importantly, learn how to work with vector (sf) and raster

(terra) geospatial data.

Part II. Predictive modeling of soil types: In this part, we will move

on to the first practical task – creating a predictive map of soil classes

(classification problem). We will consider in detail the theoretical

foundations of the DSM, go all the way through data preparation using

the example of Slovakia, teach, validate and interpret models based on

Decision Trees and Random Forest.

Part III: Predictive Modeling of Soil Characteristics: The final part

is devoted to modeling continuous soil properties (regression problem),

focusing on organic carbon content. We will look at differences in

modeling approaches, learn how to assess the accuracy of regression

models, and, crucially, quantify the uncertainty of our predictions using

Quantile Regression Forests.

Prerequisites and software

No prior experience with R is strictly required, though basic statistics

and GIS concepts are helpful. Examples were tested with R (≥4.3) and

widely used packages (e.g., sf, terra, dplyr, ggplot2, caret, ranger,

randomForest, Cubist, tidymodels). Full package details and a

reproducible session log are provided in the appendices. We recommend

working inside an RStudio Project with relative paths to ensure

portability.

Data, code, and reproducibility

All datasets and scripts used in the book are provided as companion

materials so that readers can reproduce every figure and table. Where

third-party figures or data are reused, the original authors and licenses

are credited. Supplementary datasets used in Parts II and III are available

for download; see the Appendix B.

Acknowledgements

We are grateful to our colleagues and students whose questions

shaped many of the examples. We thank the manuscript reviewers for

their constructive feedback. This textbook was prepared with the support

of NextGenerationEU under the Recovery and Resilience Plan of the

Slovak Republic, Project No. 09I03-03-V01-00049, and the grants of

The Ministry of Education, Research, Development and Youth of the

Slovak Republic No. VEGA 1/0168/22 and No. VEGA 1/0780/24. The

authors bear sole responsibility for any remaining inaccuracies or errors

in the book.

Košice, August 2025

Authors

TABLE OF CONTENTS

 Introduction ... 1

Part I. Fundamentals of working in R and RStudio for soil science

 5

Chapter 1. Installing and configuring the work environment 5

1.1. Introduction to R and RStudio ... 5

1.2. Installation Guide .. 7

1.3. Navigating the RStudio environment .. 12

1.4. The importance of projects for the reproducibility of research 14

1.5. R Package Management .. 16

Chapter 2. Fundamental concepts of R .. 21

2.1. R as a calculator .. 21

2.2. Objects and assignments.. 23

2.3. Data types and structures (vectors, factors, matrices, data tables, lists) 25

2.4. Data Import and Export ... 29

Chapter 3. Data manipulation with dplyr .. 35

3.1. Introduction to Tidyverse and dplyr .. 35

3.2. Basic verbs dplyr (select, filter, mutate, arrange) .. 37

3.3. Strategy "Divide-Apply-Unite" (group_by, summarise) 43

3.4. Pipeline operator (%>%) ... 46

Chapter 4. Data visualization with ggplot2 ... 49

4.1. Grammar of graphics ... 49

4.2. Creation of basic graphs for exploratory data analysis (histograms, scatter

plots, box plots) .. 52

4.3. Refining plots and figure design .. 56

Chapter 5. Working with spatial data in R .. 62

5.1. Modern spatial packages: sf and terra ... 62

5.2. Processing vector data from sf... 67

5.3. Processing raster data from terra ... 73

5.4. Integration of spatial data .. 78

Part II. Predictive modeling of soil types ... 82

Chapter 6. Theoretical foundations of digital soil mapping 82

6.1. DSM Concept .. 82

6.2. Detailed overview of the SCORPAN model ... 84

6.3. DSM Workflow Overview .. 88

Chapter 7. Preparing data for modeling: the case of Slovakia 91

7.1. Determination of the study area ... 91

7.2. Sources of point data on soils .. 93

7.3. Collection and pre-treatment of raster covariates .. 97

7.4. Creating the final dataset for modeling ... 101

Chapter 8. Modeling with decision trees and random forest 106

8.1. Introduction to Machine Learning for Classification 106

8.2. Decision trees (rpart) ... 108

8.3. RandomForest ... 113

Chapter 9. Accuracy Assessment and Validation of Classification Models 120

9.1. Confusion Matrix .. 120

9.2. Overall Accuracy Metrics (Producer's Accuracy, User's Accuracy) 123

9.3. Kappa coefficient .. 126

9.4. Practical validation .. 129

Chapter 10. Creation and interpretation of predictive maps of soil types 134

10.1. Spatial forecasting ... 134

10.2. Map Interpretation ... 138

Part III. Predictive modeling of soil characteristics ... 141

Chapter 11. Continuous Variable Modeling: Organic Carbon Content 141

11.1. Differences between Modeling of Continuous and Categorical Variables

 ... 141

11.2. Focus on Soil Organic Carbon (SOC) ... 144

11.3. Preparing Data for SOC Modeling (Logarithmic Transformation) 147

11.4. Exploratory Data Analysis .. 149

Chapter 12. Regression Models: Random Forest and Cubist 154

12.1. Random forest for regression .. 154

12.2. The Cubist model .. 158

Chapter 13. Validation of regression models and uncertainty analysis 162

13.1. Key metrics for regression (R², RMSE, Bias) ... 162

13.2. Visual diagnostics ... 165

13.3. Quantification of forecast uncertainty (quantile regression forests) 168

Chapter 14. Construction of final maps and their practical application 173

14.1. Creating final maps (forecast, interval boundaries, uncertainty) 173

14.2. Reverse Conversion .. 178

14.3. Practical application (estimation of carbon stocks, policy justification,

inputs for models) .. 181

Conclusions... 184

APPENDIX A: List of recommended R packages .. 187

APPENDIX B: Data sources for the example of Slovakia 189

APPENDIX C: Glossary of Terms ... 191

References ... 194

1

INTRODUCTION

Soil is not an inert substrate beneath our feet but a complex, dynamic

resource at the intersection of the lithosphere, atmosphere, hydrosphere,

and biosphere. The health and functioning of soils underpin food

security, water quality, biodiversity, and climate regulation. For

decades, soil scientists have produced soil maps to systematize

knowledge about this invaluable resource. Traditional soil mapping—

based on field surveys and expert interpolation—has contributed

enormously to our understanding of soil geography. Yet in the twenty-

first century, amid big data and global environmental challenges, these

approaches alone are no longer sufficient.

Conventional polygon maps are static, costly to update, and often

subjective because polygon boundaries reflect the experience and

judgment of individual cartographers. Most importantly, they represent

the soil cover as discrete, homogeneous units that do not reflect the

continuous nature of soil property variability in space. Against this

backdrop, Digital Soil Mapping (DSM) has emerged as a rapidly

developing paradigm that uses numerical and statistical methods to

create spatial soil information systems (McBratney et al., 2003; Hengl

& MacMillan, 2019). DSM marks a transition from art to science, from

qualitative description to quantitative prediction. Figure 1 contrasts a

traditional polygon map with a DSM product that shows a continuous

gradient of a soil property at high spatial resolution.

The relevance and feasibility of DSM flow from three interlocking

revolutions:

Geospatial revolution – unprecedented availability of global

covariate datasets describing environmental factors: digital elevation

models, high-resolution satellite imagery (e.g., Landsat, Sentinel),

global climate surfaces, geological and topographic maps.

Computing revolution – scalable computing and the rise of open-

source software, especially R, which provides powerful tools for data

wrangling, modelling, and visualization (R Core Team, 2023).

Statistical revolution – the development and popularization of

machine learning methods capable of capturing complex, nonlinear

relationships in soil-landscape systems (e.g., ensemble trees; Breiman,

2

2001). DSM enables the creation of information products that go well

beyond static maps: (i) continuous surfaces of key soil properties (e.g.,

soil organic carbon (SOC), pH, bulk density); (ii) high-resolution soil

type maps suitable for field- to regional-scale decision-making; (iii)

uncertainty maps that quantify the confidence in predictions—essential

for risk-aware applications. These products support tasks from precision

agriculture and site-specific management to national inventories and

global carbon cycle assessments, where reliable estimates of soil carbon

stocks have planetary significance. The three revolutions demand a

toolkit that is flexible, transparent, and reproducible. R has become a de

facto academic standard for data science because it is open-source,

extensible through thousands of community packages, and designed by

and for statisticians (R Core Team, 2023; Pebesma & Bivand, 2023).

For DSM workflows, packages for spatial data (sf, terra), data

manipulation (tidyverse), machine learning (randomForest, ranger,

caret), and visualization (ggplot2) provide an end-to-end environment –

Fig. 1.1.Comparison of a soil organic carbon (%) map digitized from a conventional soil

survey map (left) and a predictive digital soil map at 20 m resolution for the Keene area,

Peterborough County, Ontario. © Daniel D. Saurette, Ontario Ministry of Agriculture,

Food and Rural Affairs. Licensed CC BY. Adapted from Heung, Saurette, & Bulmer

(2021).

3

from raw data to publishable figures (Breiman, 2001). A critical

advantage is reproducibility: analyses are scripts, not clicks. Scripts

serve as precise, transparent recipes that others can inspect and rerun,

which is foundational to modern science and to the instructional goals

of this book.

To orient readers for the chapters that follow, DSM generally

proceeds through the following stages:

Problem framing & data assembly – define target variables, collect

soil point observations, and compile environmental covariates (terrain,

remote sensing, climate).

Data preparation – harmonize units, handle outliers, align

coordinate reference systems, and split data for model

training/validation.

Modelling – fit and tune predictive models (regression, tree-based

ensembles, and other learners) appropriate to the target property and

sampling design.

Spatial prediction & mapping – generate wall-to-wall predictions

at the desired resolution.

Validation & uncertainty – assess accuracy with suitable

diagnostics and produce uncertainty maps.

Communication & use – translate results into maps, figures, and

narratives that support decisions and scientific inference.

Each chapter in this book maps to one or more of these stages and

includes worked R examples, exercises, and summaries to reinforce

learning. This book focuses on methods and workflows for DSM rather

than exhaustive soil classification theory. While many examples are

grounded in datasets from Central and Eastern Europe, the principles

and code are broadly transferable. Readers should be mindful that model

outputs are only as good as inputs: careful data quality control,

appropriate model selection, and transparent reporting of uncertainty

remain essential. This text is designed as a practical, step-by-step guide

that guides the reader through the entire workflow of digital soil

mapping using R. The material is structured in such a way as to provide

a gradual immersion from basic concepts to complex practical tasks.

4

All scientific approaches, including those presented in this book, have

limitations and must be understood as generalised representations of

reality rather than exact reflections of the soil system. The examples in

this book are drawn mainly from Central Europe, which means that

model performance is tied to the local sampling design, density, and

environmental conditions of those study areas. Predictions are most

reliable within the ranges of covariates represented in the training data,

while areas with sparse or unrepresentative samples usually carry higher

uncertainty. Temporal mismatches between soil observations and

covariates, such as when imagery and field data come from different

years or seasons, can also introduce bias.

A major factor affecting the transferability of Digital Soil Mapping is

the covariate set. Models trained with specific digital elevation models,

climate grids, or satellite indices may not transfer well if these inputs

differ in another region or are available at different resolutions.

Resampling can alter predictor distributions and thus model behaviour.

For this reason, portability improves when based on stable, widely

accessible covariates, complemented by careful documentation of

sources, resolutions, and preprocessing.

Model assumptions and validation methods also matter. Non-

stationarity in soil–landscape relationships means that models fitted in

one setting may not hold in another. Overfitting can arise when many

correlated predictors are used with limited samples. Furthermore,

ordinary random cross-validation often inflates accuracy because nearby

points share information; spatial cross-validation or blocking methods

give more realistic estimates.

For these reasons, predictions should always be interpreted together with

uncertainty information. Uncertainty maps, prediction intervals, or

class probabilities highlight where models are more or less trustworthy.

Readers will find detailed guidance on prediction and uncertainty in

Chapter 10, and on calibration and external validation in Chapter 13.

Testing models against independent data from different sites or times is

especially valuable for judging their true portability.

5

PART I. FUNDAMENTALS OF WORKING IN R AND RSTUDIO

FOR SOIL SCIENCE

Chapter 1. Installing and configuring the work environment

1.1. Introduction to R and RStudio

Modern soil science, and especially its digital direction (Digital Soil

Mapping, DSM), is inextricably linked with the processing of large data

sets. Powerful and flexible tools are needed to effectively analyze,

model, and visualize spatial information about soils. One such key tool

that has become the de facto standard in the scientific world is the R

programming language.

R is both a programming language and a free software environment

for statistical computing and graphics. Created as a descendant of the S

language developed at Bell Labs, R inherited its power but became an

open-source project. This means that anyone can download, use, modify

and distribute it for free. Thanks to the efforts of thousands of developers

and scientists from around the world, R has grown into an extremely rich

ecosystem, containing tens of thousands of extensions, or packages that

provide functionality to solve a wide variety of tasks (Kabacoff, 2021).

For digital soil science, R is a particularly valuable platform. The

success of the DSM depends largely on the ability to integrate and

analyze data from a variety of sources: field survey results, Earth remote

sensing data, digital terrain models, climate data, and geological maps.

R offers unparalleled capabilities to perform the entire cycle of data

work: from its import and cleaning to complex geostatistical modeling

and the creation of high-quality cartographic materials (Malone et al.,

2017). Specialized packages such as sf for working with vector spatial

data and terra for working with rasters turn R into a full-fledged, code-

driven geographic information system, which ensures a high level of

reproducibility of research. At its core, R is an interactive environment

where commands are executed through a console. You can enter

commands one at a time and see the result instantly. For example, R can

be used as a regular calculator or to create objects that store data.

6

R can be used as a powerful calculator.

The result of this operation will be printed to the

console.

(112 / 4) * 3 + 1

[1] 85

Assigning a value to an object named 'soil_ph'.

This object now stores the numeric value 6.5 and can be

used later.

soil_ph <- 6.5

Print the object's value to the console.

soil_ph

[1] 6.5

While working directly in the R console is possible, for complex

projects, which are the norm in the DSM, this approach is inefficient. It

is much more convenient to use an Integrated Development

Environment (IDE). The most popular IDE for R is RStudio.

RStudio is a free application that provides a user-friendly and

intuitive graphical interface for working with R. It is important to

understand that RStudio is not a replacement for R; It is rather a control

panel for the engine. R is the engine that performs all the calculations,

and RStudio is the cockpit, which makes driving this engine much more

comfortable and productive (Kabacoff, 2021). RStudio organizes the

workspace into four main panels, allowing you to simultaneously write

code, see its results, manage objects in memory, and view graphs and

reference materials.

The combination of R and RStudio creates a powerful platform that

is ideal for digital soil science tasks. Not only does it simplify code

writing and debugging, but it also supports key principles of modern

science, such as research reproducibility, with tools for project

management, integration with version control systems (such as Git), and

dynamic reporting (R Markdown). It is this combination that will be our

main working tool throughout the manual.

In the following sections, we will take a closer look at the process of

installing R and RStudio, familiarize ourselves with the interface, and

learn how to manage projects and packages. These initial steps are the

foundation on which we will build our skills to further immerse

ourselves in the world of predictive soil modeling.

7

Fig. 1.2. RStudio interface. The four main panels provide an integrated environment

for writing code (top left), executing commands (bottom left), viewing objects and

history (top right), and accessing files, graphs, and help (bottom right)

1.2. Installation Guide

Before we can dive into the world of data analysis and digital soil

science, it is necessary to set up our work environment. This process

consists of two main steps: installing the R language itself, which is the

computing core, and installing RStudio, an integrated development

environment that will provide us with a user-friendly interface. It is

important to follow the correct sequence: R is installed first, and only

then – RStudio. This is due to the fact that RStudio is a shell and

requires an already installed R "engine" for its operation.

Step 1: Installing R

The official and most reliable source for downloading R is the

Comprehensive R Archive Network (CRAN). It is a network of FTP

and web servers around the world that store identical, up-to-date

versions of R code and documentation. Open a web browser and go to

the main page of Project R at: https://www.r-project.org/.

https://www.r-project.org/

8

 On the main page, find the "download R" link in the "Getting

Started" section.You will be redirected to the CRAN mirror

selection page. A mirror is a server that is a copy of the main

repository. You can choose any mirror geographically close to

you for faster loading, or simply use the link https://cran.r-

project.org/ that will automatically direct you to the

corresponding server.

 On the main page of CRAN you will see links to download R

for different operating systems: "Download R for Linux",

"Download R for macOS" and "Download R for Windows".

Select the link that matches your system.

For Windows: Click on the "base" link. This is the basic distribution

that contains everything you need to get started. On the next page, click

on the large "Download R [version] for Windows" link. This will

download the installation file (e.g. R-4.3.2-win.exe).

For macOS: Select the installation package (.pkg) that matches your

version of macOS and processor architecture (Intel or Apple

Silicon/ARM).

Once the installer is downloaded, launch it and follow the instructions.

In most cases, it is safe to accept all default settings. There is no need to

change the installation directory or the components to be installed.

https://cran.r-project.org/
https://cran.r-project.org/

9

Fig. 1.3. Home page of the Comprehensive R Archive Network (CRAN). R

download links shown for Linux, macOS, and Windows operating systems

Step 2: Installing RStudio

Once R has been successfully installed, you can proceed to install

RStudio. RStudio is developed by Posit (formerly known as RStudio,

PBC).Go to the official website of Posit to download RStudio Desktop:

https://posit.co/download/rstudio-desktop/.

 The site will prompt you to download RStudio Desktop. There

are several versions of the product, including commercial ones,

but for our purposes, the free version of RStudio Desktop,

which is free and open-source, is quite sufficient.

Click the download button. The site will automatically detect your

https://posit.co/download/rstudio-desktop/

10

operating system and suggest the appropriate installation file. If it

doesn't, scroll down the page to find installer lists for Windows, macOS,

and various Linux distributions.

Fig. 1.4. RStudio Desktop download page. Shows the selection of the free

version to download and installers for different operating systems

Download and run the installer. As with R, the installation process is

standard and you can accept all settings by default.

Once the installation is complete, RStudio will automatically find the

installed version of R on your computer and connect to it.

Step 3: Checking the Installation

To make sure everything is installed correctly, launch RStudio and

11

not R itself.

In the console, you will see a greeting and information about the

version of R. To finally check the health of the system, type the

following command in the console and press Enter. This command

displays detailed information about your current session, including the

version of R, operating system, and downloaded packages.

This command provides details about the current R

session.

It's a good way to check that everything is working

correctly.

sessionInfo()

If the installation is successful, you will see a response similar to this

(versions may vary):

R version 4.4.2 (2024-10-31 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows 11 x64 (build 22631)

Matrix products: default

locale:

[1] C

time zone: Europe/Budapest

tzcode source: internal

attached base packages:

[1] parallel stats graphics grDevices utils

datasets methods base

other attached packages:

[1] doParallel_1.0.17 iterators_1.0.14 foreach_1.5.2

tictoc_1.2.1 terra_1.8-42 here_1.0.1

loaded via a namespace (and not attached):

[1] compiler_4.4.2 rprojroot_2.0.4 tools_4.4.2

rstudioapi_0.17.1 Rcpp_1.0.13 codetools_0.2-20

If you see a similar output without error messages, congratulations!

Your work environment is ready. Now we can move on to getting to

12

know the RStudio interface.

1.3. Navigating the RStudio environment

After successfully installing and running RStudio for the first time,

you will see an integrated environment (Fig. 1.2), which, at first glance,

may seem complicated due to the large amount of information.

However, its structure is logical and designed for maximum

performance. By default, the RStudio workspace is divided into four

main panels (or three if you haven't opened any script files yet).

Understanding the purpose of each of these panels is key to working

effectively.

Panel 1: Source Editor

This panel appears in the upper left corner when you open or create

a new file, such as an R script (a file with the extension . R). This is your

main workspace, a text editor specifically adapted for writing code in R.

 Writing and editing code: This is where you write sequences

of commands that make up your analysis. Unlike the console,

the code in the editor is not executed instantly. It allows you to

prepare, edit, annotate, and structure your work before

execution.

 Syntax highlighting: RStudio automatically colors various

code elements (functions, variables, comments), which greatly

improves its readability.

 Code Autocompletion: When typing, RStudio suggests options

for function names, objects, and their arguments, which speeds

up work and reduces errors.

 Code execution: You can execute code directly from the editor.

To do this, there are special buttons or keyboard shortcuts (such

as Ctrl+Enter or Cmd+Enter) that send the current line or a

dedicated block of code to the console for execution.

 Working in the code editor is the basis for reproducible

research. By saving your commands as scripts, you can always

go back to them, modify them, or pass them on to colleagues

who can fully reproduce your analysis.

13

Panel 2: Console

The panel in the lower left corner is a direct access to the "engine" R.

Every command you execute, whether from the code editor or typed

directly into the console, is handled here.

 Interactive operation: The console is ideal for quick

calculations, testing individual commands, or checking object

values.

 Invitation Symbol (>): This symbol indicates that R is ready to

accept a new command.

 Output results: Command results, error messages, and

warnings are displayed in the console.

While the console is a powerful tool for interactive work, for basic

analysis, always prefer a code editor.

Panel 3: Environment, History, etc.

This panel, located in the upper right corner, contains several tabs

providing information about the current work session.

 Environment: This is one of the most useful tabs. It shows a

list of all the objects (variables, datasets, functions) that you

have created that are currently stored in R memory.

 History: A chronological list of all commands that have been

executed in the console is stored here. This is useful if you want

to find and reuse any of the previous commands.

 Connections: This tab allows you to manage connections to

external databases.

Panel 4: Files, Plots, Packages, Help

The lower right panel is multifunctional and also consists of several

tabs.

 Files: Works as a simple file manager, showing the contents of

your current working directory. You can navigate through

folders, open files, rename them, and more.

 Plots: When you create a visualization with code, the result

appears in this tab. RStudio makes it easy to view graphs, swipe

between them, enlarge and export in various formats (PNG,

PDF, JPG).

 Packages: Shows a list of all R packages installed on your

14

system.

 Help: Built-in help system R. Using the ? (e.g. ?mean) or by

searching here, you can get detailed documentation for any

feature or package.

 Viewer: Used to display local web content, such as interactive

maps or reports created with specialized packages.

Once you've mastered navigating between these four panels, you'll

be able to organize your work as efficiently as possible. The entire cycle

of analysis – from writing code and executing it to viewing results,

objects and graphs – takes place in a single, logically organized space.

1.4. The importance of projects for the reproducibility of research

Having mastered the basic navigation in the RStudio environment,

we come to one of the fundamental concepts that underlies organized

and, most importantly, reproducible scientific work – the use of RStudio

Projects. Any data analysis, especially in such a complex field as digital

soil science, quickly becomes overgrown with a large number of files:

R scripts, input data sets (rasters, vector layers, tables), intermediate

results, final maps and reports. Without proper organization, managing

this chaos becomes almost impossible.

The RStudio project is, in fact, a way to encapsulate all the

components of one analytical task into a single self-contained directory

(folder). When you create a project, RStudio generates a special file with

the extension . Rproj. This file does not contain your code or data, but it

does "remember" settings related to this project, such as which files were

last opened in the editor. Opening. Rproj file, you instantly return to the

desktop environment in the exact state in which you left it.

However, the main advantage of projects is not so much convenience

as solving one of the most common problems that destroys the

reproducibility of analysis – managing the working directory. The

working directory is the place on your computer from where R tries to

read files by default and where it stores the results. Beginners often use

the setwd() function to specify the path to this directory, which results

in the following lines appearing in the code:

Bad practice: Using an absolute path with setwd()

15

This code will fail on any computer other than the

author's.

setwd("C:/Users/YourNicName/Documents/Soil_Analysis/Slova

kia_Project/Data")

soil_samples <- read.csv("samples.csv")

This approach is fragile and completely unreproducible. As soon as

you try to run this script on another computer or simply move the project

folder, the code will stop working because the specified absolute path

no longer exists.

RStudio projects solve this problem elegantly. When you open a

project, RStudio automatically sets the working directory to the root

folder of that project. This means that you can reference any file within

the project using relative paths that start from the root of the project.

For example, if you have a data folder inside the project, the code to read

the file would look like this:

Good practice: Using relative paths within an RStudio

Project

This code is portable and will work on any machine.

soil_samples <- read.csv("data/samples.csv")

This code will work on any computer, regardless of where the project

folder is located on the disk. This makes your analysis portable and

makes it much easier to collaborate with colleagues. You can simply

archive the project folder, send it, and the other person can open . Rproj

file and run your code without any changes.

How to create an RStudio project

Creating a project is a simple procedure that should be followed at

the very beginning of work on a new task.

In RStudio, go to the File > New Project menu....

 A dialog box will open, offering three options. The first two are

most often used to get started.

 New Directory: Create a project in a new, empty folder. You

select a disk location, give a name to the project, and RStudio

creates the appropriate folder and . Rproj file inside it. This is

ideal for starting from scratch.

16

 Existing Directory: Create a project based on an existing folder

with files. If you already have a folder with data and scripts, you

can turn it into a project. RStudio will simply add . Rproj file to

this directory.

 Version Control: Create a project by cloning a repository

from a version control system, such as Git. This is a more

advanced option for collaboration.

Fig. 1.5. Dialog box for creating a new project in RStudio. The options "New

Directory", "Existing Directory" and "Version Control" are shown

After selecting an option and specifying a name and location, RStudio

will restart and open a new project. You will notice that the project name

has appeared in the upper right corner of the RStudio window, and the

path in the "Files" tab now leads to the root folder of your project.

The habit of organizing each individual study or analysis into your

own project is one of the most important steps towards professional and

reproducible data work in R. It disciplines, simplifies file management,

and ensures that your analysis can be replicated not only by you in the

future, but by anyone else.

1.5. R Package Management

17

One of the main reasons for R's phenomenal popularity in academia

is its extensibility. A basic installation of R contains a set of fundamental

functions for mathematical operations, statistics, and graphing.

However, the true power of R is revealed through the use of packages.

A package is a standardized collection of functions, data, and compiled

code created by the developer community to solve specific problems.

the main package repository, CRAN (Comprehensive R Archive

Network), had over 22500 unique packages, making R a one-stop tool

for any industry, including soil science.

For our tasks in digital soil mapping, we will actively use packages

for data manipulation (dplyr), visualization (ggplot2), working with

spatial data (sf, terra) and machine learning (randomForest, rpart). Being

able to manage packages efficiently – installing, downloading, and

updating them – is a basic skill for any R user.

Installing packages

The process of installing a package is similar to installing a new app

on your smartphone: you do it once and it becomes available for use.

The installation downloads the package from the CRAN repository and

places it in a special folder on your computer called a library.

The easiest way to install a package is to use the install.packages()

function. The package name must be quoted as follows. For example,

we install the tidyverse package, which is a meta package containing a

set of the most popular tools for working with data, including dplyr and

ggplot2.

Installing a package from CRAN.

The package name must be in quotes.

This command needs to be run only once.

install.packages("tidyverse")

Installing package into ‘C:/Users/eucrariano/AppData/Local/R/win-library/4.4’

(as ‘lib’ is unspecified)trying URL

'https://cran.rstudio.com/bin/windows/contrib/4.4/tidyverse_2.0.0.zip'

Content type 'application/zip' length 431634 bytes (421 KB)

downloaded 421 KB

package ‘tidyverse’ successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\eucrariano\AppData\Local\Temp\RtmpGaTGwN\downloaded_packages

18

RStudio also provides a user-friendly graphical interface for

managing packages. In the bottom right pane, go to the "Packages" tab

and click the "Install" button. In the dialog box that appears, simply enter

the name of the package and RStudio will execute the appropriate

command for you.

Fig. 1.6. The "Packages" tab in RStudio. The "Install" button and a list of already

installed packages with a brief description are shown

Downloading packages

Installation makes the package available on your system, but in order

to use its functions and data in the current R session, the package must

be downloaded. This process can be compared to taking a book from a

shelf (installation) and opening it to read (download). Every time you

start a new R session (e.g. restarting RStudio), you need to re-download

the packages, that you plan to use.

To load the package, use the library() function. This time, the

package name is indicated without quotation marks.

Loading a package into the current R session to make

its functions available.

The package name is typically not in quotes.

19

This command must be run at the beginning of every new

session.

library(tidyverse)

── Attaching core tidyverse packages ─────────── tidyverse 2.0.0 ──

✔ dplyr 1.1.4 ✔ readr 2.1.5

✔ forcats 1.0.0 ✔ stringr 1.5.1

✔ ggplot2 3.5.1 ✔ tibble 3.2.1

✔ lubridate 1.9.3 ✔ tidyr 1.3.1

✔ purrr 1.0.2

── Conflicts ─────────────────────────────

tidyverse_conflicts() ──

✖ dplyr::filter() masks stats::filter()

✖ dplyr::lag() masks stats::lag()

ℹ Use the conflicted package to force all conflicts to become errors

Warning messages:

1: package ‘tidyverse’ was built under R version 4.4.3

2: package ‘readr’ was built under R version 4.4.3

3: package ‘forcats’ was built under R version 4.4.3

After executing this command, all the functions from the tidyverse

package become available to you. Usually, commands for loading all the

necessary packages are placed at the very beginning of the R script. This

makes the code organized and immediately makes it clear which

dependencies are needed to execute it.

Package updates and deletions

The R ecosystem is constantly evolving: developers are fixing bugs

and adding new functionality. Therefore, it is important to periodically

update installed packages to the latest versions. This can be done using

the update.packages() function or by clicking the "Update" button on the

"Packages" tab in RStudio.

If you no longer need a package, you can remove it from the library

using the remove.packages() function, specifying the package name in

quotation marks.

To remove a package from your library.

remove.packages("unneeded_package")

Effective package management is the key to successful work at R. It

20

opens up access to a huge number of tools created by the global scientific

community, which allows you to solve the most complex problems of

predictive modeling of soils without reinventing the wheel.

21

Chapter 2. Fundamental concepts of R

2.1. R as a calculator

The easiest way to get started with R is to use it as a powerful desktop

calculator. This approach allows us to become familiar with basic

syntax, arithmetic operators, and the order in which operations are

performed without delving into more complex programming concepts.

To do this, we will enter the commands directly into the console – the

panel at the bottom left of RStudio, which is indicated by the invitation

symbol >.

R supports all standard arithmetic operations. You can enter

mathematical expressions, and R will calculate and output the result

instantly. The result in the console is usually denoted by the prefix [1],

which indicates that it is the first element in the result vector (we will

talk more about vectors later).

The basic arithmetic operators in R are:

+ Adding

- Subtraction

* Multiplication

/ Division

^ or ** Exponentiation

We try to do some simple calculations. Type the following lines into

the console one at a time, pressing Enter after each one.

Basic addition

5 + 3

[1] 8

Basic subtraction

10 - 4

[1] 6

Multiplication

2.5 * 4

[1] 10

Division

100 / 8

[1] 12.5

22

R follows the standard mathematical order of operations (sometimes

remembered by the acronyms PEMDAS/BODMAS): parentheses are

performed first, then exponentiation, then multiplication and division

(from left to right), and finally addition and subtraction (from left to

right). The use of parentheses () allows you to explicitly indicate the

priority of operations and avoid ambiguity.

> # Without parentheses, multiplication is performed

first

> 4*5+10

[1] 30

>

> # With parentheses, the addition inside is performed

first

> 4 * (5+10)

[1] 60

In addition to basic operators, R has a huge library of built-in

mathematical functions. A function in R is a named block of code that

performs a specific action. To call a function, you need to write its name,

and then pass one or more arguments (input values) to it in parentheses.

For example, the sqrt() function calculates the square root and log()

calculates the natural logarithm.

> # Calculate the square root of 81

> sqrt(81)

[1] 9

>

> # Calculate the natural logarithm of 10

> log(10)

[1] 2.302585

>

> # Calculate the base-10 logarithm of 10

> log10(10)

[1] 1

>

> # Calculate the absolute value

> ABS(-15.5)

[1] 15.5

23

R also works seamlessly with very large or very small numbers,

automatically representing them in scientific notation (e.g. 2.5e+8

means 2.5times108).

Using R as a calculator is a great starting point. It demonstrates the

interactive nature of the console and introduces the basic syntax that is

the foundation for all the subsequent, much more complex operations

that we will encounter in predictive soil modeling.

2.2. Objects and assignments

Using R as a calculator is useful for quick calculations, but its true

power is revealed when we start saving the results for later use. Imagine

that you are performing a complex calculation whose result is required

in the next few steps of the analysis. Constantly re-entering the entire

formula would be inefficient and would lead to errors. Instead, we can

store the result in an object.

In R, almost everything is an object: a number, a set of data, the

results of a statistical test, a graph. An object is essentially a named

storage in the computer's memory where we can put any data. To create

an object, we must give it a name and assign a specific value.

The process of assigning a value to an object is done using the <-

assignment operator. This operator looks like an arrow pointing from

left to right and can be read as "gets value".

Create an object named 'soil_ph' and assign it the

value 6.8

soil_ph <-6.8

After executing this command, nothing will appear in the console.

This is normal behavior. R silently created an object named soil_ph in

his memory (in the current environment) and wrote the value 6.8 into it.

You can see this new object in the "Environment" panel in the upper

right corner of RStudio.

To view the contents of an object, simply type its name into the

console and press Enter.

> # Print the value of the 'soil_ph' object to the

console

24

> soil_ph

[1] 6.8

Now that the value is stored, we can use the object name in further

calculations in the same way we would use the number itself.

> # Use the object in a calculation

> soil_ph + 1

[1] 7.8

>

> # Assign the result of a calculation to a new object

> adjusted_ph <-soil_ph + 0.5

> adjusted_ph

[1] 7.3

It is worth noting that in R you can also use an equal sign = for

assignment, however, the operator <- is a generally accepted standard

and a stylistically better choice. This is because = is also used to pass

arguments to functions, while <- always means assigning a value to an

object, which makes the code more unambiguous and easy to read.

Rules and tips for naming objects

Choosing names for objects is an important part of writing clean and

understandable code. There are certain rules and generally accepted

conventions:

 Rules (mandatory):

 Object names must begin with a letter.

 They can contain letters, numbers, a period (.) and an

underscore (_).

 Names are case-sensitive: Soil_pH and soil_ph are two

completely different objects.

Conventions (recommended):

 Use meaningful names: x <-10 says nothing about the purpose

of the object, while plot_width <-10 is self-explanatory.

 Stick to a uniform style: The most popular are snake_case

(words separated by an underscore, such as

soil_organic_carbon) and camelCase (each new word begins

with a capital letter, such as soilOrganicCarbon). The

snake_case style is very common, especially in the tidyverse

25

ecosystem, and we will follow it in this guide.

 Avoid naming existing functions: You should not create an

object named c or mean, as this can lead to confusion and errors.

If you want to see a list of all objects in your current environment

using code, you can use the ls() function.

> # List all objects in the current environment

> ls()

[1] "adjusted_ph" "soil_ph"

The concept of objects and assignment is fundamental to work in R.

Each data analysis that we will carry out will consist of creating,

manipulating and analyzing the different objects that store our data at

each stage of work.

2.3. Data types and structures (vectors, factors, matrices, data

tables, lists)

Until now, we have only worked with single values, assigning them

to objects. However, in real analysis, especially in soil science, we

almost always deal with data sets: measurement results from dozens of

soil profiles, pixel values on a satellite image, coordinates of sampling

points. In order to efficiently store and process such data, R uses a

variety of data structures.

Each object in R has a specific type that determines what kind of

information it can contain (e.g., numbers, text, booleans). The structure

of the data, in turn, determines how these values are organized.

Understanding the basic data structures is absolutely necessary for

further work. We consider the most important of them.

Vectors

A vector is the simplest and most fundamental data structure in R. It

is an ordered sequence of values, with all values in a single vector

having to be of the same type. Even the single number we created

earlier is actually a vector that is one element long.

To create a vector from several elements, the function c() is used

(from the English. combine or concatenate).

There are several main types of atomic vectors:

26

numeric (numeric): to store real numbers (decimals) and integers. It is

the most common type for quantitative measurements.

A numeric vector of soil organic carbon (SOC)

measurements in percent

soc_percent <- c(2.5, 3.1, 1.8, 2.9, 4.2)

soc_percent

[1] 2.5 3.1 1.8 2.9 4.2

character (character): to store text data. Text is always enclosed in

double (") or single (') quotation marks.

A character vector of soil horizon designations

horizons <- c("Ap", "Bt", "C", "Ap", "Bw")

horizons

[1] "Ap" "Bt" "C" "Ap" "Bw"

logical : to store the values TRUE or FALSE. Often the result of logical

checks.

A logical vector indicating the presence of carbonates

(effervescence test)

carbonates_present <- c(FALSE, TRUE, TRUE, FALSE, FALSE)

carbonates_present

[1] FALSE TRUE TRUE FALSE FALSE

If you try to mix types in the same vector, R will apply a coercion

rule (type casting), converting all elements to the least specific type

(usually a symbolic type).

Factors

Factors are a special type of vector designed to store categorical

data. Outwardly, they may look like symbolic vectors, but internally R

stores them as integers, each of which corresponds to a certain "label"

or level. This makes them very effective for statistical modeling and

visualization, since R "understands" that these are not just text, but

groups.

You can create a factor using the factor() function.

27

A character vector of soil types

soil_types_char <- c("Chernozem", "Podzol", "Luvisol",

"Chernozem", "Chernozem")

Convert the character vector to a factor

soil_types_factor <- factor(soil_types_char)

soil_types_factor

[1] Chernozem Podzol Luvisol Chernozem Chernozem

Levels: Chernozem Luvisol Podzol

Pay attention to the output: R not only shows the values, but also lists

unique Levels: Chernozem, Luvisol, Podzol.

Matrices

A matrix is a two-dimensional data structure resembling a

rectangular table. As in vectors, all elements of a matrix must be of

the same type (usually numeric). Matrices are often used in linear

algebra and geostatistics, for example, to represent covariance matrices.

You can create a matrix using the matrix() function.

Create a matrix with 6 elements, arranged into 2 rows

and 3 columns

representing, for example, nutrient content (N, P, K)

in 2 samples

nutrient_matrix <- matrix(c(1.2, 0.4, 0.8, 1.5, 0.3,

0.9), nrow = 2, ncol = 3)

nutrient_matrix

 [,1] [,2] [,3]

[1,] 1.2 0.8 0.3

[2,] 0.4 1.5 0.9

Data Frames

A data table, or data frame, is perhaps the most important and

widespread data structure to analyze in R. It is a two-dimensional

structure, similar to a table in Excel or a database, where rows

correspond to observations (such as soil samples) and columns

correspond to variables (properties).

The main difference and advantage of a data frame from a matrix is

that columns can have different types of data. One column can be

28

numeric (pH), another can be symbolic (sample ID), and the third can

be a factor (soil type).

You can create a data frame using the data.frame() function by

combining several vectors of the same length.

Combine previously created vectors into a soil data

frame

soil_data <- data.frame(

 horizon = horizons,

 soc = soc_percent,

 carbonate = carbonates_present,

 soil_type = soil_types_factor

)

soil_data

Fig. 1.7. Displaying an object soil_data in RStudio. A tabular structure is shown,

where each column has its own name and data type, and each row represents a

separate observation.

Lists

A list is the most flexible data structure in R. It is an ordered

collection of elements, where each element can be any object R:

29

vector, matrix, data frame, other list, and so on. List items do not have

to be the same length or type.

Lists are extremely useful for grouping heterogeneous but logically

related information. For example, you can store data about a field study

in one list: a table with analyzes, a vector with the names of researchers

and a numerical value of the average annual precipitation on the site.

Create a list containing various objects related to a

study site

study_site_info <- list(

 site_name = "Polovetsky Steppe",

 location_coords = c(49.5, 32.8),

 soil_properties = soil_data,

 average_rainfall_mm = 550

)

study_site_info

$site_name

[1] "Polovetsky Steppe"

$location_coords

[1] 49.5 32.8

$soil_properties

 horizon soc carbonate soil_type

1 Ap 2.5 FALSE Chernozem

2 Bt 3.1 TRUE Podzol

3 C 1.8 TRUE Luvisol

4 Ap 2.9 FALSE Chernozem

5 Bw 4.2 FALSE Chernozem

$average_rainfall_mm

[1] 550

Understanding these five basic data structures – vectors, factors,

matrices, data tables, and lists – is the foundation on which all

subsequent work with data in R is built.

2.4. Data Import and Export

Generating data directly in R, as we did in previous subsections, is

useful for training and testing. However, in real research projects, data

30

almost always comes from external sources. These can be the results of

laboratory analyzes uploaded in CSV or Excel format, data from GPS

receivers, or geospatial layers prepared in GIS programs. Therefore, the

ability to efficiently import data into R for analysis and export results is

a fundamental skill.

Import data

The process of loading data from an external file into an R object

(usually in a data frame) is called importing. R supports a huge number

of data formats thanks to its basic features and specialized packages.

Text Files (CSV)

The most common format for exchanging tabular data is CSV

(Comma-Separated Values). It is a simple text file where columns are

separated by a comma and rows are separated by a new row.

To read CSV files, the base R has a function read.csv(). However,

we will use its modern counterpart read_csv() from the readr package

(which is part of tidyverse) because it is much faster and smarter in

determining column types.

First, ensure the tidyverse package is loaded

library(tidyverse)

Import soil profile data from a CSV file located in the

'data' subfolder

The result is stored in a data frame (specifically, a

tibble) called 'soil_profiles'

Make sure you have a 'data' folder in your project

directory with this file.

soil_profiles <- read_csv("data/slovakia_soil_profiles.cs

v")

Rows: 25 Columns: 9

── Column specification

───

Delimiter: ","

chr (3): SVK-01, Ap, Chernozem

dbl (6): 0, 4.2, 28, 6.8, 17.11, 48.15

ℹ Use `spec()` to retrieve the full column specification
for this data.

ℹ Specify the column types or set `show_col_types =

31

FALSE` to quiet this message.

Microsoft Excel File (.xlsx)

A lot of data, especially from labs, is stored in Excel files. The readxl

package is great for reading them. Its read_excel() function allows you

to easily import data by specifying the path to the file and, if necessary,

the name of the sheet or its number.

The readxl package is also part of the core tidyverse

library(readxl)

Import soil chemical properties from the first sheet of

an Excel file

soil_chemistry <- read_excel("data/lab_results.xlsx",

sheet = 1)

Vector geospatial data

To work with spatial data, we will use the sf (Simple Features)

package. Its st_read() function is a universal tool for reading most

common vector formats. Preload data from

https://geodata.ucdavis.edu/gadm/gadm4.1/shp/gadm41_SVK_shp.zip

into the "gis_data" folder.

Load the sf package

library(sf)

Read a Shapefile of administrative boundaries

The function reads the .shp file, but automatically

uses associated files (.dbf, .shx, etc.)

slovakia_boundary <- st_read("gis_data/gadm41_SVK_0.shp")

Reading layer `gadm41_SVK_0' from data source

 `D:\TextbookPredSoilMapping\gis_data\gadm41_SVK_0.shp'

using driver `ESRI Shapefile'

https://geodata.ucdavis.edu/gadm/gadm4.1/shp/gadm41_SVK_shp.zip

32

Simple feature collection with 1 feature and 2 fields

Geometry type: POLYGON

Dimension: XY

Bounding box:xmin:16.83446 ymin:47.73275 xmax:22.56791

ymax:49.6138

Geodetic CRS: WGS 84

Load dplyr

library(dplyr) # Select COUNTRY

slovakia_boundary <- select(slovakia_boundary, COUNTRY)

plot(slovakia_boundary)

Data export

Once the analysis, processing, or simulation is complete, the results

must be saved to a file. This process is called exporting.

Text Files (CSV)

To save a data frame in CSV format, use the write_csv() function from

the readr package.In the base R, there is a function write.csv(). If you

use it, it is important to specify the argument row.names = FALSE to

avoid writing an unnecessary column with row numbers.

Create folder "results"

dir.create("results")

Assume we have a final data frame 'final_soil_data'

33

final_soil_data <- soil_chemistry

Export this data frame to a CSV file

write_csv(final_soil_data, "results/final_soil_data.csv")

Microsoft Excel File (.xlsx)

To export to Excel, it is convenient to use the writexl package and its

function write_xlsx(). It allows you to write one or more data frames to

different sheets of the same file.

library(writexl)

Export a single data frame to an Excel file

write_xlsx(final_soil_data,

"results/final_soil_data.xlsx")

Vector geospatial data

To export spatial objects sf, the universal function st_write() is used.

The choice of file format is determined by the extension you specify in

the name. We consider the most popular options.

 Shapefile (.shp) It is historically the most common format for

vector data interchange, developed by Esri. However, it has

significant drawbacks. A shapefile is not a single file, but a set

of several files (.shp, .shx, .dbf, .prj, etc.) that must be located

in one folder. This often leads to copying errors. In addition, it

has strict restrictions: column names in an attribute table cannot

exceed 10 characters, which forces the abbreviation of

meaningful variable names.

Exporting an sf object to a Shapefile

Note that long column names in 'predicted_soil_map'

will be truncated

Create dummies 'predicted_soil_map' from

slovakia_boundary (for example only!!!)

predicted_soil_map <-slovakia_boundary

st_write(predicted_soil_map,

"results/predicted_soil_map.shp")

Writing layer `predicted_soil_map' to data source

 `results/predicted_soil_map.shp' using driver `ESRI

34

Shapefile'

Writing 1 features with 1 fields and geometry type

Polygon.

 GeoPackage (.gpkg) GeoPackage is a modern, open-source,

standardized file format developed by the Open Geospatial

Consortium (OGC). It was created as a versatile, flexible, and

efficient replacement for legacy formats like Shapefile.

The advantages of GeoPackage are undeniable:
One file: All data (geometry, attributes, projection information) is

stored in a single .gpkg file, making it extremely portable and

easy to manage.

 Flexibility: There is no limit to the length of column names. A

variety of data types are supported.

 Versatility: Multiple layers of vector data, raster data, and even

tables without geometry can be stored in a single GeoPackage

file.

 Performance: Due to its architecture, it often performs faster

than Shapefile, especially with large datasets.

Because of these advantages, GeoPackage is the recommended

format for storing and sharing geospatial data in modern projects.

Exporting an sf object to a GeoPackage

This is the recommended way to save spatial vector data

st_write(predicted_soil_map,

"results/predicted_soil_map.gpkg")

Writing layer `predicted_soil_map' to data source

 `results/predicted_soil_map.gpkg' using driver `GPKG'

Writing 1 features with 1 fields and geometry type

Polygon.

Choosing the right format for importing and exporting data is the key

to efficient and error-free operation, and the use of modern standards

like GeoPackage contributes to better reproducibility and compatibility

of your research.

35

Chapter 3. Data manipulation with dplyr

3.1. Introduction to Tidyverse and dplyr

In the previous section, we got acquainted with the fundamental data

structures in R. Now we are ready to move on to one of the most

important and most frequently performed tasks in data analysis – data

manipulation. Real data that soil scientists have to work with is rarely

perfect. It may contain unnecessary columns, require filtering by certain

criteria, require the creation of new variables based on existing ones, or

require sorting. A species suitable for analysis and modeling often takes

up to 80% of the researcher's total time.

Traditionally, for these tasks, R used the so-called "basic R" – a set

of functions that comes with the standard installation. While these tools

are powerful, their syntax can often be cumbersome, counterintuitive,

and difficult to read, especially for complex chains of operations.

Fortunately, the R ecosystem has undergone a real revolution in

recent years thanks to the advent of tidyverse. It is not just a package,

but a whole philosophy of working with data and a coherent collection

of R packages designed for modern data science. All packages in

tidyverse share a common philosophy of design, grammar and data

structure, which makes the process of working with data extremely

logical, consistent and, Most importantly, readable for a person.

The tidyverse philosophy is based on the concept of "tidy data".

This is a standard for organizing tabular data, which has three simple

rules:

 Each variable forms a column.

 Each observation forms a line.

 Each type of observed unit forms a table.

Compliance with this standard greatly simplifies further work, since

tidyverse tools are designed specifically to work with such "tidy" data.

The heart of tidyverse for data manipulation is the dplyr package. It

provides a simple and consistent set of "verbs" – functions that allow

you to solve the most common data manipulation tasks. Instead of

memorizing hundreds of different functions with obscure names, dplyr

offers a small set of tools, each of which performs one distinct action.

to dig, a dipstick to take samples, a pH meter to measure acidity. Each

36

tool has its own clear purpose. Likewise in dplyr, you have verbs for:

 Select columns (select()).

 String filtering (filter()).

 Creating new columns (mutate()).

 Data sorting (arrange()).

 Data aggregation and summation (group_by() and

summarise()).

We look at a simple example. Suppose that we have data on the

content of organic carbon (SOC) and clay in different genetic horizons.

Load the tidyverse library

library(tidyverse)

Create a sample soil data frame (in tidyverse, we often

use 'tibbles')

soil_samples <- tibble(

 profile_id = c("SVK-01", "SVK-01", "SVK-02", "SVK-02",

"SVK-03"),

 horizon = c("Ap", "Bt", "Ap", "BC", "A"),

 soc_percent = c(3.2, 1.1, 4.5, 0.8, 5.1),

 clay_percent = c(25, 38, 22, 31, 28))

Suppose we only need to take samples that were taken from the "Ap"

horizon and we are only interested in the profile ID and carbon content.

Using dplyr, this query is translated into code almost verbatim:

dplyr approach: filter the rows, then select the

columns

filter(soil_samples, horizon == "Ap")

select(filter(soil_samples, horizon == "Ap"), profile_id,

soc_percent)

A tibble: 2 × 4

 profile_id horizon soc_percent clay_percent

 <chr> <chr> <dbl> <dbl>

1 SVK-01 AP 3.2 25

2 SVK-02 AP 4.5 22

> select(filter(soil_samples, horizon == "Ap"),

profile_id, soc_percent)

A tibble: 2 × 2

 profile_id soc_percent

 <chr> <dbl>

1 SVK-01 3.2

37

2 SVK-02 4.5

The code is clear and consistent. In the following subsections, we

will analyze each of these verbs in detail and learn how to combine them

into powerful chains of operations using the pipeline operator (%>%),

which will make our code even more elegant and readable. Learning

dplyr is an investment that will drastically change your efficiency and

approach to working with data in R.

3.2. Basic verbs dplyr (select, filter, mutate, arrange)

As we noted earlier, dplyr provides a small but extremely powerful

set of functions, or "verbs," for manipulating data. Each verb is

responsible for one specific action, which makes the code intuitive. In

this subsection, we'll take a closer look at the four key verbs that form

the basis of most data preparation operations: select(), filter(), mutate(),

and arrange(). To demonstrate their work, we will use an extended soil

sample dataset.

Load the tidyverse library first

library(tidyverse)

An expanded dataset of soil samples for our examples

soil_data <- tibble(

 profile_id = c("SVK-01", "SVK-01", "SVK-02", "SVK-02",

"SVK-03", "SVK-03"),

 horizon = c("Ap", "Bt", "Ap", "BC", "A", "Bw"),

 depth_cm = c(0, 25, 0, 40, 0, 15),

 soc_percent = c(3.2, 1.1, 4.5, 0.8, 5.1, 2.5),

 clay_percent = c(25, 38, 22, 31, 28, 32),

 ph_h2o = c(6.8, 7.2, 6.5, 7.8, 6.2, 6.9))

Select columns with select()

Very often, our initial data contains many more variables than is

necessary for a specific analysis. The verb select() makes it easy to

select the columns that interest us, or, conversely, to exclude

unnecessary ones.

The first argument of the function is always the data table, and the

next are the names of the columns that we want to keep. Unlike the basic

R, column names do not need to be enclosed in quotation marks, which

38

makes the code cleaner.

Select three specific columns from the soil_data

select(soil_data, profile_id, horizon, soc_percent)

A tibble: 6 × 3

 profile_id horizon soc_percent

 <chr> <chr> <dbl>

1 SVK-01 Ap 3.2

2 SVK-01 Bt 1.1

3 SVK-02 Ap 4.5

4 SVK-02 BC 0.8

5 SVK-03 A 5.1

6 SVK-03 Bw 2.5

Compare this to the equivalent in base R, which is less intuitive:

soil_data[, c("profile_id", "horizon", "soc_percent")]

select() also has a set of useful helper functions that allow you to

select columns based on their name patterns:

 starts_with("prefix"): Selects columns whose names begin with

a specific prefix.

 ends_with("suffix"): selects columns ending in a suffix.

 contains("text"): Selects columns whose names contain specific

text.

To exclude a column, it is enough to put a minus sign (-) in front of

its name.

Select all columns except for the pH measurement

select(soil_data, -ph_h2o)

Tibble: 6 × 5

 profile_id horizon depth_cm soc_percent clay_percent

 <chr> <chr> <dbl> <dbl> <dbl>

1 SVK-01 AP 0 3.2 25

2 SVK-01 Bt 25 1.1 38

3 SVK-02 AP 0 4.5 22

4 SVK-02 BC 40 0.8 31

5 SVK-03 A 0 5.1 28

6 SVK-03 Bw 15 2.5 32

Select all columns that contain the word "percent"

select(soil_data, contains("percent"))

A tibble: 6 × 2

 soc_percent clay_percent

39

 <dbl> <dbl>

1 3.2 25

2 1.1 38

3 4.5 22

4 0.8 31

5 5.1 28

6 2.5 32

Filtering Strings with filter()

Perhaps the most common task is data filtering – selecting only

those strings (observations) that meet certain conditions. The verb

filter() is intended for this.

The first argument is the data table, and the next arguments are one

or more logical conditions. Strings for which the condition is true

(TRUE) remain in the result.

Filter for samples from the topsoil (depth_cm == 0)

filter(soil_data, depth_cm == 0)

A tibble: 3 × 6

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o

 <chr> <chr> <dbl> <dbl> <dbl>

<dbl>

1 SVK-01 Ap 0 3.2 25

6.8

2 SVK-02 Ap 0 4.5 22

6.5

3 SVK-03 A 0 5.1 28

6.2

Filter for samples with high organic carbon content

filter(soil_data, soc_percent > 3.0)

A tibble: 3 × 6

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o

 <chr> <chr> <dbl> <dbl> <dbl>

<dbl>

1 SVK-01 Ap 0 3.2 25

6.8

2 SVK-02 Ap 0 4.5 22

6.5

3 SVK-03 A 0 5.1 28

6.2

40

Note the use of a double equal sign == to check for equality.

In basic R, a similar operation looks much more cumbersome due to

the constant repetition of the table name:

soil_data[soil_data$soc_percent > 3.0,]

filter() allows you to easily combine multiple conditions using

boolean statements:

 & – logical "AND" (both conditions must be true).

 | – logical "OR" (at least one condition must be true).

 ! – logical "NO" (negation).

Filter for topsoil samples with high organic carbon

filter(soil_data, depth_cm == 0 & soc_percent > 4.0)

Tibble: 2 × 6

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o

 <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 SVK-02 AP 0 4.5 22 6.5

2 SVK-03 A 0 5.1 28 6.2

Creating new variables with mutate()

The verb mutate() allows you to create new columns based on

existing ones or modify existing ones. This is an extremely powerful

tool for feature engineering.

The syntax is simple: after the table name, you write

new_column_name = expression.

In soil science, it is common to convert organic carbon content (SOC)

to organic matter content (SOM) using the Van Bemmellen ratio

(~1.724). We do it:

Create a new column for soil organic matter (SOM)

mutate(soil_data, som_percent = soc_percent * 1.724)

A tibble: 6 × 7

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o som_percent

 <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 SVK-01 AP 0 3.2 25 6.8 5.52

2 SVK-01 Bt 25 1.1 38 7.2 1.90

3 SVK-02 AP 0 4.5 22 6.5 7.76

4 SVK-02 BC 40 0.8 31 7.8 1.38

41

5 SVK-03 A 0 5.1 28 6.2 8.79

6 SVK-03 Bw 15 2.5 32 6.9 4.31

The advantage of mutate() over the basic approach

(soil_data$som_percent <- soil_data$soc_percent * 1.724) is that you

can create multiple columns at a time, and even reference newly created

columns in the same command.

Create SOM column and then immediately create a C:Clay

ratio column

mutate(soil_data,

 som_percent = soc_percent * 1.724,

 c_clay_ratio = soc_percent / clay_percent

)

A tibble: 6 × 8

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o som_percent

 <chr> <chr> <dbl> <dbl> <dbl>

<dbl> <dbl>

1 SVK-01 Ap 0 3.2 25

6.8 5.52

2 SVK-01 Bt 25 1.1 38

7.2 1.90

3 SVK-02 Ap 0 4.5 22

6.5 7.76

4 SVK-02 BC 40 0.8 31

7.8 1.38

5 SVK-03 A 0 5.1 28

6.2 8.79

6 SVK-03 Bw 15 2.5 32

6.9 4.31

ℹ 1 more variable: c_clay_ratio <dbl>

Sorting data with arrange()

The last of the base verbs, arrange(), is responsible for sorting the

rows of the table by the values of one or more columns.

Arrange the data from lowest to highest SOC content

arrange(soil_data, soc_percent)

A tibble: 6 × 6

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o

 <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 SVK-02 BC 40 0.8 31 7.8

42

2 SVK-01 Bt 25 1.1 38 7.2

3 SVK-03 Bw 15 2.5 32 6.9

4 SVK-01 AP 0 3.2 25 6.8

5 SVK-02 AP 0 4.5 22 6.5

6 SVK-03 A 0 5.1 28 6.2

By default, arrange() sorts in ascending order. To change the

descending order, you need to wrap the column name in the desc()

function.

Arrange the data from highest to lowest SOC content

arrange(soil_data, desc(soc_percent))

A tibble: 6 × 6

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o

 <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 SVK-03 A 0 5.1 28 6.2

2 SVK-02 AP 0 4.5 22 6.5

3 SVK-01 AP 0 3.2 25 6.8

4 SVK-03 Bw 15 2.5 32 6.9

5 SVK-01 Bt 25 1.1 38 7.2

6 SVK-02 BC 40 0.8 31 7.8

Again, compare this to the basic R syntax, which requires the use of

the order() function and is less obvious:

soil_data[order(soil_data$soc_percent, decreasing = TRUE),]

You can sort by multiple columns. R will first sort by the first column

and then, within the same values of the first column, sort by the second.

Arrange by profile ID, and then by depth within each

profile

arrange(soil_data, profile_id, depth_cm)

A tibble: 6 × 6

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o

 <chr> <chr> <dbl> <dbl> <dbl> <dbl>

1 SVK-01 AP 0 3.2 25 6.8

2 SVK-01 Bt 25 1.1 38 7.2

3 SVK-02 AP 0 4.5 22 6.5

4 SVK-02 BC 40 0.8 31 7.8

5 SVK-03 A 0 5.1 28 6.2

6 SVK-03 Bw 15 2.5 32 6.9

43

These four verbs – select, filter, mutate, arrange – are dplyr's

workhorses. Once you have mastered them, you will be able to complete

the vast majority of data preparation and cleaning tasks, making your

code not only efficient, but also extremely clear and easy to read.

3.3. Strategy "Divide-Apply-Unite" (group_by, summarise)

The previous four verbs – select, filter, mutate, and arrange – are

extremely useful for working with data at the level of individual rows

and columns. However, the real magic of data analysis often happens at

the aggregate level, where we need to calculate the totals for different

groups within our dataset. For example, in soil science, we are rarely

interested in the pH of one particular sample; much more often we want

to know the average pH for each genetic horizon, or the maximum

organic carbon content within each soil profile.

To solve such problems, dplyr implements a powerful strategy

known as "Split-Apply-Combine". This concept, popularized by

Hadley Wickham, consists of three steps:

Split: A dataset is broken down into smaller groups based on the values

of one or more categorical variables.

 Apply: A certain function is applied to each group

independently (for example, calculating the average, sum,

quantity).

 Combine: The results obtained from each group are collected

together into a single summary table.

This strategy is implemented in dplyr using two key verbs:

group_by() and summarise(). They are almost always used together and

are one of the most powerful tools in your arsenal.

Grouping data using group_by()

The verb group_by() itself does not change the appearance of your

data. It adds metadata to the table, telling R that all subsequent

operations should not be performed for the entire table at once, but for

each group separately. Suppose that we want to calculate the averages

for each soil profile in our set of soil_data. The first step is to group the

data by profile ID.

44

Load the tidyverse library and use the same data as

before

library(tidyverse)

soil_data <- tibble(

 profile_id = c("SVK-01", "SVK-01", "SVK-02", "SVK-02",

"SVK-03", "SVK-03"),

 horizon = c("Ap", "Bt", "Ap", "BC", "A", "Bw"),

 depth_cm = c(0, 25, 0, 40, 0, 15),

 soc_percent = c(3.2, 1.1, 4.5, 0.8, 5.1, 2.5),

 clay_percent = c(25, 38, 22, 31, 28, 32),

 ph_h2o = c(6.8, 7.2, 6.5, 7.8, 6.2, 6.9)

)

Group the data by profile_id

grouped_by_profile <- group_by(soil_data, profile_id)

grouped_by_profile

A tibble: 6 × 6

Groups: profile_id [3]

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o

 <chr> <chr> <dbl> <dbl> <dbl>

<dbl>

1 SVK-01 Ap 0 3.2 25

6.8

2 SVK-01 Bt 25 1.1 38

7.2

3 SVK-02 Ap 0 4.5 22

6.5

4 SVK-02 BC 40 0.8 31

7.8

5 SVK-03 A 0 5.1 28

6.2

6 SVK-03 Bw 15 2.5 32

6.9

If you display grouped_by_profile on the screen, you will see that the

data looks the same, but the inscription appears on top: A tibble: 6 × 6

[Groups: profile_id [3]]. This means that R is now "aware" of the

existence of three groups (SVK-01, SVK-02, SVK-03).

Data Aggregation with summarise()

Once the data is grouped, the verb summarise() (or its American

variant summarize()) allows you to "collapse" each group into one line

45

by calculating the final statistical indicators for it.

Inside summarise(), you create new columns by assigning them the

results of aggregating functions such as mean() (mean), sd() (standard

deviation), min() (minimum), max() (maximum), median() (median),

and n() (number of observations in a group).

Calculate summary statistics for each profile

summarise(grouped_by_profile,

 avg_soc = mean(soc_percent),

 max_clay = max(clay_percent),

 num_horizons = n()

)

A tibble: 3 × 4

 profile_id avg_soc max_clay num_horizons

 <chr> <dbl> <dbl> <int>

1 SVK-01 2.15 38 2

2 SVK-02 2.65 31 2

3 SVK-03 3.8 32 2

The result will be a new, much smaller table where each row

represents a single soil profile and its generalized characteristics. This is

the end result of the "Divide-Apply-Unite" strategy.

Compare this to basic R, where to achieve the same result, you would

have to use a cumbersome aggregate() function or a combination of

split() and lapply() functions, which is significantly less readable:

aggregate(soil_data[, c("soc_percent", "clay_percent")],

by = list(profile_id = soil_data$profile_id), FUN = mean)

You can group data by multiple variables at once. For example, if we

had data from different regions, we could group them first by region and

then by soil type within each region. summarise() will then create a

summary string for each unique combination of these variables.

The combination of group_by() and summarise() is the cornerstone

of exploratory data analysis. It allows for a quick transition from raw,

detailed data to meaningful, aggregated insights, which is absolutely

essential for understanding patterns in soil properties and preparing data

for further predictive modeling.

46

3.4. Pipeline operator (%>%)

So far, we have used dplyr verbs one at a time, creating intermediate

objects or nesting function calls inside each other. For example, if we

needed to filter the data and then group it and summarize it, we could

write like this:

Nested approach: hard to read from inside out

summarise(group_by(filter(soil_data, depth_cm > 0),

profile_id), avg_soc = mean(soc_percent))

Tibble: 3 × 2

 profile_id avg_soc

 <chr> <dbl>

1 SVK-01 1.1

2 SVK-02 0.8

3 SVK-03 2.5

Such code is functional, but it is very difficult to read. To understand

what is happening, you need to start with the deepest nested function

(filter) and move outward. This is contrary to the natural way of

thinking, where we imagine a sequence of actions.

Another approach is to create intermediate variables at each step:

Intermediate variables approach: verbose and clutters

the environment

filtered_data <-filter(soil_data, depth_cm > 0)

grouped_data <-group_by(filtered_data, profile_id)

summary_data <-summarise (grouped_data, avg_soc =

mean(soc_percent))

summary_data

Tibble: 3 × 2

 profile_id avg_soc

 <chr> <dbl>

1 SVK-01 1.1

2 SVK-02 0.8

3 SVK-03 2.5

This option is much more readable, but it litters your work

environment with objects that you may never need again.

Fortunately, there is a much more elegant solution, which is one of

47

the hallmarks of tidyverse – pipe operator %>%. This operator, which

comes from the magrittr package and is an integral part of dplyr, allows

you to "pass" the result of one function to the input of the next, creating

logical and readable chains of operations.

The %>% operator can be read as "and then". It takes the object to

the left of it and passes it as the first argument to the function on the

right. That is, the expression x %>% f(y) is equivalent to f(x, y).

We rewrite our previous example using the pipeline operator:

The pipe approach: intuitive, readable, and efficient

soil_data %>%

 filter(depth_cm > 0) %>%

 group_by(profile_id) %>%

 summarise(avg_soc = mean(soc_percent))

A tibble: 3 × 2

 profile_id avg_soc

 <chr> <dbl>

1 SVK-01 1.1

2 SVK-02 0.8

3 SVK-03 2.5

Now the code reads as a sentence in English: "Take soil_data, and

then filter the lines where depth_cm greater than 0, and then group by

profile_id, and then sum by calculating avg_soc." The order of the code

corresponds to the order of operations, which makes the logic of the

analysis crystal clear. For ease of reading, it is customary to break long

chains into separate lines after each %>% operator.

Fig. 1.8. Schematic representation of the work of the conveyor operator. Data

"flows" from left to right through a sequence of functions, where the result of

each step becomes the input for the next

Consider a more complex but realistic example from soil science.

48

Suppose we need to perform the following task: For a dataset, soil_data

calculate the average pH and the range of clay content (the difference

between maximum and minimum) for each genetic horizon.

Without a pipeline operator, this request would turn into a cumbersome

and confusing design. With it, the solution looks like a clear recipe:

A complex data manipulation task solved elegantly with

the pipe

soil_data %>%

 filter(soc_percent > 1.0) %>%

 group_by(horizon) %>%

 summarise(

 avg_ph = mean(ph_h2o),

 clay_range = max(clay_percent) - min(clay_percent),

 sample_count = n()

) %>%

 arrange(desc(avg_ph))

A tibble: 4 × 4

 horizon avg_ph clay_range sample_count

 <chr> <dbl> <dbl> <int>

1 Bt 7.2 0 1

2 Bw 6.9 0 1

3 Ap 6.65 3 2

4 A 6.2 0 1

The %>% operator is not just syntactic sugar. It is a tool that changes

the way we think about data manipulation, encouraging the construction

of consistent, logical and reproducible workflows. Once you get used to

it, you are unlikely to want to go back to nested functions or intermediate

variables.

Note: Starting with version 4.1.0, R has its own, "native" pipeline

operator |>. It performs a similar function, but the %>% operator with

magrittr remains the standard in the tidyverse ecosystem and has some

additional features, so we will use it in this guide.

49

Chapter 4. Data visualization with ggplot2

4.1. Grammar of graphics

Once we have learned how to organize, filter, and aggregate our

data, the next logical step is to visualize it. Graphs and charts are the

most powerful tool for exploratory data analysis (EDA). The human

brain is much better at perceiving visual patterns, outliers, and

relationships than bare numbers in a table. Other. In the context of soil

science, visualization helps to understand the distribution of soil

properties, to identify relationships between, for example, organic

matter content and depth, or to compare the characteristics of different

types of soils.

There are several systems for creating graphs in R. The basic

graphics system (plot(), hist(), boxplot()) functions is powerful, but it

works according to the "easel and brush" model: you create a basic graph

and then sequentially add elements (points, lines, legends) to it with

separate commands. This approach can be flexible, but for complex

graphs, the code becomes cumbersome and its logic is not obvious.

In contrast, the ggplot2 package, which is the cornerstone of the

tidyverse ecosystem, offers a completely different, much more powerful

philosophy. It is based on the concept of "Grammar of Graphics",

first described in the book by Leland Wilkinson. This grammar treats

any graph not as a unique creation, but as a combination of independent

components. Just as the grammar of a language allows us to construct

an infinite number of meaningful sentences from a limited set of words

and rules, the grammar of graphics allows you to create an infinite

number of different visualizations from a limited set of components.

The main components of this grammar are:

Data: The dataset you want to visualize. For ggplot2, it should always

be a data table (data frame or tibble) in a "tidy" format.

Aesthetics: This is how variables from your data are mapped to the

visual properties of the graph. Aesthetics are specified inside the aes()

function. The most common aesthetics are x and y (position on the axes),

but there are also color, fill, shape, size, alpha, and others.

Geometries: These are geometric objects that directly represent data on

a graph. They are added as layers using functions starting with geom_,

50

such as geom_point() to create a scatter plot, geom_bar() for a bar chart,

geom_boxplot() for a "whisker box". This is how you see your data.

Fig. 1.9. Conceptual scheme of the Grammar of graphics. Shows how data,

aesthetic mappings, and geometric objects are combined into layers to create the

final graph

Plotting in ggplot2 is the process of adding layers. You start with the

ggplot() function, where you specify a dataset and basic aesthetic

mappings. Then, using the + sign, you add one or more geometric layers.

Now we look at this with our example with soil data. Let us create a

scatter plot to investigate the relationship between organic carbon

content (soc_percent) and clay content (clay_percent).

Load the tidyverse library which includes ggplot2

library(tidyverse)

Use the same soil_data from the previous chapter

soil_data <- tibble(

 profile_id = c("SVK-01", "SVK-01", "SVK-02", "SVK-02",

"SVK-03", "SVK-03"),

 horizon = c("Ap", "Bt", "Ap", "BC", "A", "Bw"),

 depth_cm = c(0, 25, 0, 40, 0, 15),

 soc_percent = c(3.2, 1.1, 4.5, 0.8, 5.1, 2.5),

 clay_percent = c(25, 38, 22, 31, 28, 32),

 ph_h2o = c(6.8, 7.2, 6.5, 7.8, 6.2, 6.9)

)

Create a scatter plot

ggplot(data = soil_data, mapping = aes(x = soc_percent, y

= clay_percent)) +

 geom_point()

51

Now we analyze this code:

 ggplot(data = soil_data, ...): We initialize the graph by indicating

that we will use table soil_data.

 mapping = aes(x = soc_percent, y = clay_percent): we create an

aesthetic mapping. We say ggplot2: "Take column soc_percent and

map it on the x-axis. Take column clay_percent and plot it on the y-

axis."

 + geom_point(): we add a geometric layer. We say: "Represent

these mappings as points."

The power of grammar lies in how easily a graph can be modified

and expanded. What if we want to see if this relationship is different for

different genetic horizons? We just have to add another aesthetic

reflection: color = horizon.

Add a third variable (horizon) mapped to the color

aesthetic

ggplot(data = soil_data, mapping = aes(x = soc_percent, y

= clay_percent, color = horizon)) +

 geom_point(size = 3) # Make points a bit larger for

better visibility

52

We only added one argument color = horizon inside aes(). ggplot2

automatically did the rest: assigned a unique color to each horizon,

colored the dots accordingly, and created a legend. This is radically

different from the basic R approach, where to achieve the same result,

you would have to manually create a color picker, draw subsets of the

data with different colors in a loop, and then manually add the legend.

This layer- and grammar-based approach makes ggplot2 an

extremely powerful and flexible tool. Having mastered its basic

principles, you can create both simple exploration graphs and complex,

ready-to-publish visualizations with minimal effort.

4.2. Creation of basic graphs for exploratory data analysis

(histograms, scatter plots, box plots)

Having mastered the theoretical foundations of the "Grammar of

Graphics", we can move on to creating the most common types of

graphs, which are the workhorses of any exploratory data analysis. Each

type of graph is designed to answer a specific question about your data.

We will look at three main types: histograms (to study the distribution

of a single continuous variable), scatter plots (to investigate the

relationship between two continuous variables), and box diagrams (to

compare the distribution of a continuous variable between different

categories).

Histograms: the study of the distribution

Question: How are the values of a certain soil property distributed?

53

Is the distribution symmetrical? Are there emissions?

A histogram is the best tool for visualizing the distribution of one

continuous (quantitative) variable. It breaks down the range of values

of a variable into a series of intervals (or "bins", bins) of the same width

and shows how many observations fall into each of them.

To create a histogram in ggplot2, geom_histogram() is used. The

main aesthetics to specify is x, that is, the variable whose distribution

we want to see.

We explore the pH distribution in our dataset.

Plotting the distribution of soil pH

ggplot(data = soil_data, mapping = aes(x = ph_h2o)) +

 geom_histogram(binwidth = 0.25, color = "black", fill =

"lightblue")

Graph analysis: From this histogram, we can see that most of our

samples have a pH in the range of 6.2 to 7.2, with a peak of about 6.8-

7.0. The distribution looks a bit asymmetrical. The binwidth argument

controls the width of the "baskets" and is very important; it is worth

experimenting with it to find the optimal representation. color specifies

the color of the lines around the columns, and fill specifies the color of

their fill. that these arguments are specified outside of aes(), since we

are specifying a fixed color rather than mapping some variable from the

data to it.

Compare this to the base R:hist(soil_data$ph_h2o). Although the

result is easy to obtain, further customization of the appearance (colors,

captions) requires much more additional arguments.

54

Fig. 1.10. Histogram of the distribution of pH_h2o values. Along the X axis, the

pH value is deferred, along the Y axis - the number of samples that fell into the

corresponding interval

Scatterplots: A Study of Relationships

Question: Is there a relationship between the two quantitative

properties of soil? For example, is the organic carbon content related to

the clay content?

A scatter plot is a standard for visualizing the relationship between

two continuous variables. Each observation is represented by a point

on a two-dimensional plane. geom_point() is used to create it, and in

aes() it is necessary to specify variables for the x and y axes.

Creating a scatter plot to investigate the relationship

between SOC and clay

ggplot(data = soil_data, mapping = aes(x = soc_percent, y

= clay_percent)) +

 geom_point(size = 3, alpha = 0.8)

55

Fig. 1.11. Scatter plot showing the relationship between organic carbon content

(soc_percent) and clay content (clay_percent)

Graph analysis: It is difficult to draw a definitive conclusion based

on these few points, but there does not seem to be a clear linear

relationship. However, we can see that the sample with the highest SOC

content has a relatively low clay content. Scatterplots are indispensable

for detecting linear and nonlinear trends, clusters, and outliers.

Box Charts: Distribution Comparison

Question: How does the distribution of the quantitative variable

differ for different groups (categories)? For example, does the organic

carbon content of different genetic horizons differ?

A box plot, or "box plot", is an ideal tool for comparing the

distribution of a continuous variable between several groups defined

by a categorical variable. It compactly displays key statistical indicators:

median (center line), interquartile span (box height, IQR), as well as

"whiskers" showing the range of typical values, and individual points

for potential outliers.

To create it, geom_boxplot() is used. In aes(), we map a categorical

variable to the x-axis, and a continuous variable to the y-axis.

Comparing the distribution of SOC across different soil

horizons

ggplot(data = soil_data, mapping = aes(x = horizon, y =

soc_percent)) +

 geom_boxplot()

56

Fig. 1.12. Box diagrams comparing the distribution of organic carbon content

(soc_percent) for different genetic horizons (horizon)

Graph analysis: This graph shows us a lot of information at once.

For example, the horizons 'Ap' and 'A' have a significantly higher and

more variable SOC content compared to the lower horizons 'Bt', 'BC'

and 'Bw'. The median value for the horizon 'A' is the highest. This type

of visualization is extremely effective for comparing groups, which is a

constant task in soil science.

These three types of graphs – histogram, scatter plot, and box plot –

form the basis of exploratory analysis. ggplot2 allows you to create them

using a simple and logical syntax, allowing you to quickly test

hypotheses and gain a deep understanding of the structure of your data.

4.3. Refining plots and figure design

The graphs we created in the previous unit are great for quick

exploratory analysis. They allow us to see the structure of the data, but

they lack context and a professional appearance to be included in a

report, presentation or scientific article. Axis names generated

automatically from column names may be unclear (e.g. soc_percent),

graphics may lack a title, and the standard gray theme ggplot2 is not

always the best choice.

The strength of "Graph Grammar" is that we can consistently add

new layers to improve and customize almost every element of our graph.

57

These layers do not change the main view of the data (geom), but only

modify its appearance and add annotations. We consider the most

important tools for "polishing" our visualizations.

Adding axis headers and captions (labs())

The very first step to improving your schedule is to give it clear

captions. The labs() function allows you to manage all text labels on a

graph:

 title: Main title.

 subtitle: subtitle for more details.

 x, y: Captions for the X and Y axes.

 color, fill, shape, etc.: name for the corresponding legend.

 caption: the data source or notes at the bottom of the graph.

Now we take our scatter plot and make it more informative.

Start with the basic scatter plot

p1 <- ggplot(data = soil_data, mapping = aes(x =

soc_percent, y = clay_percent, color = horizon)) +

geom_point(size = 3)

Now, add informative labels

p1 + labs(

title = "Relationship between organic carbon and clay

content",

subtitle = "Data on soil profiles in Slovakia",

x = "Organic carbon content, %",

y = "Clay content, %",

color = "Genetic\nhorizon",

caption = "Source: fictitious data for example"

)

58

Fig. 1.13. Improved scatter plot with informative titles, axis labels, and a

redesigned legend name

Changing the theme of the graph (theme())

The graphic theme controls all non-data elements: background color,

gridlines, font and text size, legend position, etc. ggplot2 has several

built-in "complete" themes that allow you to radically change the

appearance of the graph with one command. The most popular of them

are:

 theme_bw(): A theme with a white background and gray grid lines

(black and white).

 theme_classic(): a minimalist theme reminiscent of graphs from

scientific publications, only with X and Y axes, without background

and grid.

 theme_minimal(): A theme without background colors.

 theme_void(): removes absolutely everything, leaving only the

geomes themselves (useful for maps).

Apply the classic theme to our plot

p1 + labs(

title = "Relationship between organic carbon and clay

content",

x = "Organic carbon content, %",

y = "Clay content, %",

color = "Horizon"

) +

59

theme_classic()

Fig. 1.14. Scatter plot with applied theme_classic()

In addition to pre-made themes, you can fine-tune individual

elements using the theme() function. For example, move the legend

down.

Manage scales (scale_*())

The scale_*() functions control exactly how data is displayed in

aesthetics. They allow you to customize colors, shapes, sizes, as well as

graph axes. The name of the function consists of three parts: scale_, the

name of the aesthetic (color, fill, x) and the name of the scale type

(manual, gradient, continuous).

For example, ggplot2's standard color palette is well-matched, but

sometimes we want to set custom colors that have a certain semantic

load (e.g. darker colors for deeper horizons). For this,

scale_color_manual() is used.

Manually setting colors for each horizon

p1 + labs(

title = "Relationship between organic carbon and clay

content",

x = "Organic carbon content, %",

y = "Clay content, %",

60

color = "Horizon"

) +

theme_bw() +

scale_color_manual(values = c("Ap" = "#5D4037", "Bt" =

"#A1887F", "BC" = "#D7CCC8", "A" = "#3E2723", "Bw" =

"#795548"))

Faceting: Creating subgraphs (facet_wrap())

What if we want to compare patterns for different subsets of data, but

plotting them on a single graph using a color or shape makes it

overloaded? ggplot2 offers an extremely powerful tool – faceting. It

allows you to split a single graph into a grid of several smaller subgraphs

(facets), where each subgraph shows data for a specific subgroup.

To do this, the function facet_wrap() is used. Its main argument is a

formula starting with ~, followed by the name of the categorical variable

by which the data is to be split.

Now we need to create a separate box diagram of the pH distribution

for each soil profile.

Create faceted boxplots

ggplot(data = soil_data, mapping = aes(x = horizon, y =

ph_h2o)) +

geom_boxplot() +

facet_wrap(~ profile_id) +

labs(

title = "Distribution of pH by horizons within each

profile",

x = "Genetic horizon",

61

y = "pH (H2O)"

) +

theme_bw()

Fig. 1.15. Faceted graph showing box diagrams of the pH distribution for each

profile_id separately

Faceting is one of the most effective ways to visualize complex,

multidimensional data, allowing you to easily compare patterns between

groups. By combining geomes, aesthetics, labels, themes, and facets,

you can transform a simple exploration graph into a rich, publication-

ready visualization with complete control over every aspect of its

appearance. And most importantly, this whole process is fully

reproducible and recorded in your R script.

62

Chapter 5. Working with spatial data in R

5.1. Modern spatial packages: sf and terra

So far, we have worked mainly with tabular, or "aspatial", data.

However, digital soil science is inherently a geospatial discipline. Our

data – whether sampling points, soil contour polygons, or raster surfaces

of environmental factors – is always geographically referenced.

Therefore, being able to process, analyze, and visualize spatial data

efficiently is absolutely essential (Lovelace et al., 2019).

For a long time, the R ecosystem for working with spatial data has

been somewhat fragmented. For vector data, the sp package was used,

and for interaction with the GDAL, GEOS, and PROJ geospatial

libraries, the rgdal and rgeos packages were used. For raster data, the

standard was the raster package. While these tools have been and

continue to be powerful, their syntax and data structures have not always

been intuitive and have not integrated well with the modern tidyverse

ecosystem.

Fortunately, there have been significant advances in recent years, and

today we have two modern, fast and coordinated packages that have

become the new standard for geospatial analysis in R:

sf (Simple Features) – for working with vector data (points, lines,

polygons).

terra – for working with raster data (grids, images).

These two packages are designed to seamlessly integrate with each

other and with tidyverse, creating an extremely powerful and logical

environment for solving the challenges of digital soil science.

Vector data from sf

The sf package (Pebesma, 2018) implements the "Simple Features"

standard from the Open Geospatial Consortium (OGC), a generally

accepted way of representing vector geodata. The main innovation of sf

is how it stores data. An sf object is essentially a regular data.frame (or

tibble) that has one special column, usually named geometry. This

column is a "list-column", where each element is the geometry of the

corresponding row (for example, a point, line, or polygon object).

63

Fig. 1.16. Conceptual representation of the object sf . (c) 2018 by Allison

Horst)

This approach is revolutionary because it means that all the dplyr verbs

we have learned work "out of the box" with sf objects! You can filter,

select, mutate, and group spatial data as easily as you would with regular

tables.

We read a vector file with soil profile points using the basic function of

the package – st_read(). Most functions in sf start with the prefix st_ (from

spatial type).

Load the sf package

library(sf)

Read a GeoPackage file containing soil sample locations

This file should be in a 'gis_data' subfolder of your

project

soil_points <-

st_read("gis_data/slovakia_soil_points.gpkg")

Look at the structure of the sf object

print(soil_points)Simple feature collection with 26

features and 7 fields

https://twitter.com/allison_horst/status/1071456081308614656
https://twitter.com/allison_horst/status/1071456081308614656

64

Geometry type: POINT

Dimension: XY

Bounding box: 17.11 Edge: 47.88 xmax: 20.25 ymax: 49.22

Geodetic CRS: WGS 84

First 10 features:

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o WRB geom

1 SVK-01 Ap 0 4.2 28

6.8 Chernozem POINT (17.11 48.15)

2 SVK-01 A 25 2.1 29

7.1 Chernozem POINT (17.11 48.15)

3 SVK-01 C 60 0.5 25

8.2 Chernozem POINT (17.11 48.15)

4 SVK-02 Ap 0 3.8 32

6.5 Phaeozem POINT (17.55 48.05)

5 SVK-02 A 22 1.9 33

6.8 Phaeozem POINT (17.55 48.05)

6 SVK-02 C 70 0.4 30

7.9 Phaeozem POINT (17.55 48.05)

7 SVK-03 Ap 0 2.5 22

6.2 Luvisol POINT (18.23 48.34)

8 SVK-03 and 20 0.8 15 5.8 Luvisol POINT (18.23 48.34)

9 SVK-03 Bt 50 0.6 35 6.1 Luvisol POINT (18.23 48.34)

10 SVK-04 A 0 3.1 18 5.9 Cambisol POINT (19.04 48.73)

The output shows us that soil_points is a Simple feature collection with

26 features and 7 fields. We see information about the coordinate system

(CRS) and a regular table, but with an additional geometry column of type

POINT.

Raster data from terra

The terra package is the modern successor to the raster package. Written

from scratch in C++ by the raster author himself, it offers significantly higher

performance, especially when working with large files, and a simpler and

more consistent syntax.

Raster data in soil science are, as a rule, our covariates for modeling:

digital elevation model (DEM), derivatives from it (slope, exposure), satellite

indices (NDVI), etc.

The main function for reading raster data in terra is rast(). We need to

download DMR3.5 (we will use DMR3.5 for the entire territory of Slovakia

with a resolution of 100 m).

65

Load the terra package

library(terra)

Read a GeoTIFF file representing a Digital Elevation

Model (DEM)

This file should be in a 'data' subfolder

dem <- rast("gis_data/dmr3_5_100.tif")

Look at the structure of the SpatRaster object

print(dem)

class : SpatRaster

dimensions : 3523, 6649, 1 (nrow, ncol, nlyr)

resolution : 100, 100 (x, y)

extent : 1853712, 2518612, 6045427, 6397727 (xmin,

xmax, ymin, ymax)

coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857)

source : dmr3_5_100.tif

name : dmr3_5_100

The output shows the key metadata of the raster: the number of layers,

dimensions (rows, columns, cells), resolution, extent, and coordinate system.

Synergy of sf and terra

The true power of these packages is revealed when they are used together.

A classic task in the DSM is to extract (extract) the values of raster covariates

at the locations of point samples. Terra makes this extremely simple with the

extract() function.

Extract DEM values for each soil point location

The function takes the raster and the sf object as

input

point_elevations <- extract(dem, soil_points)

The result is a data frame, let's bind it to our

original sf object

soil_points_with_dem <- cbind(soil_points,

point_elevations)

print(soil_points_with_dem)

Simple feature collection with 26 features and 9 fields

Geometry type: POINT

Dimension: XY

66

Bounding box: 17.11 Edge: 47.88 xmax: 20.25 ymax: 49.22

Geodetic CRS: WGS 84

First 10 features:

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o WRB ID dmr3_5_100

1 SVK-01 Ap 0 4.2 28

6.8 Chernozem 1 153.2029

2 SVK-01 A 25 2.1 29 7.1 Chernozem 2 153.2029

3 SVK-01 C 60 0.5 25

8.2 Chernozem 3 153.2029

4 SVK-02 Ap 0 3.8 32

6.5 Phaeozem 4 115.9645

5 SVK-02 A 22 1.9 33 6.8 Phaeozem 5 115.9645

6 SVK-02 C 70 0.4 30

7.9 Phaeozem 6 115.9645

7 SVK-03 AP 0 2.5 22 6.2 Luvisol 7 210.0391

8 SVK-03 and 20 0.8 15 5.8 Luvisol 8 210.0391

9 SVK-03 Bt 50 0.6 35 6.1 Luvisol 9 210.0391

10 SVK-04 A 0 3.1 18 5.9 Cambisol 10 723.4901

 Geom

1 POINT (17.11 48.15)

2 POINT (17.11 48.15)

3 POINT (17.11 48.15)

4 POINT (17.55 48.05)

5 POINT (17.55 48.05)

6 POINT (17.55 48.05)

7 POINT (18.23 48.34)

8 POINT (18.23 48.34)

9 POINT (18.23 48.34)

10 POINT (19.04 48.73)

Fig. 1.17. Visualization of the extraction process. Points (sf object)

67

superimposed on the DEM raster surface (terra object) are shown

With one team, we solved the key task of data preparation. The

combination of sf for vector operations, terra for raster operations, and

dplyr for general manipulations creates a modern, fast, and logically

consistent workflow that is ideal for all stages of predictive soil

modeling.

5.2. Processing vector data from sf

As we have already found out, the sf package represents vector data

in the form of regular tables with an additional geometry column. This

elegant structure allows us to apply not only the standard verbs dplyr to

manipulate attributes, but also to use a rich set of specialized functions

to perform geospatial operations. These operations are the basis for data

preparation in digital soil science, allowing us to solve tasks such as

selecting samples within the study area, creating buffer zones or

redesigning data.

Most spatial functions in sf are prefixed st_ (from spatial type). We

consider the most important of them.

Coordinate System Management (CRS)

Each geospatial dataset has a Coordinate Reference System (CRS)

that determines how coordinates from the two-dimensional file space

relate to real places on the Earth's surface. Working with data that has

different or undefined CRS is a common source of errors. sf provides

simple tools for working with CRS.

st_crs(): Allows you to check the CRS of an existing

object.

Load sf and dplyr

library(sf)

library(dplyr)

Let's assume we have our soil_points object from the

previous section

First, check the current CRS

st_crs(soil_points)

68

Coordinate Reference System:

 User input: WGS 84

 wkt:

GEOGCRS["WGS 84",

 ENSEMBLE["World Geodetic System 1984 ensemble",

 MEMBER["World Geodetic System 1984 (Transit)"],

 MEMBER["World Geodetic System 1984 (G730)"],

 MEMBER["World Geodetic System 1984 (G873)"],

 MEMBER["World Geodetic System 1984 (G1150)"],

 MEMBER["World Geodetic System 1984 (G1674)"],

 MEMBER["World Geodetic System 1984 (G1762)"],

 MEMBER["World Geodetic System 1984 (G2139)"],

 MEMBER["World Geodetic System 1984 (G2296)"],

 ELLIPSOID["WGS 84",6378137,298.257223563,

 LENGTHUNIT["metre",1]],

 ENSEMBLEACCURACY[2.0]],

 PRIMEM["Greenwich",0,

 ANGLEUNIT["degree",0.0174532925199433]],

 CS[ellipsoidal,2],

 AXIS["geodetic latitude (Lat)",north,

 ORDER[1],

 ANGLEUNIT["degree",0.0174532925199433]],

 AXIS["geodetic longitude (Lon)",east,

 ORDER[2],

 ANGLEUNIT["degree",0.0174532925199433]],

 USAGE[

 SCOPE["Horizontal component of 3D system."],

 AREA["World."],

 BBOX[-90,-180,90,180]],

 ID["EPSG",4326]]

 st_transform(): Reprojects data from one CRS to another.

This is critically important, since operations such as calculating

distances or areas give correct results only in projected (flat) coordinate

systems (e.g. UTM/Mercator etc) and not in geographic ones

(latitude/longitude).

Let's say we need to transform it to a projected CRS,

e.g., WGS 84 / Pseudo-Mercator (EPSG:3857)

soil_points_mercator <- st_transform(soil_points, crs =

3857)

Check the new CRS

st_crs(soil_points_mercator)

69

Coordinate Reference System:

 User input: EPSG:3857

 wkt:

PROJCRS["WGS 84 / Pseudo-Mercator",

 BASEGEOGCRS["WGS 84",

 ENSEMBLE["World Geodetic System 1984 ensemble",

 MEMBER["World Geodetic System 1984

(Transit)"],

 MEMBER["World Geodetic System 1984 (G730)"],

 MEMBER["World Geodetic System 1984 (G873)"],

 MEMBER["World Geodetic System 1984 (G1150)"],

 MEMBER["World Geodetic System 1984 (G1674)"],

 MEMBER["World Geodetic System 1984 (G1762)"],

 MEMBER["World Geodetic System 1984 (G2139)"],

 MEMBER["World Geodetic System 1984 (G2296)"],

 ELLIPSOID["WGS 84",6378137,298.257223563,

 LENGTHUNIT["metre",1]],

 ENSEMBLEACCURACY[2.0]],

 PRIMEM["Greenwich",0,

 ANGLEUNIT["degree",0.0174532925199433]],

 ID["EPSG",4326]],

 CONVERSION["Popular Visualisation Pseudo-Mercator",

 METHOD["Popular Visualisation Pseudo Mercator",

 ID["EPSG",1024]],

 PARAMETER["Latitude of natural origin",0,

 ANGLEUNIT["degree",0.0174532925199433],

 ID["EPSG",8801]],

 PARAMETER["Longitude of natural origin",0,

 ANGLEUNIT["degree",0.0174532925199433],

 ID["EPSG",8802]],

 PARAMETER["False easting",0,

 LENGTHUNIT["metre",1],

 ID["EPSG",8806]],

 PARAMETER["False northing",0,

 LENGTHUNIT["metre",1],

 ID["EPSG",8807]]],

 CS[Cartesian,2],

 AXIS["easting (X)",east,

 ORDER[1],

 LENGTHUNIT["metre",1]],

 AXIS["northing (Y)",north,

 ORDER[2],

 LENGTHUNIT["metre",1]],

 USAGE[

 SCOPE["Web mapping and visualisation."],

 AREA["World between 85.06°S and 85.06°N."],

70

 BBOX[-85.06,-180,85.06,180]],

 ID["EPSG",3857]]

Spatial queries and subsets

For example, to select only those sample points that fall within the

boundaries of a certain administrative unit or experimental area. For this,

spatial predicate functions (for example, st_intersects, st_within) or,

which is easier for beginners, the function st_intersection() are used.

#st_intersection() "crops" the first object according to

the geometry of the second, leaving only the part that

falls inside.

Let's load a polygon of our study area

study_area <- st_read("gis_data/study_area_polygon.gpkg")

Reading layer `study_area_polygon' from data source

`D:\TextbookPredSoilMapping\gis_data\study_area_polygon.g

pkg' using driver `GPKG'

Simple feature collection with 1 feature and 0 fields

Geometry type: POLYGON

Dimension: XY

Bounding box: xmin: 1980952 ymin: 6128390 xmax: 2304214

ymax: 6305790

Projected CRS: WGS 84 / Pseudo-Mercator

Ensure both layers have the same CRS before

intersection

study_area <- st_transform(study_area, crs =

st_crs(soil_points))

Select only the points that fall within the study area

points_in_area <- st_intersection(soil_points,

study_area)

Print selectedd points in the study area

points_in_area

Simple feature collection with 12 features and 7 fields

Geometry type: POINT

Dimension: XY

Bounding box: xmin: 18.23 ymin: 48.34 xmax: 20.25 ymax:

49.01

Geodetic CRS: WGS 84

First 10 features:

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o WRB geom

71

7 SVK-03 Ap 0 2.5 22

6.2 Luvisol POINT (18.23 48.34)

8 SVK-03 Et 20 0.8 15

5.8 Luvisol POINT (18.23 48.34)

9 SVK-03 Bt 50 0.6 35

6.1 Luvisol POINT (18.23 48.34)

10 SVK-04 A 0 3.1 18

5.9 Cambisol POINT (19.04 48.73)

11 SVK-04 Bw 25 1.2 24

6.2 Cambisol POINT (19.04 48.73)

12 SVK-04 C 80 0.3 22

6.5 Cambisol POINT (19.04 48.73)

19 SVK-07 A 0 6.5 25

5.5 Cambisol POINT (19.45 49.01)

20 SVK-07 Bw 30 2.8 28

5.9 Cambisol POINT (19.45 49.01)

21 SVK-08 A 0 0.8 5

4.8 Leptosol POINT (20.25 48.91)

22 SVK-08 C 15 0.2 8

5.2 Leptosol POINT (20.25 48.91)

Fig. 1.18. Visualization of spatial filtering. A set of points and a test site of the

experimental site are shown. As a result of the operation, only those points that

are inside the landfill remain st_intersection

Creating buffer zones (st_buffer())

Buffering is the process of creating a zone of a certain distance

around a geospatial feature. This is an extremely useful operation in soil

72

science. For example, we can create a buffer with a radius of 500 meters

around each sampling point, and then calculate the average of the slope

or other terrain indicator within that zone.

Important: for the correct calculation of the buffer, the data must be

in the designed coordinate system, where the units of measurement are

meters, not degrees.

Use our Mercator-projected points

Create a 50-meter buffer around each point

point_buffers < st_buffer(soil_points_mercator, dist =

500)

Fig. 1.19. The result of the buffering operation. A circular polygon with a radius

of 500 meters has been created around each point

Combination of sf and dplyr

The true beauty of sf is revealed when we combine spatial functions

with dplyr verbs in a single %>% chain. Since the sf object is a table,

we can integrate operations seamlessly.

Suppose we need to: 1) select only points with a horizon of "Ap", 2)

create a buffer zone of 500 meters for them, 3) calculate the area of each

buffer zone.

A powerful workflow combining dplyr verbs and sf

functions

73

ap_horizon_buffers <- soil_points_mercator %>%

 filter(horizon == "Ap") %>%

 st_buffer(dist = 500) %>%

 mutate(buffer_area_sqm = st_area(.))

print(ap_horizon_buffers)

Simple feature collection with 5 features and 8 fields

Geometry type: POLYGON

Dimension: XY

Bounding box: xmin: 1904176 ymin: 6114677 xmax: 2037647

ymax: 6174160

Projected CRS: WGS 84 / Pseudo-Mercator

 profile_id horizon depth_cm soc_percent clay_percent

ph_h2o WRB geom

1 SVK-01 Ap 0 4.2 28

6.8 Chernozem POLYGON ((1905176 6131846, ...

2 SVK-02 Ap 0 3.8 32

6.5 Phaeozem POLYGON ((1954157 6115177, ...

3 SVK-03 Ap 0 2.5 22

6.2 Luvisol POLYGON ((2029854 6163606, ...

4 SVK-09 Ap 0 4.5 30

7.2 Chernozem POLYGON ((1909629 6136853, ...

5 SVK-10 Ap 0 2.8 25

6.0 Luvisol POLYGON ((2037647 6173660, ...

 buffer_area_sqm

1 785039.3 [m^2]

2 785039.3 [m^2]

3 785039.3 [m^2]

4 785039.3 [m^2]

5 785039.3 [m^2]

This code is concise, readable, and fully reproducible. It

demonstrates how sf transforms R into a full-fledged, code-driven

geographic information system that perfectly meets the needs of today's

digital soil science. Compared to the old sp package approach, where

different syntaxes and access methods had to be used for each operation

with attributes (data.frame) and geometry (Spatial*), the workflow with

sf is much more intuitive and consistent.

5.3. Processing raster data from terra

If vector data represent discrete objects on the earth's surface, then

raster data represent continuous phenomena. A raster is essentially a

74

grid of cells (pixels), where each cell has a specific value that

characterizes the phenomenon at a given point (e.g. altitude,

temperature, concentration of a chemical element). In digital soil

science, rasters are our main source of predictive variables (covariate)

for modeling: digital elevation model (DEM), indicators derived from

it, such as slope and exposure, remote sensing data, climatic surfaces,

etc.

The terra package is a modern, fast and efficient tool for working

with raster data in R. It replaced its predecessor, the raster package,

offering significantly higher performance and more intuitive syntax. We

consider the key raster operations that are necessary to prepare data for

modeling.

Basic Operations and Raster Mathematics (Map Algebra)

The basis for many operations is the concept of "Map Algebra". It

allows mathematical functions and operators to be applied to raster

layers as if they were ordinary variables. Terra performs these

operations pixel-by-pixel.

We download our Digital Elevation Model (DEM) and perform a few

basic operations.

Load the terra package

library(terra)

Load the DEM raster

time <- true ("gis_data/dem_slovakia_subset.tif")

Basic arithmetic: convert elevation from meters to feet

dem_feet <- dem * 3.28084

We can also apply functions, e.g., calculate the

natural logarithm of elevation

Adding 1 to avoid log(0) if there are sea-level pixels

log_dem <- log(dem + 1)

'terra' automatically creates new raster objects in memory. To

visualize the results, you can use the built-in 'plot()' function.

Plot the results

plot(log_dem, main = "Log-transformed Elevation")

75

Fig. 1.20. Visualization of a raster of logarithmic height. The color scale shows

the changed values, but the spatial structure of the data remains the same

Calculation of relief derivatives

One of the most important steps in the preparation of covariate is the

calculation of morphometric indicators based on DEM. The terra

package has a built-in terrain() function that makes it easy to calculate

the most common ones.
Calculate slope (ухил) and aspect (експозиція) from the

DEM

The 'unit' argument specifies whether the result should

be in degrees or radians

slope <- terrain(dem, v = "slope", unit = "degrees")

aspect <- terrain(dem, v = "aspect", unit = "degrees")

We can create a multi-layer SpatRaster object to hold

all terrain variables

terrain_derivatives <- c(dem, slope, aspect)

names(terrain_derivatives) <- c("elevation", "slope",

"aspect")

Save the multi-layer raster to a GeoTIFF file

writeRaster(terrain_derivatives,

"gis_data/terrain_derivatives.tif", overwrite = TRUE)

Plot all layers at once

76

plot(terrain_derivatives)

Fig. 1.21. Maps of relief derivatives. Three rasters are shown: the original DEM,

the calculated slope map, and the exposure map

Area statistics

It is often necessary to generalize the raster values within certain

zones defined by the vector polygonal layer. For example, calculate the

average height or average slope for each administrative unit. This

operation is called zonal statistics. In terra, the zonal() function is

designed for this.

Assume we have a vector layer of study regions

('study_area' from previous section)

Calculate the mean and standard deviation of elevation

for each region

zonal_stats <- extract(dem, study_area, fun = "mean",

na.rm = TRUE)

print(zonal_stats)

 ID dem_slovakia_subset

1 1 593.9552

The result will be a table where the corresponding statistical indicator

will be calculated for each polygon from study_area (in the tutorial

example, there is only one polygon, so only one value is displayed). It

77

is an extremely powerful tool for data aggregation.

Changing the resolution and trimming the raster

For predictive modeling, all raster covariates must have the same

extent (spatial coverage) and the same resolution (pixel size). Terra

provides simple tools for this.

 crop(): trims the raster to the extent of another spatial object (raster

or vector).

Assume we have another raster 'land_cover' with a

different extent and resolution

land_cover <-

rast("gis_data/SVK_ESA_WorldCover_2020_25m_study_area.tif

")

Crop the DEM to match the extent of the land cover

raster

dem_cropped <- crop(dem, land_cover)

dem_cropped

class : SpatRaster

dimensions : 1773, 3232, 1 (nrow, ncol, nlyr)

resolution : 100, 100 (x, y)

extent : 1981012, 2304212, 6128427, 6305727 (xmin,

xmax, ymin, ymax)

coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857)

source : dem_slovakia_subset.tif

name : dem_slovakia_subset

 resample(): resamples the raster to the resolution and mesh of

another raster template.

Resample the land cover raster to match the grid of our

cropped DEM

land_cover_resampled <- resample(land_cover, dem_cropped,

method = "near") # 'near' for categorical data

land_cover

class : SpatRaster

dimensions : 7095, 12929, 1 (nrow, ncol, nlyr)

resolution : 25, 25 (x, y)

Magnitude : 1980975, 2304200, 6128400, 6305775 (xmin,

xmax, ymin, ymax)

coord. ref.: WGS 84 / Pseudo-Mercator (EPSG:3857)

78

Source: SVK_ESA_WorldCover_2020_25m_study_area.tif

name : SVK_ESA_WorldCover_2020_25m_study_area

min value : 0

max value : 90

land_cover_resampled

class : SpatRaster

dimensions : 1773, 3232, 1 (nrow, ncol, nlyr)

resolution : 100, 100 (x, y)

Magnitude : 1981012, 2304212, 6128427, 6305727 (xmin,

xmax, ymin, ymax)

coord. ref.: WGS 84 / Pseudo-Mercator (EPSG:3857)

source(s) : memory

varname : dem_slovakia_subset

name : SVK_ESA_WorldCover_2020_25m_study_area

min value : 0

max value : 90

These operations are critical to creating a consistent stack of raster

predictors, which are inputs to machine learning algorithms.

The terra package provides a complete set of tools for efficient and

fast processing of raster data. Its close integration with sf and dplyr

creates a single, logical and high-performance environment for the

implementation of the entire cycle of geospatial data preparation for

digital soil science.

5.4. Integration of spatial data

In the previous sections, we learned how to work with vector (sf) and

raster (terra) data separately. We transformed coordinate systems,

created buffers, calculated relief derivatives, and prepared rasters for

joint analysis. Now it's time to merge these two worlds. Spatial data

integration is the process of combining information from different data

sources and types (vector and raster) into a single, coherent structure.

For digital soil science, this is perhaps the most important step in data

preparation, as this is where we link our field observations (points) to

the continuous surfaces of environmental factors (raster covariates).

The main task at this stage is to create a final table for modeling,

where each row corresponds to an observation point (soil profile) and

the columns contain both the soil properties measured at that point (our

79

target variable, such as soil type or SOC content) and the values of all

our raster predictors at that same point.

Extraction of raster stack values by points

The key operation for integration is extraction (extraction). This

process consists, as described above, of "piercing" one or more raster

layers at the locations defined by vector points and writing the values of

the corresponding pixels to the attribute table of these points. The terra

package makes this operation extremely simple and fast with the

extract() function.

In the previous steps, we prepared a stack of raster covariates (height,

slope, and exposure) and now want to get the values of these predictors

for each sampling point.

Load necessary libraries

library(terra)

library(sf)

library(dplyr)

Load the multi-layer raster of terrain derivatives we

created earlier

It contains 'elevation', 'slope', and 'aspect'

terrain_derivatives <- True

("gis_data/terrain_derivatives.tif")

Load the vector points of soil samples

soil_points <-

st_read("gis_data/slovakia_soil_points_3857.gpkg")

Ensure the CRS of both datasets match

Let's assume they are already aligned from previous

steps

soil_points <-st_transform (soil_points, crs = crs

(terrain_derivatives))

Perform the extraction

The function returns a data frame with an ID and values

for each raster layer

extracted_values <- extract(terrain_derivatives,

soil_points)

View the rows of the result

extracted_values

80

 ID elevation slope aspect

1 1 NA NA

2 2 THAT IS ALREADY

3 3 THAT IS ALREADY

4 4 NA NA

5 5 THAT IS ALREADY

6 6 THAT IS ALREADY

7 7 210.0391 0.9473696 198.664124

8 8 210.0391 0.9473696 198.664124

9 9 210.0391 0.9473696 198.664124

10 10 723.4901 8.9733219 2.968902

11 11 723.4901 8.9733219 2.968902

12 12 723.4901 8.9733219 2.968902

13 13 NA NA

14 14 NA

15 15 NA

16 16

17 17 NA NA

18 18 IS ALREADY THERE

19 19 970.3638 22.3610878 129.136536

20 20 970.3638 22.3610878 129.136536

21 21 914.6369 14.0763817 116.459236

22 22 914.6369 14.0763817 116.459236

23 23 NA NA

24 24 226.6492 1.0106043 68.995308

25 25 NA NA

26 26 1064.1965 11.9279490 273.044006

The result is a regular data table. The first column (ID) corresponds

to the point number, and the next columns are the values from each layer

of our raster stack at that point. Note that points that lie outside the raster

layer when extracting raster stack values received a value of NA – Not

Avaible.

Creating the final dataset for modeling

Now we only need to attach these extracted values to our original

table with points. This can be done with cbind() or, more reliably and

tidyverse-style, with dplyr::bind_cols().

library(dplyr)

Combine the original sf object with the extracted

covariate values

final_modeling_data <-bind_cols(soil_points,

81

extracted_values) %>%

 select(-ID) # We can remove the redundant ID column

View the resulting integrated dataset

print(final_modeling_data)

Fig. 1.22. Structure of the final dataset for modeling. A table is shown, where

the first columns contain the initial attributes of the points (ID, soil type),

followed by values extracted from the raster covariates (elevation, slope, aspect),

and the last columns contain the geometry of the points

Now our final_modeling_data object is a complete dataset ready for

modeling. It contains all the necessary information in a "neat" format:

Observation IDs .

 The target variable (for example, soil_type).

Predictor variables (covariates) extracted from raster layers.

The spatial geometry of each point.

This integrated approach, combining the power of sf, the speed of

terra and the readability of dplyr, is the foundation of the modern

workflow in digital soil science. It allows you to automate and reproduce

one of the most time-consuming stages of research – the preparation and

harmonization of data from various sources.

Having completed this part, we have prepared a solid foundation. We

have gone from installing R to creating a full-fledged, integrated

geospatial dataset. Now we are ready to move on to the second part of

this manual and use the knowledge of obtaining this kind of data to build

predictive models of soil types and properties.

82

PART II. PREDICTIVE MODELING OF SOIL TYPES

Chapter 6. Theoretical foundations of digital soil mapping

6.1. DSM Concept

By completing the first part of this tutorial, we have mastered a

powerful set of tools for working with data in R. We have learned how

to import, manipulate, visualize, and integrate a variety of spatial and

aspatial data. Now we are ready to apply these skills to solve the central

task of our book – predictive soil modeling, also known as Digital Soil

Mapping (DSM).
What is DSM? At its core, DSM is the creation and dissemination of

soil information using numerical methods based on soil observations

and associated data on environmental factors (McBratney et al., 2003).

This is a radical departure from traditional soil mapping, which relied

heavily on manual interpolation, expert knowledge, and qualitative

delineation of soil contours in the field. The DSM, on the other hand, is

a quantitative, objective and reproducible approach.

The fundamental theoretical premise on which all digital soil

mapping is based is the famous concept of soil formation factors, first

formulated by V.V. Dokuchaev, and later formalized by Hans Jenny in

the form of an equation:

S=f(cl,o,r,p,t,...)

where:

 S is the soil or a specific property of the soil (e.g. soil type, clay

content, pH).

 f – denotes "function of" or "dependence on".

 Cl – climate.

 o – organisms or biota, including vegetation and human activities

(organisms).

 r – relief or topography.

 p – parent material.

 t – час (time).

 ... – three dots indicate that there may be other, locally significant

factors (for example, spatial position).

Traditional soil science used this model conceptually: a soil scientist

83

in the field, observing changes in relief or vegetation, inferated a change

in soil type. The DSM takes the next step: it tries to quantify this

function f.

The idea behind DSM is to use available point data on soils (where

we know property S) and large geospatial data sets that characterize soil

formation factors (cl, o, r, p, t) to build a statistical or machine learning

model. This model "learns" on point data by finding quantitative

relationships between soil properties and values of environmental

factors at these points.

Fig. 2.1. Conceptual diagram of the DSM workflow. It is shown how point data

about soils and the stack of raster covariates (relief, climate, remote sensing) are

fed to the input to the machine learning model. The model examines

dependencies and is then applied to the entire covariate stack to create a

continuous predictive map of soil property (figure from Divya R.K)

The DSM workflow can be thought of as follows:

 Data collection: We have a set of points (soil profiles) where we

know the target property (e.g. soil type). We also have a set of

raster layers (covariate) covering our entire area and

representing soil formation factors (e.g. DEM, slope, satellite

indices, geologic map).

Integration: Using the methods we learned in Chapter 5, we extract the

values of all the raster covariates at each observation point. In this way,

we create a single table to train the model.

Modeling: We use this table to "train" a model (e.g., a decision tree or a

random forest) to find patterns. The model learns, for example, that

https://www.researchgate.net/publication/342330834_An_Introduction_to_Digital_Soil_Mapping/figures?lo=1

84

"high organic matter is typically observed on northern slopes with a low

slope and under forest vegetation."

Prediction: Once the model is trained, we apply it to our entire raster

covariate stack. For each pixel on the map, the model takes the values

of elevation, slope, vegetation, etc., and, based on the learned patterns,

predicts the most likely soil property value for that pixel.

The result is a continuous digital map that predicts soil property for

the entire area, not just at observation points. This approach not only

allows for more detailed and objective maps, but also provides an

opportunity to assess the uncertainty of our forecasts, which is a huge

advantage over traditional methods.

6.2. Detailed overview of the SCORPAN model

In the previous subsection, we found that the DSM is based on the

quantification of the classical equation of soil formation factors

S=f(cl,o,r,p,t,...). Although this formula is conceptually powerful, it has

been extended and refined for practical application in predictive

modeling. The most common and functional version of this model in the

modern DSM is the SCORPAN model (McBratney et al., 2003).

SCORPAN is a mnemonic acronym that not only incorporates the

classic Yenne factors, but also adds new ones, which are critical for

statistical modeling. The equation takes the form:

S=f(s,c,o,r,p,a,n)

where S is now explicitly taken out as the target variable (soil property),

and a (age) and n (spatial position) are added to the classical factors .

This extension makes the model more pragmatic and adaptable to the

real-world data we are working with. We take a closer look at each

component of this model and, most importantly, how we can represent

it as digital, spatial data (covariate) for our model in R.

 S – Soil attributes: This is our target variable – what we want to

predict. These can be:

 Categorical variables: for example, the type of soil

according to the national or international classification

(WRB, USDA Soil Taxonomy). In this case, we solve

the classification problem.

 Continuous (quantitative) variables: organic carbon

85

content (SOC), pH, clay content, cation exchange

capacity (ECO), folding density, etc. Here we solve the

regression problem. The source of this data is our field

observations and laboratory analyses.

 C – Climate: Climatic factors (precipitation, temperature) are the

driving forces of weathering, transport of substances and biological

activity. In DSM models, climate is usually represented by raster

surfaces of long-term averages, for example:

 Average annual rainfall.

 Average annual temperature.

 Evapotranspiration indicators. This data can be

obtained from global climate databases such as

WorldClim or from regional meteorological networks.

 O – Organisms: This factor includes the influence of vegetation,

microorganisms, animals and, more and more importantly, humans

(land use). As covariates we can use:

 Remote sensing data: satellite indices characterizing

vegetation, such as the NDVI (Normalized Difference

Vegetation Index) obtained from Landsat or Sentinel-2

images.

 Land Cover/Land Use Maps: e.g. from CORINE

Land Cover projects.

 Maps of forest or other natural vegetation types.

 R – Relief or Topography: Relief is one of the most important

factors at the local and regional levels, as it redistributes energy and

moisture. Almost all covariates describing the relief are obtained by

analyzing the Digital Relief Model (DEM). They are divided into:

 Primary derivatives: absolute height (DEM itself),

slope, exposure (aspect).

 Secondary derivatives: topographic wetness index

(TWI), profile and plan curvature, stream power index.

We can easily calculate these indicators using terra

packages or specialized GIS programs (SAGA,

GRASS).

 P – Parent material: It is the starting material from which the soil

is formed, and it determines its mineralogical and initial chemical

composition. This factor is usually represented as:

86

 Digitized geological or quaternary maps that are

rasterized so that each pixel has a value corresponding

to a specific type of rock.

 A – Age: This is the time during which soil formation factors acted

on the parent rock. This is the most difficult factor to quantify in

space. There are no direct age maps, so proxy variables are used:

 Maps of geomorphological surfaces (e.g. river terraces of

different ages).

 Distance to rivers or glacier boundaries, if relevant to the

territory.

 N – Spatial position: This factor was added to explicitly account

for the spatial dependence (autocorrelation) in soil properties, which

cannot be fully explained by other SCORPA factors. As covariates

can be used:

 Geographic coordinates (X and Y) directly as predictors.

 Distance to certain objects (for example, to the coast, to a

mountain range).

Fig. 2.2. Visualization of the components of the SCORPAN model. A diagram

where each letter of the acronym is associated with an example of the

corresponding raster layer-covariate (figure from Alfiya Quraishi)

Thus, the SCORPAN model provides us with a clear and

comprehensive conceptual framework for the selection of predictor

variables. Our challenge as digital soil scientists is to find the best

available spatial data that represents each of these factors for our study

https://alfiyaq.medium.com/the-ultimate-guide-to-digital-soil-mapping-an-introduction-caf0803d635b

87

area and use it to build an accurate predictive model.

88

6.3. DSM Workflow Overview

Armed with the SCORPAN conceptual model, we can now outline a

standardized workflow for digital soil mapping. This process is a

sequence of logical steps that leads us from raw data to the final

predictive map and evaluating its reliability. since it allows you to

systematize work, ensure its reproducibility and avoid common

mistakes.

The entire DSM workflow can be roughly divided into three main

phases: Data Preparation, Modeling and Validation, and Spatial

Forecasting.

Fig. 2.3. Detailed flowchart of the Digital Soil Mapping workflow (from Yan et

al., 2020)

Phase 1: Data Preparation and Integration

This is the most time-consuming, but also the most important phase,

since the quality of the final map directly depends on the quality of the

89

input data. This phase includes the steps that we have covered in detail

in Part I.

 Collection of Point Soil Data (S): Formation of a

georeferenced dataset containing our target variable (e.g., soil

type, pH, SOC).

 Spatial Covariate Collection (CORPAN): Search, load, and

pre-treatment of raster and vector layers representing soil

formation factors.

 Covariate harmonization: Bringing all raster layers to a single

coordinate system, spatial extent, and resolution. This is a

critical step to create a consistent "stack" of predictors.

 Data Integration: Extracting values from a harmonized

covariate stack at the locations of point soil data. The result of

this phase is a single, "tidy" table ready for modeling.

Phase 2: Simulation and Validation

At this point, we use the prepared table to build and evaluate our

predictive model.

 Data splitting: The entire set of point data is usually divided

into two parts: a training set, which is used to "train" the model

(usually 70-80% of the data), and a test (or validation) set,

which is deferred and not used for training.

 Model Training: A training sample is fed into the input of the

selected machine learning algorithm (e.g., Random Forest,

Decision Trees). The algorithm analyzes the data and builds a

mathematical model describing the relationship between the

predictors (CORPAN) and the target variable (S).

 Model validation: After training, we must objectively assess

how well our model works. To do this, we use a test sample that

the model "did not see" during training. We force the model to

make predictions for points from the test sample and compare

these predictions with real values known to us. This allows us

to calculate accuracy metrics (e.g. overall accuracy, Kapp

coefficient for classification; R², RMSE for regression) and

understand whether our model is overtrained and whether it is

capable of generalizing patterns to new data.

90

Phase 3: Spatial Forecasting and Interpretation

Once we have made sure that our model is accurate enough, we can

use it to create the final product – the map.

 Spatial Forecasting: The trained model is applied to the entire

stack of raster covariates. For each pixel of our study area, the

model takes the values of all predictors and makes a prediction

of the target variable.

 Creation of final maps: The result of the prediction is a new

raster layer (or multiple layers), which is a predictive map of the

soil property. For continuous variables, this can be a map of the

average expected value, as well as maps of the lower and upper

limits of the confidence interval, visualizing the uncertainty of

the forecast.

 Post-processing and interpretation: The final maps are

visualized, drawn up and analyzed. It is important not only to

obtain the map, but also to interpret it from the point of view of

soil science, to check whether the spatial patterns on the map

correspond to our expert ideas about the territory.

In the following sections, we will go through all these stages step by

step with a practical example, using R to build predictive maps of soil

types and organic carbon content for the territory of Slovakia.

91

Chapter 7. Preparing data for modeling: the case of Slovakia

Moving from theoretical foundations to practical application, in the

following sections we will go step by step through the entire workflow

of digital soil mapping with a real example. This country in Central

Europe is an excellent example, as it is characterized by a significant

variety of natural conditions – from lowland plains in the south to the

mountain systems of the Carpathians in the north, – which leads to the

formation of a wide range of soil types.

We will build two predictive models:

 Classification model for forecasting the main types of soils.

A regression model for predicting the content of organic carbon (SOC)

– one of the key quantitative characteristics of the soil.

This section will be entirely devoted to the first and most important

phase of the DSM workflow – data preparation and integration.

7.1. Determination of the study area

The first and fundamental step of any geospatial analysis is to clearly

define the boundaries of the study area. This step is not a formality; The

vector polygon delineating our territory will serve as a "template" for all

further operations. It is outside of it that we will crop and mask all our

raster covariates to ensure their complete spatial consistency.

For our example, we will use the administrative borders of Slovakia.

Suppose that this data is stored in a file of the GeoPackage format, which

is a modern and efficient standard for storing geospatial data.

We load this layer into R using the sf package and render it to make

sure everything is loaded correctly.

Load necessary libraries for spatial data handling and

visualization

library(sf)

library(ggplot2)

Define the path to our boundary data

It's good practice to store spatial data in a dedicated

subfolder, e.g., 'gis_data'

boundary_path <- "gis_data/slovakia_boundary.gpkg"

92

Read the GeoPackage file into an sf object

slovakia_boundary <- st_read(boundary_path)

Print the object to see its structure

print(slovakia_boundary)

Simple feature collection with 1 feature and 2 fields

Geometry type: MULTIPOLYGON

Dimension: XYZ

Bounding box: xmin: 1873858 ymin: 6062250 xmax: 2511997

ymax: 6379651

z_range: zmin: 0 zmax: 0

Projected CRS: WGS 84 / Pseudo-Mercator

 OBJECTID Area_km2 geom

1 2 49026.12 MULTIPOLYGON Z (((2165404 6...

The output in the console will show us that slovakia_boundary is an

sf object with one object (one polygon) and multiple attribute fields. It

is important to pay attention to the information about the coordinate

system (CRS). For further work, we will need to make sure that all our

data is in a single CRS.

The best way to check if spatial data has been loaded correctly is to

visualize it. ggplot2 has a specialized geom for SF objects – geom_sf(),

which makes creating maps extremely easy.

Create a simple map of the study area

ggplot() +

 geom_sf(data = slovakia_boundary, fill = "lightgray",

color = "black") +

 theme_bw() +

 labs(

 title = " Study area: Slovakia",

x = "Longitude",

y = "Latitude"

)

Result Analysis: We have obtained a simple yet clear outline of our

territory. geom_sf() automatically uses the geometry column and CRS

information to display the data correctly. This object will

slovakia_boundary become our primary tool for spatial filtering and

preparation of all other data layers, ensuring that our final stack of

predictors is perfectly aligned in spatial coverage.

93

Fig. 2.4. Map of the study area. Shows the administrative borders of Slovakia

downloaded from the GeoPackage file and visualized with ggplot2

7.2. Sources of point data on soils

Once the boundaries of our territory have been determined, the next

step is to collect and analyze point soil data. This data is the empirical

basis, the "ground truth" on which our model will be trained. This is the

S (Soil) component of the SCORPAN model. The quality, quantity, and

spatial distribution of this data directly determine the potential accuracy

and reliability of our final predictive map.

For our example, we will use a dataset based on the data obtained as

part of the creation of the Global Soil Organic Carbon Map (GSOCmap)

based on the detailed soil survey program of Slovakia. We have also

attached data containing information about soil types, including their

geographical coordinates and classification belonging to the main

abstract soil taxon (Major Soil Group) according to the WRB (World

Reference Base for Soil Resources) classification.

We download this data, which, like the boundaries, is stored in

GeoPackage format, and conduct an initial exploratory analysis.

Load necessary libraries

library(sf)

94

library(dplyr)

library(ggplot2)

Path to the soil point data

points_path <- "gis_data/slovakia_soil_points_3857.gpkg"

Read the GeoPackage file into an sf object

soil_points <- st_read(points_path)

Reading layer `slovakia_soil_points_3857' from data

source

`D:\TextbookPredSoilMapping\gis_data\slovakia_soil_points

_3857.gpkg' using driver `GPKG'

Simple feature collection with 5478 features and 2 fields

Geometry type: POINT

Dimension: XY

Bounding box: xmin: -589817.7 ymin: -1334011 xmax: -

166759.8 ymax: -1132904

Projected CRS: S-JTSK / Krovak East North

Display the first few rows and the structure of the

data

glimpse(soil_points)

Rows: 5,478

Columns: 3

$ WRB <chr> "Cambisols", "Cambisols", "Cambisols",

"Cambisols", "Cambisols", "Cambisols", "Fluvisols",

"Fluvisols", "Flu…

$ SOC_t_ha <dbl> 124.4495, 121.8000, 124.4000, 109.1000,

77.7000, 113.4000, 83.6000, 83.6000, 415.8000, 37.8000,

66.4000, 210…

$ geom <POINT [m]> POINT (-387872.3 -1132904), POINT

(-387579.4 -1135850), POINT (-387596.7 -1137717), POINT

(-390370.4 -…

The glimpse() function from the dplyr package provides a compact

overview of our table. We see the columns: profile_id (unique profile

ID), WRB (our target variable – soil type), and a geometry column

containing the coordinates of each point.

Class Distribution Analysis

Before moving on to modeling, it's critical to understand what kind

of data we're dealing with. For the classification problem, we are

primarily interested in how many observations (profiles) fall on each

95

class (soil type). A significant imbalance, where some classes are

represented by hundreds of points and others by only a few, can

negatively affect the model's ability to recognize rare classes.

We can easily calculate the number of points for each soil type using

the verb count() with dplyr and visualize the result.

Count the number of occurrences for each soil type

soil_type_counts <- soil_points %>%

 st_drop_geometry() %>% # Drop geometry for non-spatial

operations

 count(WRB, sort = TRUE)

print(soil_type_counts)

 WRB n

1 Cambisols 1441

2 Rendzic Leptosols 737

3 Fluvisols 534

4 Planosols and Stagnosols 519

5 Mollic Fluvisols and Mollic Gleysols 452

6 Haplic Luvisols 355

7 Chernozems 351

8 Podzols 270

9 Calcaric Cambisols 261

10 Albic Luvisols 248

11 Arenosols 181

12 Andosols 57

13 Histosols 38

14 distinctly contaminated soils 24

15 Leptosols 10

Visualize the class distribution

ggplot(soil_type_counts, aes(x = n, y = reorder(WRB, n)))

+

 geom_col(fill = "steelblue") +

 theme_bw() +

 labs(

title = "Distribution of soil profiles by soil type",

x = "Number of profiles",

y = "Soil type (WRB)"

)

96

Fig. 2.5. Bar chart showing the number of observations for each soil type.

Columns are sorted in ascending order for better readability

Graph analysis: We can see that the classes are unevenly

distributed. The most represented are Cambisols and Rendzic Leptosols,

which is typical for the mountainous and foothill areas of Slovakia. At

the same time, soils such as Histosols are represented by a much smaller

number of points. This class imbalance is an important data

characteristic that will need to be taken into account during the modeling

phase.

Spatial distribution analysis

Equally important is the analysis of where our points are located. Do

they evenly cover the entire study area? Are there spatial clusters? We

visualize the location of points on the map, coloring them according to

the type of soil.

Plot the spatial distribution of soil points

ggplot() +

 geom_sf(data = slovakia_boundary, child = "gray95") + #

Base map

 geom_sf(data = soil_points, aes(color = WRB), size = 2,

alpha = 0.7) + # Soil points

 theme_bw() +

 labs(

97

title = "Spatial distribution of point data",

subtitle = "Points colored by soil type (WRB)",

color = "Soil type",

x = "Longitude", y = "Latitude")

Fig. 2.6. Map of the spatial distribution of soil profiles on the territory of

Slovakia. Each point corresponds to a profile and has a color indicating its type

of soil

Map analysis: The map shows that the points are distributed over

the area relatively unevenly, with obvious clusters in certain regions,

which often happens with historical data. We can also see geographical

patterns: for example, the Chernozems are predominantly concentrated

in the southern lowlands, while the Cambisols dominate the

mountainous areas. This visual analysis confirms that our data have a

clear relationship with the landscape, and is a good sign for further

predictive modeling.

7.3. Collection and pre-treatment of raster covariates

Once we have prepared the data for our target variable (S), it is time

to collect and process the predictors – a set of raster layers that quantify

the factors of soil formation according to the SCORPAN model. These

raster covariates are the "eyes" of our model; it is through them that the

model "sees" the landscape and learns to relate its characteristics to soil

properties.

For our example with Slovakia, we will focus on obtaining a set of

98

covariates representing R (Relief) and P (Parent Rock). Relief is the

dominant factor at this scale, and we can obtain a large number of

informative predictors from a single source – the Digital Elevation

Model (DEM).

Step 1: Processing the DEM and obtaining relief derivatives

We will start with the DEM for the territory of Slovakia. Suppose we

have it as a GeoTIFF file. Our first task is to download it and, using the

powerful functions of the terra package (Hijmans, 2023), calculate a set

of primary and secondary morphometric indicators.

Load necessary libraries

library(terra)

library(sf)

Load the base DEM for Slovakia

dem <- rast("gis_data/dmr3_5_100.tif")

Calculate primary terrain derivatives using the

terrain() function

slope <- terrain(dem, v = "slope", unit = "degrees")

aspect <- terrain(dem, v = "aspect", unit = "degrees")

Calculate some secondary derivatives

TPI (Topographic Position Index) - indicates ridges vs

valleys

tpi <- terrain(dem, v = "TPI")

TRI (Terrain Ruggedness Index) - measures local

elevation variation

tri <- terrain(dem, v = "TRI")

It's good practice to combine all derived rasters into

a single multi-layer object

and give them meaningful names

terrain_covariates <- c(dem, slope, aspect, tpi, tri)

names(terrain_covariates) <- c("elevation", "slope",

"aspect", "tpi", "tri")

Plot one of the derivatives to check the result

plot(slope, main = "Surface slope, degrees")

99

Fig. 2.7. Slope map calculated on the basis of DEM. The difference between the

flat lowlands in the south and the Tatra mountain systems with steep slopes is

clearly visible

Step 2: Preparation of other covariates (e.g. geology)

Suppose we have a rasterized geological map where each pixel has a

numerical code corresponding to a specific type of rock. This is a

categorical raster and its processing is slightly different, especially in

the oversampling phase.

Load the rasterized geological map

geology <- rast("gis_data/slovakia_geology.tif")

plot(geology)

Step 3: Raster Stack Harmonization

This is a critical stage. In order for the model to work, all raster

predictors must have exactly the same spatial properties:

 Coordinate System (CRS): All layers must be in the same

projection.

Extent: All layers must cover the same geographic area.

Resolution: All layers must have the same pixel size and be aligned to

a single grid.

We use our DEM as a "template" and bring all other rasters to its

100

parameters. In addition, we will crop and mask the final stack along the

exact contour of our research territory (slovakia_boundary) to avoid

processing unnecessary data.

Load the boundary polygon

slovakia_boundary <-

st_read("gis_data/slovakia_boundary.gpkg")

--- Harmonization Workflow ---

1. Project geology raster to match the DEM's CRS

Note: This step is only needed if CRSs are

different. We assume they are for demonstration.

geology_proj <- project(geology, crs(dem), method =

"near") # Use 'near' for categorical data

2. Resample the projected geology raster to match the

DEM's grid

geology_resampled <- resample(geology_proj, dem, method =

"near")

3. Combine all prepared rasters into a single stack

final_stack <- c(terrain_covariates, geology_resampled)

names(final_stack)[6] <- "geology" # Rename the last

layer

4. Crop and mask the final stack to the exact boundary

of Slovakia

final_stack_masked <- crop(final_stack,

slovakia_boundary)

final_stack_masked <- mask(final_stack_masked,

slovakia_boundary)

Check the properties of the final stack

print(final_stack_masked)

class : SpatRaster

dimensions : 3174, 6382, 6 (nrow, ncol, nlyr)

resolution : 100, 100 (x, y)

extent : 1873812, 2512012, 6062227, 6379627 (xmin,

xmax, ymin, ymax)

coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857)

source(s) : memory

varname : dmr3_5_100

names : elevation, slope, aspect, tpi,

tri, geology

101

min values : 94.41817, 0.00000, 0, -41.83284,

0.0000, 1

max values : 2609.17456, 53.46109, 360, 60.06293,

105.1039, 348

Save the multi-layer raster to a GeoTIFF file

writeRaster(final_stack_masked,

"gis_data/all_slovakia_terrain_derivatives.tif",

overwrite = TRUE)

plot(final_stack_masked)

Fig. 2.9. Visualization of the final harmonized stack of raster covariates. Several

layers are shown that overlap perfectly within the borders of Slovakia

Result Analysis: The output of the print() command will show us

that final_stack_masked is a SpatRaster object with 6 layers. All of them

now have identical sizes, resolution, extent, and coordinate system.

This careful preparation and harmonization process ensures that in

the next step, when we extract the values of the covariate for our points,

we will obtain consistent and reliable data, which is the key to building

a quality predictive model.

7.4. Creating the final dataset for modeling

We have come to the culminating point in data preparation. In the

previous sections, we have separately prepared two key ingredients:

 Point Soil Data (soil_points): Our sf (Pebesma, 2018) facility

102

containing the geographic location and soil type for each profile

(S component).

 Harmonized Covariate Stack (final_stack_masked): Our

multilayer SpatRaster object, where all predictors (elevation,

slope, geology, etc.) are brought to a single spatial grid

(SCORPAN components).

Now our task is to integrate these two data sets to create a single,

"neat" table. This table, often referred to as a "modeling matrix" or

"training matrix", is the final product that we will feed to machine

learning algorithms. Each row in this table will represent one

observation (ground profile), and the columns will represent the target

variable and all the predictors for that observation.

Step 1: Extraction of covariate values

The main operation at this stage is extraction – the process of

extracting pixel values from the raster stack at the exact locations of our

soil profiles. The terra package performs this task extremely efficiently

with the extract() function. It "pierces" the entire raster stack at each

point and returns values from all layers.

Load necessary libraries

library(terra)

library(sf)

library(dplyr)

library(tidyverse)

Load the two key datasets prepared in previous sections

final_stack_masked <-

rast("gis_data/all_slovakia_terrain_derivatives.tif")

soil_points <-

st_read("gis_data/slovakia_soil_points_3857.gpkg")

Reading layer `slovakia_soil_points_3857' from data

source

`D:\TextbookPredSoilMapping\gis_data\slovakia_soil_points

_3857.gpkg' using driver `GPKG'

Simple feature collection with 5478 features and 2 fields

Geometry type: POINT

Dimension: XY

103

Bounding box: xmin: 1875992 ymin: 6063841 xmax: 2510017

ymax: 6379423

Projected CRS: WGS 84 / Pseudo-Mercator

--- Data Integration Workflow ---

Ensure the CRS of points matches the raster stack

before extraction

This is a crucial sanity check

soil_points <- st_transform(soil_points, crs =

crs(final_stack_masked))

1. Extract covariate values for each point

The result is a data frame

The xy=TRUE argument tells the function to include the

coordinates in the output

extracted_covariates <- extract(final_stack_masked,

soil_points, xy = TRUE)

Let's inspect the result

head(extracted_covariates)

Fig. 2.9. Results of the extraction process. Vector points

"punctured" the multilayer raster stack by extracting values from

each layer and writing them to a new table

As you can see, extracted_covariates is a table where the first column

ID corresponds to the ordinal number of the point, and the rest of the

columns contain the values of the predictors for each of them.

Step 2: Merge and Final Data Cleanup

Now we need to combine the output data from the points (containing,

most importantly, our target WRB variable) with a table of extracted

values. We'll also follow a few important cleanup steps to prepare the

data directly for the simulation.

2. Combine original point data with extracted values

104

We use bind_cols() as it joins dataframes side-by-

side

We also convert the sf object to a regular dataframe

for modeling

final_dataset <-bind_cols(st_drop_geometry(soil_points),

extracted_covariates)

3. Clean up the combined dataset

final_dataset_clean <-final_dataset%>%

 #select(-ID) %>% # Remove the redundant ID column from

extract()

 na.omit() %>% # Remove rows with NA values (e.g.,

points outside the raster mask)

 mutate(

 # Convert the numeric geology code into a factor

 # This is crucial for models to treat it as a

categorical variable

 geology = as.factor(geology)

)

Let's inspect the final, clean dataset

glimpse(final_dataset_clean)

And write the final_dataset_clean dataframe to a CSV

file in the 'results' folder

write_csv(final_dataset_clean,

"results/final_modeling_dataset.csv")

Analysis of the result: The glimpse() command shows us the ideal

structure for modeling. We have a table where each row is a complete

set of data. The first column (WRB) is our raw information, the second

(SOC_t_ha) is the SOC stocks at a given point (we will model it in

Section 3 as a continuum variable) and the next columns (elevation,

slope, ..., geology) are predictors ready to use. that there are no missing

values (NA) in the data, and the categorical predictor geology has the

105

correct factor type. The coordinates of the points are also saved, which

is important for visualization.

This final object is final_dataset_clean the result of all our

preparatory work and is saved to disk. We have come a long way from

scattered raw data to a single, coherent, and informative dataset. We are

now fully prepared to move on to the next section and use this set to

train, validate, and apply machine learning models to create our first

predictive soil map.

106

Chapter 8. Modeling with decision trees and random forest

8.1. Introduction to Machine Learning for Classification

In the previous section, we successfully completed perhaps the most

difficult stage of any digital soil mapping project – data preparation and

integration. The result of our work is a single, "tidy" table of

final_dataset_clean containing both a target variable (soil type) and a set

of potential predictors (covariate) for each observation point. Now we

are ready to move on to the most interesting part – building a predictive

model. Machine Learning (ML).

Machine learning is a branch of artificial intelligence that gives

computers the ability to "learn" from data without being explicitly

programmed for a specific task (Breiman, 2001; James et al., 2013). In

the context of DSM, ML algorithms are the "engine" that analyzes our

integrated data and identifies complex, often non-linear and non-human

patterns linking environmental factors (CORPAN) to soil (S) properties.

The task that we will solve in this part of the book belongs to the

category of supervised learning. It is called "controlled" because we

have the "right answers" for our training data – for each soil profile, we

know its true soil type. We essentially act as a "teacher" who shows the

algorithm examples (point data) and correct answers (class labels), and

the algorithm's task is to learn the general rules so that we can then give

the correct answers for new, never seen examples (i.e., for each pixel of

our map).

Within guided learning, there are two main types of tasks:

 Regression: Prediction of a continuous, quantitative variable

(e.g., organic carbon content, pH). We will discuss this topic in

detail in Part III.

Classification: Predicting a categorical variable or class. This is our

current goal – we want to train the model to assign each pixel on the map

one of the defined classes corresponding to soil types (e.g. Cambisol,

Chernozem, Luvisol).

107

Fig. 2.10. Conceptual scheme of the classification problem. A feature vector

(covariate value for one pixel) is applied to the model input. The model, which

is a "black box" with learned rules, outputs a predicted class

There are many classification algorithms, from simple (logistic

regression) to very complex (neural networks). In this guide, we'll focus

on two extremely popular, powerful, and, importantly, intuitive methods

that have proven themselves in digital soil science:

 Decision Trees: A simple, interpreted method that builds a set

of hierarchical if-and-then rules that visually resemble a tree-

like structure.

 Random Forest: A refinement of decision trees that uses the

"wisdom of the crowd". This method builds not one, but

hundreds of different decision trees on random subsamples of

data, and makes the final prediction by "voting" between all the

trees. This is one of the most reliable and accurate "ready-to-

use" classifiers.

Before we move on to the practical implementation of these models,

it is important to mention the key principle of validation outlined in

subsection 6.3: for an objective assessment of accuracy, we must divide

our final final_dataset_clean data set into training and test samples. The

model will be built exclusively on the training sample, and we will test

its performance on a test sample that simulates the operation of the

model on completely new data.

108

8.2. Decision trees (rpart)

The first classification algorithm we will look at is the Decision

Tree. Its enormous popularity, especially in applied sciences, is due not

so much to its extreme accuracy as to its incredible simplicity and

interpretation. Unlike many "black boxes" in machine learning, the

decision tree produces the result in the form of a set of simple,

hierarchical "if-so" rules that are easy to understand and visualize.

forecast, but also to understand why the model made such a choice,

which is extremely valuable for a soil scientist.

Imagine trying to determine the type of soil by asking successive

questions about environmental factors. "Is this point at an altitude of

more than 800 meters?". If yes, then it is probably "Podozol". If "no",

then the next question is: "Is the mother breed a loess?". If yes, then it is

probably "Chernozem". It is on this principle that the decision tree

works.

The algorithm that builds such a tree (the most famous of which is

CART) works on the principle of recursive partitioning.

 It starts with the entire set of training data (root node).

Then it goes through all the predictors (height, slope, etc.) and all

possible points of their division to find the best division – the one that

divides the data into two most "pure" groups. "Purity" means that one

class of soil predominates in each of the newly formed groups.

This division process is recursively repeated for each new subgroup,

creating branches and new nodes.

A tree stops growing when one of the stop criteria is met (e.g., a node

becomes completely "clean", or there are too few observations left in it).

Terminal nodes that are not further divided are called leaves and contain

the final class forecast.

Practical implementation with rpart

In R, the classic package for building decision trees is rpart

(Recursive Partitioning and Regression Trees, Therneau et al., 2022).

We use it to build a model on our data.

Step 1: Splitting the data into training and test samples
First of all, we must divide our set of final_dataset_clean into two

109

parts. This is a critical step for an objective assessment of the model. We

will use a modern approach from the rsample package (part of the

tidymodels ecosystem). We will also remove from the dataset

--- Load Necessary Libraries ---

List of required packages

packages <- c("rpart", "rpart.plot", "rsample", "dplyr")

Loop through the packages

for (pkg in packages) {

 # Check if the package is not already installed

 if (!require(pkg, character.only = TRUE)) {

 # If not installed, install it

 install.packages(pkg)

 # Load the package after installation

 library(pkg, character.only = TRUE)

 }

}

Assume 'final_dataset_clean' is loaded from the

previous chapter

Load your dataset from a CSV file

final_dataset <-

read_csv("results/final_modeling_dataset.csv")

Remove the 'SOC_t_ha' column

final_dataset_clean <- final_dataset %>%

select(-SOC_t_ha)

Convert the numeric WRB and geology after loading into

a factor

final_dataset_clean$WRB <-

as.factor(final_dataset_clean$WRB)

final_dataset_clean$geology <-

as.factor(final_dataset_clean$geology)

Set a seed for reproducibility of the random split

set.seed(123)

Create a split object that defines how to split the

data (e.g., 75% for training)

data_split <- initial_split(final_dataset_clean, prop =

0.75, strata = WRB)

110

Extract the training and testing sets from the split

object

train_data <- training(data_split)

test_data <- testing(data_split)

--- Prepare Data ---

It's still crucial to ensure the target variable is a

factor for classification

and to remove any unique identifier columns like

'profile_id' before training.

train_data_clean <- train_data %>%

 select(-ID) # Remove identifier column if it exists

We must apply the same cleaning to the test data before

prediction!

test_data_clean <- test_data %>%

 select(-ID)

train_data_clean

test_data_clean

Check the dimensions

dim(train_data_clean)

[1] 4082 9

dim(test_data_clean)

[1] 1361 9

111

Note: The strata = WRB argument is very important. It ensures that

the proportions of different soil types in the study and test samples are

the same as in the original dataset, which is critical when working with

unbalanced classrooms.

Step 2: Model Training
Now we can train the model to train_data. The main function rpart()

uses formula syntax, where Target_variable ~ Predictor1 + Predictor2 +

.... Period (.) is an abbreviation for "all other variables".

Train the decision tree model

We want to predict WRB using all other variables as

predictors

We want to predict WRB using all other variables EXCEPT

'geology'

tree_model <- rpart(WRB ~ . - geology, data =

train_data_clean, method = "class")

After a rather long wait (classification is a resource-intensive

process), we get the result.

Step 3: Rendering and Analyzing the Tree
The main advantage of this method is visualization. The rpart.plot

package provides great tools for this.

Plot the resulting decision tree

rpart.plot(tree_model, box.palette = "RdBu", shadow.col =

112

"gray", nn = TRUE)

Fig. 2.11. Visualization of the decision tree for the classification of soil types.

The tree shows a hierarchy of division rules, starting with the most important

predictor in the root node

 Graph analysis: This tree is a visual instruction manual for soil

classification.

 Root node (top): Shows the overall distribution of classes in the

study sample. The first rule of separation of elevation < 221m. This

means that height is the most important predictor that best divides

soils into two groups.

 Branches: Objects that satisfy the condition go along the left branch

("yes"), the rest go along the right ("no").

 Nodes and leaves: Each node shows a predicted class for the objects

that have fallen into it, and the distribution of classes as a percentage.

For example, we can see a node where 68% of soils are "Cambisols".

This is our rule: the combination of conditions leading to this node

is characteristic of Cambisols.

Although decision trees are a great tool for interpreting and understanding

data, they have drawbacks: they can be unstable (small changes in the data

can drastically change the structure of the tree) and prone to overlearning

(creating too complex rules that work perfectly on training data, but do not

generalize well on new ones). It was to solve these problems that the Random

Forest method was created, which we will consider in the next subsection.

113

8.3. RandomForest

In the previous subsection, we saw how intuitive and interpretable

decision trees are. However, we also noted their significant drawbacks:

high variance (instability) and a tendency to overlearn. This means that

a single tree built on our data is only one of many possible ways to

describe dependencies, and it may be too "fitted" to the specific noises

and features of our particular study sample.

Random Forest is an ingenious solution to these problems. It is a

method of ensemble learning that is based on a simple but powerful

idea of "crowd wisdom": a collective solution of a large number of

diverse but relatively weak models (individual trees) will be much more

accurate and reliable than the solution of a single, albeit complex, model

(Breiman, 2001). Instead of carefully "growing" one perfect tree, we

create an entire "forest" of hundreds or thousands of different trees, And

then we force them to "vote" for the final forecast.

The Random Forest algorithm achieves this "diversity" of trees using

two key techniques:

 Bagging: Each tree in the forest is not built on the entire training

dataset, but on its random subsample with a return

(bootstrap sample). This means that a new dataset of the same

size as the original one is created for each tree, but some

observations in it may be repeated several times, and some may

not hit at all. that each tree sees a slightly different "picture" of

data.

 Randomness of predictors: When plotting each node in each

tree, the algorithm does not iterate through all available

predictors to find the best division. Instead, it only considers a

random subset of predictors (e.g., 3 out of 10). This forces

trees to use different variables and prevents a situation where

one very strong predictor (e.g., elevation) would dominate all

trees, making them similar.

114

Fig. 2.12. Conceptual scheme of operation of the Random Forest for

classification. It is shown how many bootstrap samples are created from the

training data, each is built with its own tree, and the final forecast for the new

observation is determined by voting

Practical implementation with randomForest

The classic package for working with this algorithm in R is

randomForest.

Step 1: Model Training
We will use the same train_data and test_data as in the previous

subsection. The syntax of the randomForest() function is very similar to

that of rpart().

--- Load Necessary Libraries ---

We will use 'ranger' for modeling and 'caret' for the

confusion matrix.

This code will also install them if they are not

already present.

packages <- c("ranger", "dplyr", "caret", "rsample")

for (pkg in packages) {

 if (!require(pkg, character.only = TRUE)) {

 install.packages(pkg)

 library(pkg, character.only = TRUE)

115

 }

}

We continue using the train_data from the previous

split

Set a seed for reproducibility of the random process in

the algorithm

set.seed(123)

Train the Random Forest model

ntree: number of trees to grow

mtry: number of variables randomly sampled as

candidates at each split

rf_model <- ranger(

 formula = WRB ~ .,

 data = train_data_clean,

 num.trees = 500,

 importance = 'permutation' # A robust method for

calculating variable importance

)

Print the model summary

print(rf_model)

--- Save the Trained Model ---

1. Create the 'models' directory if it doesn't already

exist.

if (!dir.exists("models")) {

 dir.create("models")

}

2. Save the ranger_model object to the specified file.

The .rda format is a standard R data file format.

save(rf_model, file = "models/rf_model.rda")

print("Model has been successfully saved to

models/rf_model.rda")

Create and view the Confusion Matrix ---

1. Make predictions on the unseen test data.

predictions <- predict(rf_model, data = test_data)

2. Use the confusionMatrix() function from the 'caret'

package.

116

We compare the model's predictions with the actual

true values.

conf_matrix <- confusionMatrix(

 data = predictions$predictions, # The predicted

classes

 reference = test_data$WRB # The true classes

)

3. Print the detailed confusion matrix and all

associated statistics.

print(conf_matrix)

Output analysis: Unlike rpart, print(rf_model) output does not show

rules. Instead, it provides extremely useful information:

 Forest type: Classification.

 Number of trees: 500.

 OOB estimate of error rate: 47,99%. OOB (Out-of-Bag)

error is a built-in validation mechanism. For each tree, about a

third of the output data does not make it into the bootstrap

sample. An OOB error is an average error across all trees,

calculated on data that was not used to build them. This is a

reliable and objective indicator of model accuracy.

 Confusion Matrix: Shows how the model has classified OOB

data, allowing you to see which classes of soils are confused

with each other.

117

Step 2: Assessing the importance of variables

One of the most powerful advantages of the Random Forest is its

ability to estimate the importance of predictors (variable

importance). The algorithm calculates how much each covariate on

average contributes to the accuracy of the model across the forest. This

allows us to understand which SCORPAN factors are key to the

distribution of soils in our area.

--- Get and plot Variable Importance from ranger model

1. Extract the importance scores from the model object.

The importance() function works, but we need to

handle its output.

importance_scores <- importance(rf_model)

2. Convert the named vector of scores into a data frame

for plotting with ggplot2.

importance_df <- data.frame(

 Variable = names(importance_scores),

 Importance = importance_scores

) %>%

 # Arrange the variables by importance for a cleaner

plot

 arrange(Importance) %>%

 mutate(Variable = factor(Variable, levels = Variable))

This keeps the sorted order in the plot

3. Create the variable importance plot using ggplot2.

This is the modern equivalent of varImpPlot().

ggplot(importance_df, aes(x = Importance, y = Variable))

+

118

 geom_col(fill = "steelblue") +

 theme_bw() +

 labs(

 title = "Variable Importance for Soil

Classification",

 x = "Importance (Permutation)",

 y = "Predictor"

)

Fig. 2.13. Graph of the importance of variables. A bar chart is shown where

predictors are sorted by their contribution to model accuracy

Graph analysis: This graph is key to interpreting the results. We can

clearly see which predictors are "moving" in our model. For example,

elevation, coordinates, tri and geology are the most important, which

makes complete soil science sense. Instead, some of the indicators, such

as aspect, can have a much smaller impact. This allows not only to build

an accurate model, but also to get a scientific idea of the hierarchy of

soil formation factors in the study area.

The random forest is a significant step forward compared to a single

decision tree, offering higher accuracy and stability while maintaining

119

the possibility of deep analysis through the evaluation of the importance

of variables.

In this section, we use the Random Forest for classification. It is

worth noting that there is a powerful modification of it for regression

problems, which not only predicts continuous values, but also allows us

to estimate the uncertainty of these predictions. This method, known as

Quantile Regression Forests, will be discussed in detail in Part III

when we model the organic carbon content.

120

Chapter 9. Accuracy Assessment and Validation of

Classification Models

After building our first machine learning models, we may be tempted

to jump straight to mapping. However, this step would be premature and

scientifically unsound. Before we can trust the model's predictions, we

must conduct careful and objective validation – the process of

evaluating how well the model performs on new, never-before-seen data

(Congalton, 1991)

For validation, we will use a test sample (test_data), which we

prudently postponed at the very beginning. Since the model has never

"seen" this data during its training, it is a perfect simulator of a real-

world situation when the model encounters new data.

9.1. Confusion Matrix

The cornerstone of evaluating the accuracy of any classification

model is the mismatch matrix, also known as the confusion matrix.

This is a simple but extremely informative table that matches the classes

predicted by the model with the real (true) classes from the test

sample. It allows us to see not only the total number of errors, but also,

much more importantly, what kind of errors these are.

Structure of the matrix of mismatches:

 The strings usually represent true classes (data from our

observations).

 The columns represent the predicted classes (what the model

"said").

 The diagonal elements (where true class = predicted class)

show the number of correctly classified observations.

 Extradiagonal elements show errors - cases when the model

"confused" one class with another.

121

Fig. 2.14. Structure of the matrix of mismatches.

Practical implementation and interpretation

We create a matrix of inconsistencies for our Random Forest

(rf_model) model, which we taught in the previous section.

Step 1: Make predictions on the test sample
First, we'll use the predict() function to get our model's predictions

for test_data.

Create and view the Confusion Matrix ---

Make predictions on the unseen test data.

predictions <- predict(rf_model, data = test_data_clean)

Step 2: Creating and analyzing the matrix
Now, having a true value vector (test_data$WRB) and a prediction

vector, we can create a matrix. The confusionMatrix() function from the

caret package (Kuhn, 2008) is ideal for this, since it automatically

calculates not only the matrix itself, but also a whole set of key accuracy

metrics.

122

Create the confusion matrix and associated statistics

Use the confusionMatrix() function from the 'caret'

package.

We compare the model's predictions with the actual

true values.

conf_matrix <- confusionMatrix(

data = predictions$predictions, # The predicted

classes

reference = test_data_clean$WRB # The true classes

)

Print the detailed confusion matrix and all associated

statistics.

print(conf_matrix)

Output analysis: The output of confusionMatrix() is very detailed.

First, we see the table itself, and below it is a block with statistics.

 Overall Accuracy: This is the simplest metric – the proportion of

correctly classified observations. Although it is intuitive, it can be

misleading when dealing with unbalanced data.

 Kappa (Kappa Cohen Coefficient): This is a much more reliable

metric than general accuracy. Kappa shows how much better

classification results are than random guessing results (Cohen,

1960). It takes into account the probability of random correct

classification. Kappa values range from -1 to 1, where 1 is perfect

consistency, 0 is random consistency, and negative values are worse

than randomness.

 < 0.2: Weak consistency

 0.2 - 0.6: Moderate consistency

 0.6 - 0.8: Substantial consistency

 > 0.8: Near-perfect consistency

 Statistics by Class: confusionMatrix() also calculates metrics for

each class separately, which is extremely important. The most

important of them are Sensitivity and Precision, which in soil

science are often called Producer's Accuracy and User's

Accuracy , respectively.

The matrix of mismatches and the Kappa coefficient are fundamental

tools for any classification task. They allow you to move from a simple

statement "the model is 85% accurate" to a deep understanding of its

123

strengths and weaknesses: which classes it recognizes well, which ones

it confuses, and how much its results are better than ordinary guessing.

9.2. Overall Accuracy Metrics (Producer's Accuracy, User's

Accuracy)

The matrix of inconsistencies that we obtained in the previous

subsection is a source for the calculation of a whole series of quantitative

indicators that allow an objective and comprehensive assessment of the

performance of our model (Congalton, 1991). The confusionMatrix()

function from the caret package kindly calculates them for us, but for a

deep understanding of the strengths and weaknesses of our map, we

must be clear about what is behind each of these numbers. We consider

the three most important groups of metrics.

--- Extract Specific Accuracy Metrics ---

1. Extract Overall Accuracy from the confusion matrix

object.

It's stored in the 'overall' component.

overall_accuracy <- conf_matrix$overall['Accuracy']

print("--- Overall Model Accuracy ---")

print(paste("Overall Accuracy:", round(overall_accuracy,

4)))

[1] "Overall Accuracy: 0.5195"

2. Extract Producer's and User's Accuracy.

These are stored in the 'byClass' component of the

object.

accuracy_by_class <- as.data.frame(conf_matrix$byClass)

Let's select and rename the relevant columns for

clarity.

'Sensitivity' is Producer's Accuracy.

'Pos Pred Value' is User's Accuracy.

NOTE: Column names with spaces must be enclosed in

backticks (`).

class_accuracies <- accuracy_by_class %>%

 select(Sensitivity, `Pos Pred Value`) %>%

 rename(

124

 Producer_Accuracy = Sensitivity,

 User_Accuracy = `Pos Pred Value`

)

print("--- Accuracy Metrics by Class ---")

print(class_accuracies)

Overall Accuracy

This is the simplest and most intuitive metric. It is calculated as the

ratio of the number of all correctly classified samples (the sum of the

diagonal elements of the matrix) to the total number of samples in the

test sample.

Overall Accuracy=Total Predictions*Number of Correct Predictions

Interpretation: This metric answers a simple question: "What

percentage of samples from the test sample did our model classify

correctly?". While this metric is useful for the overall impression, it can

be misleading, especially when dealing with unbalanced data. Imagine

that 90% of our territory is occupied by Cambisols. A model that simply

always predicts Cambisol will have an overall accuracy of 90%,

although it is completely helpless in determining all other, less common,

but perhaps more important types of soil.

Producer's Accuracy

This metric, also known in machine learning as Sensitivity or Recall,

evaluates accuracy from the point of view of the "maker" of the map. It

125

is calculated for each class separately.

Producer′s Accuracy (for Class A)=Total Number of True Class A

Samples/Number of Samples Correctly Classified as Class A.

Interpretation: This metric answers the question: "Of all the true

samples of a certain type of soil that exist on the ground (in our test

sample), what percentage was our map able to correctly identify?". This

is an indicator of how well the map "finds" a particular class. Low

accuracy of the manufacturer means that the model misses many

samples of this class, mistakenly attributing them to others (omission

errors) matrices of inconsistencies (Congalton, 1991).

User's Accuracy

This metric, known as Precision in ML, evaluates the quality of a

map from the point of view of the end "user". It is also calculated for

each class.

User′s Accuracy (for Class A)=Total number of samples assigned

Class A by the model/Number of samples correctly classified as Class

A.

Interpretation: This metric answers the practical question: "If I go

to a point that the map marks as a certain type of soil, what is the

probability that there is actually that type of soil there?". This is an

indicator of the reliability of the forecast on the map. Low user accuracy

means that the map includes within the boundaries of a certain class

many areas that actually belong to other classes (inclusion errors,

commission errors). The calculation is carried out according to the

lines of the matrix of discrepancies.

126

Fig. 2.15. Accuracy calculation scheme adopted from Zhong et al. (2023).

Analysis: There is a trade-off between these two metrics. The model

can have high producer accuracy for Chernozems (find almost all true

Chernozems), but low user accuracy (while mistakenly attributing many

other soils to Chernozems).

That is why the accuracy analysis by classes provided by

confusionMatrix() is much more informative than a single digit of total

accuracy. It allows us to diagnose exactly which types of soils our model

predicts well and which have problems, which allows us to return to the

stage of selecting covariate or adjusting the model to improve the results.

9.3. Kappa coefficient

In the previous section, we took a closer look at Overall Accuracy,

as well as manufacturer's and user's accuracy. We have found that

overall precision, while intuitive, can be misleading, especially when the

classes in our data are unbalanced. A model can achieve high overall

accuracy by simply "guessing" the most common class while ignoring

all rare but important classes. We need a metric that can account for this

effect and estimate how much the performance of our model is better

than simple random guessing.

This is exactly why Cohen's Kappa Coefficient, or simply Kappa,

was developed. This is a statistical indicator that measures the degree

of agreement between two estimators (in our case, between model

127

predictions and true data), while taking into account the probability that

this consistency arose by chance.

The concept of random consistency

Imagine that you give two soil scientists who know nothing about the

territory a set of samples and ask them to assign each sample one of the

possible soil types at random. Even with a completely random selection,

purely according to the law of probability, some of their classifications

will match. This is random consistency. Kappa answers the question:

"How much is the consistency of our model with reality higher than this

basic one, random consistency?".

The formula for calculating Kappa is as follows:

where:

 Accuracy is an observable consistency that is nothing more than our

Overall Accuracy.

 RAccuracy is a hypothetical probability of random consistency. It

is calculated based on the row and column totals of our discrepancy

matrix.

Fig. 2.16. N x N grid used to interpret results of raters (Image: Kurtis Pykes)

Interpretation of Kappa Meanings

The Kappa value ranges from -1 to +1.

 kappa=1: Perfect, complete consistency.

 Kappa 0-1: Consistency is better than random.

https://builtin.com/data-science/cohens-kappa

128

 kappa=0: The consistency is exactly at the randomness level. The

model does not have any predictive power.

 kappa<=0: Consistency is worse than random (which is rare, but

indicates serious problems with the model).

To interpret the strength of coherence, the scale of Landis and Koch

(1977) is often used:

Meaning of Kappa Interpretation

< 0.00 Weak consistency

0.00 – 0.20 Barely noticeable

0.21 – 0.40 Satisfactory

0.41 – 0.60 Moderate

0.61 – 0.80 Significant

0.81 – 1.00 Almost perfect

Practical analysis

Fortunately, we don't have to calculate Kappa manually. The

confusionMatrix() function from the caret package does this for us. We

go back to its output, which we got in subsection 9.1.

For example, if we got Kappa : 0.43, it means that our model has

moderate consistency with real data, which for a case study is a good

result for a complex soil mapping task (although in real model tasks they

try to achieve an indicator greater than 0.60-0.70). This is a much more

significant indicator than, say, an overall accuracy of 52%, because it

confirms that high precision is not just an artifact of unbalanced classes.

Why is Kappa so important? Consider an example with dominant

Rendzic Leptosols. A model that always predicts " Rendzic Leptosols "

129

will have an Overall Accuracy = 0.9. However, when we calculate

Kappa, the probability of randomly guessing "Rendzic Leptosols" will

also be very high, around 0.81. As a result, the Kappa value will be close

to zero, which will honestly show us that the model hasn't really learned

anything.

Thus, the Kapp coefficient is a must-have tool in the arsenal of a

digital soil scientist. It provides a rigorous, objective and class

imbalance-resistant assessment, which allows us to be sure that our

model has indeed captured the real relationships between soils and

environmental factors.

9.4. Practical validation

Quantitative metrics such as overall accuracy and Kapp's ratio

provide us with an important, generalized assessment of the model's

performance. They provide an answer to the question, "How well does

the model perform overall?". However, for a deep understanding and,

most importantly, to further improve our performance, we must dive

deeper and answer the question, "Where and why is our model

wrong?". This process of analyzing the nature of errors is practical

validation.

Practical validation is a bridge between statistics and soil science. It

consists in returning to our matrix of inconsistencies and considering it

not as a source of numbers, but as a diagnostic tool. We are interested

in non-diagonal elements – those cells where the model confused one

type of soil with another.

Error analysis based on a matrix of mismatches

We take another look at the output of the discrepancy matrix that we

got:

130

Interpretation from the point of view of soil science:

 Error: 14 true Сambisols were classified as Albic Luvisols.

 Analysis: Why could the model confuse them? Both

Сambisols and Albic Luvisols in Slovakia are often formed

on similar parent rocks in the foothills. The key difference

between Albic Luvisols is the presence of a well-defined

illuvial (argic) clay accumulation horizon. characteristic of

Cambisols.

 Possible solution: Add new covariates to the model that

better reflect the stability of the landscape, such as a flux

power index (SPI) or a geomorphological map.

 Error: 7 true Chernozems were classified as Luvisoli.

 Analysis: This is also an understandable error. Chernozems

and Arenosols can occupy similar geographical zones on

flat lowlands. Both types of soils can have a dark humus

horizon. Probably, the model was not able to clearly

distinguish them from the available set of climatic and relief

predictors.

 Possible solution: Add covariates that better reflect the

parent rock (for example, climatic indicators that better

reflect the continentality of the climate, favorable for steppe

processes.

Spatial analysis of errors

In addition to analyzing the matrix itself, it is extremely useful to

visualize the errors on the map. We can create a map of our test points,

marking those that have been classified correctly and those where the

131

model has made a mistake.

--- Load Necessary Libraries ---

We will use 'ranger' for modeling, 'caret' for the

confusion matrix, and 'sf' for spatial operations.

This code will also install them if they are not

already present.

packages <- c("ranger", "dplyr", "caret", "rsample",

"ggplot2", "sf")

for (pkg in packages) {

 if (!require(pkg, character.only = TRUE)) {

 install.packages(pkg)

 library(pkg, character.only = TRUE)

 }

}

--- Spatial Visualization of Errors ---

1. Create a dataframe with true and predicted results,

keeping the ID from the original test set.

results_df <- data.frame(

 ID = test_data$ID,

 WRB_true = test_data$WRB,

 WRB_pred = predictions$predictions

)

2. Get the coordinates for each ID from the complete

dataset.

This avoids issues with joining to external spatial

files.

locations_df <- final_dataset_clean %>%

 select(ID, x, y) %>%

 distinct(ID, .keep_all = TRUE)

3. Join results with locations and convert to a spatial

'sf' object.

results_sf <- left_join(results_df, locations_df, by =

"ID") %>%

 # Convert to sf object, specifying coordinate columns

and the original CRS

 st_as_sf(coords = c("x", "y"), crs =

st_crs(slovakia_boundary)) %>%

 mutate(is_correct = (WRB_true == WRB_pred))

4. Filter out any rows that have missing geometry after

the join.

132

results_sf_clean <- results_sf %>%

 filter(!st_is_empty(.))

5. Visualize the errors on a map with custom styling.

We split the data to apply different aesthetics to

correct and incorrect points.

correct_points <- results_sf_clean %>% filter(is_correct

== TRUE)

incorrect_points <- results_sf_clean %>%

filter(is_correct == FALSE)

ggplot() +

 # Add the country boundary as a background

 geom_sf(data = slovakia_boundary, fill = "gray95") +

 # Add the correctly predicted points (green with a grey

border)

 # We use shape = 21 which has both fill and color

aesthetics.

 geom_sf(data = correct_points, fill = "green", color =

"grey40", shape = 21, size = 3) +

 # Add the incorrectly predicted points (red and half

the size)

 geom_sf(data = incorrect_points, color = "red", size =

1.5) +

 theme_bw() +

 labs(

 title = "Spatial Distribution of Classification

Errors",

 subtitle = "Green: Correct Predictions, Red:

Incorrect Predictions"

)

133

Fig. 2.18. Map of the spatial distribution of errors

Map analysis: Such a map can reveal spatial patterns in errors. Are

the errors concentrated in specific geographic regions (e.g., mountain

valleys or at the boundary of different geological formations)? If so, it

may indicate that our model does not perform well under these specific

conditions, and we lack predictors to describe these unique soil

formation factors.

Practical validation transforms the process of evaluating accuracy

from a simple statement of fact ("the model is accurate at X%") into an

iterative process of scientific research. It allows us not only to evaluate,

but also to understand and, most importantly, purposefully improve our

predictive soil map.

134

Chapter 10. Creation and interpretation of predictive maps

of soil types

We have come a long way: from data preparation and exploratory

analysis to training and careful validation of our machine learning

models. We have made sure that our Random Forest model has

sufficient predictive power and its accuracy far exceeds random

guessing. Now it is time for the final, most interesting stage – applying

our trained model to the entire study area to create a predictive soil

map.

10.1. Spatial forecasting

Spatial forecasting is the process of using a trained model to assign

a predicted value (in our case, a soil class) to each individual pixel in

our harmonized raster covariate stack. Essentially, we force the model

to "look" at every pixel of our territory, analyze the values of altitude,

slope, geology, and other predictors at that point, and, based on the rules

it learned in the training sample, make the most likely forecast for the

type of soil.

This process is the digital equivalent of a soil scientist-cartographer

extrapolating his knowledge from a few point observations to the entire

landscape. However, unlike humans, the model does so objectively,

reproducibly and with extreme detail for millions of pixels.

Practical implementation with terra

Fortunately, modern tools such as the terra package make this

potentially complex computing process extremely simple. terra has its

own, highly optimized predict() function that "understands" how to

work with raster objects and models trained with popular packages such

as randomForest.

The predict() function automatically performs the following steps:

 Takes a learned model (rf_model).

Takes a multilayer raster stack of covariate (final_stack_masked).

For each pixel, it collects the values from all the layers into a vector.

Feeds this vector to the input of the model.

Receives the forecast and writes it to the corresponding pixel of the new,

135

original raster.

The terra package efficiently manages memory by processing large

rasters in chunks, which makes it possible to work even with very large

areas that do not fit into the computer RAM.

--- Load Necessary Libraries ---

We will use 'ranger' for modeling, 'caret' for the

confusion matrix, and 'sf' for spatial operations.

This code will also install them if they are not

already present.

packages <- c("ranger", "dplyr", "caret", "rsample",

"ggplot2", "sf", "terra")

for (pkg in packages) {

 if (!require(pkg, character.only = TRUE)) {

 install.packages(pkg)

 library(pkg, character.only = TRUE)

 }

}

Assume 'final_dataset_clean', 'slovakia_boundary', and

the original 'soil_points' sf object are loaded.

Assume 'rf_model' is trained and loaded.

Assume 'final_stack_masked' is loaded.

--- Add Coordinate Layers to the Raster Stack ---

1. Create two new raster layers with the same

dimensions/CRS as our stack.

The 'init' function will populate them with

coordinate values.

x_coord_raster <- init(final_stack_masked, "x")

y_coord_raster <- init(final_stack_masked, "y")

2. Rename the new layers to 'x' and 'y' to match the

model's expectations.

names(x_coord_raster) <- "x"

names(y_coord_raster) <- "y"

3. Combine the original stack with the new coordinate

layers.

final_stack_with_coords <- c(final_stack_masked,

x_coord_raster, y_coord_raster)

4. Verify that the names now match the model's

136

predictors.

print("Names in the final raster stack:")

names(final_stack_with_coords)

print("Names expected by the model:")

print(rf_model$forest$independent.variable.names)

--- Spatial Prediction ---

Now we use the new stack that includes the coordinate

layers.

predicted_map <- predict(final_stack_with_coords,

rf_model, filename = "results/predicted_soil_map.tif",

overwrite = TRUE)

print("Prediction complete. The map has been saved to

results/predicted_soil_map.tif")

Process Analysis: That's all! With a single command, we applied a

complex model to millions of pixels. The result is a new, single-layer

raster predicted_map object stored on disk. This is a categorical raster,

where the value of each pixel is a numerical code corresponding to the

predicted soil class (e.g. 1=Cambisol, 2=Chernozem, etc.).

Rendering the final map

Now we visualize the result. Terra has powerful built-in visualization

tools that automatically create a legend for category stories.

--- Visualize Final Map (Masked) ---

1. Ensure the boundary layer is loaded (assuming it's

named slovakia_boundary)

and has the same CRS as the predicted map.

slovakia_boundary_proj <- st_transform(slovakia_boundary,

crs = crs(predicted_map))

2. Mask the predicted map using the country boundary.

This sets all pixels outside the polygon to NA.

predicted_map_masked <- mask(predicted_map,

slovakia_boundary_proj)

3. Convert the final raster to a dataframe for ggplot2

visualization.

map_df <- as.data.frame(predicted_map_masked, xy = TRUE)

The layer name might be complex, so we rename it for

137

simplicity.

colnames(map_df)[3] <- "soil_type"

Ensure it's treated as a categorical variable

map_df$soil_type <- as.factor(map_df$soil_type)

4. Create the final map using ggplot2 for better

aesthetics.

ggplot() +

 # Add the raster layer

 geom_raster(data = map_df, aes(x = x, y = y, fill =

soil_type)) +

 # Add the country boundary on top

 geom_sf(data = slovakia_boundary_proj, fill = NA, color

= "black", size = 0.5) +

 # Use the Viridis color palette, which is popular in

QGIS and colorblind-friendly

 scale_fill_viridis_d(option = "D", name = "Soil Type

(WRB)") +

 theme_bw() +

 labs(

 title = "Predictive Map of Soil Types in Slovakia",

 x = "Longitude",

 y = "Latitude"

) +

 coord_sf(crs = crs(predicted_map))

Map analysis: On the final map, we can see the spatial patterns of

soil distribution, which our model "studied". The detail of the map is

limited only by the resolution of our initial covariates. As you can see,

the predictive map predicted the distribution of the main soils of

Slovakia very well. At the same time, we note that we used the minimum

possible set of covariates, and when they are expanded, the accuracy of

the forecast will be much higher.

This stage is the triumph of the entire DSM workflow. It transforms

an abstract statistical model into a concrete, spatially explicit and useful

product, ready for further analysis, interpretation and use in sustainable

land use, soil protection and agronomic planning tasks.

138

A)

B)

Fig. 2.19. Final predictive map of soil types (A). Each color on the map

corresponds to the predicted dominant soil type for a given cell. For comparison,

the original soil map (B) is given

10.2. Map Interpretation

Creating a beautiful, smoothed predictive map is the technical

completion of the DSM workflow. However, the scientific work does

not end there. The final and perhaps most important step is the

interpretation of the map. This is the process in which we go from

"what" (what the map shows) to "why" (why the map shows exactly

139

these patterns). Interpretation is an intelligent synthesis where we

combine the results of our statistical modeling with our fundamental

knowledge of the field Soil Science, Geography and Ecology.

A map is not an absolute truth, but a scientific hypothesis about the

spatial distribution of soils, expressed in graphic form. Our task is to

critically evaluate this hypothesis, understand its strengths and realize

its limitations.

Relationship of spatial patterns with SCORPAN factors

The very first step of interpretation is to analyze spatial patterns on

the map and correlate them with soil formation factors that we used as

predictors. This is where the graph of the importance of variables, which

we obtained at the stage of training the Random Forest model

(subsection 8.3), comes in handy.

1. Analyzing the dominant factors: We look at our map and remember

which predictors were the most important. Suppose they were

elevation (altitude) and geology (geology). Do we see this on

the map?

 Altitudinal gradient: We are likely to see a distinct

zonality corresponding to the relief. For example, the

warmest and driest southern lowlands (Danube Lowlands)

are occupied by Chernozems and Fluvisemes. Podzols

and Leptosols (skeletal soils). This pattern is a classic

example of vertical soil zoning and confirms that our model

has successfully captured the relationship between soil and

relief.

 Parent rock influence: If we superimpose our map on the

geologic one, we can see other patterns. For example, the

ranges of the Rendzin (Rendzic Leptosols) on the map are

likely to closely coincide with the outcrops of limestone

rocks, which is their classic formation condition.

2. Consideration of constraints and uncertainties: A scientifically

competent interpretation always includes a discussion of

limitations.

 Scale and resolution: It is important to remember that our

140

map is a model, not a reality. The forecast for a pixel

measuring 100x100 meters, is an average characteristic for

this area. It does not reflect the micro-variability of the soil

inside this pixel.

 Model accuracy: We must return to our matrix of

inconsistencies (Chapter 9). If we know that the model has

often confused, for example, Cambisole and Luvisoli, then

on the map in the transition zones between these two types

of soils, we must interpret the boundary not as a clear line,

but as an area with increased uncertainty.

 "Digital soil bodies": Unlike traditional maps, where the

cartographer draws clear polygonal contours, our map is

continuous. The smoothing we applied makes the contours

more realistic, but they are still the result of statistical

processing rather than field delineation.

Practical application

The final stage of interpretation is the answer to the question: "How

can this map be used?". Our predictive map can serve:

 The basis for updating existing, more generalized soil maps.

 Inputs for erosion models, hydrological modeling, or potential

yield estimation.

 A tool for planning sustainable land use, identifying lands in

need of protection or optimizing agricultural practices.

 Thus, interpretation is not just a description of a map, but an in-

depth analysis that combines statistical results with expert

knowledge. It is this synthesis that turns our digital product into

a true scientific tool, contributing to a better understanding and

management of invaluable soil resources.

141

PART III. PREDICTIVE MODELING OF SOIL CHARACTERISTICS

Chapter 11. Continuous Variable Modeling: Organic

Carbon Content

11.1. Differences between Modeling of Continuous and Categorical

Variables

In the second part of this tutorial, we have successfully gone all the

way through digital mapping for the categorical variable – soil type.

We have trained the model to assign a specific label or class to each

pixel on the map ("Cambisol", "Chernozem", etc.). This task, known as

classification, is fundamental for creating soil maps. However, for many

practical tasks of agronomy, ecology and sustainable land use, we need

to know not only the type of soil, but also the type of soil, but also its

quantitative characteristics. For example, what exactly is the organic

carbon content, what is the cation exchange capacity, or what is the

folding density?

The answer to these questions is provided by another type of guided

machine learning – regression. In this part of the book, we will focus

on regression modeling, choosing one of the most important properties

of soil – Soil Organic Carbon (SOC) – as our target variable.

The transition from classification to regression changes not so much

the overall DSM workflow as key aspects in the modeling and

evaluation phases. We look at these fundamental differences.

1. Nature of the target variable

This is the most important difference that defines everything else.

o Classification: The target variable is categorical (in R –

factor). It has a limited set of discrete, disordered levels (for

example, 8 types of soils). The model predicts belonging to

one of these classes.

o Regression: The target variable is continuous (in R –

numeric). It can take any numerical value within a certain

range (e.g. SOC content can be 1.2%, 3.45%, 5.8%, etc., or

15, 50, 126 t/ha). The model predicts a specific numerical

value.

142

o 2. Algorithms and their settings

o While many algorithms, like Decision Trees and Random

Forest, can solve both types of problems, their inner

workings and settings are different.

o Decision trees (rpart): For classification, we used method

= "class". For regression, we will use method = "anova".

The criterion for dividing nodes changes from "purity" of

classes to minimizing the sum of squares of deviations from

the mean in newly formed groups.

o Random Forest (randomForest): The algorithm

automatically determines the type of task by the type of

target variable. For regression, the final prediction for the

new observation is not made by "voting" the trees, but by

averaging the predictions from all the trees in the forest.

3. Metrics to Evaluate Accuracy

This is perhaps the most obvious difference. Metrics based on the

comparison of discrete labels are completely unsuitable for evaluating

the accuracy of numerical predictions.

 Classification: We relied on the Discrepancy Matrix, from

which we obtained the Overall Accuracy, the

Manufacturer/User Accuracy, and, most importantly, the

Kappa Coefficient.

 Regression: To assess the accuracy of regression models, a

completely different set of metrics is used, based on the analysis

of errors (residuals) - the difference between true and

predicted values. The key metrics are:

 Coefficient of determination (R2): Shows what

proportion of variability (variability) of the target variable

our model explains. Values from 0 to 1; the closer to 1,

the better.

 Root Mean Squared Error (RMSE): This is essentially

the standard deviation of model errors. It is measured in

the same units as the target variable (e.g., as a percentage

of SOC), making it easy to interpret.

 Biased (Bias or Mean Error): Shows whether the model

143

has a systematic tendency to overestimate or

underestimate forecasts. The ideal value is 0.

Fig. 3.1. Comparison of a classic SOC map of Ukraine (above) and a map based

on regression models of the soil characteristics (down).

144

Thus, while the general logic of SCORPAN and the DSM workflow

remain the same, the transition to continuous variable modeling requires

a change in the tooling in the training phases and, especially, model

validation. In the following subsections, we will apply these new

approaches to create a detailed map of organic carbon content.

11.2. Focus on Soil Organic Carbon (SOC)

Moving on to regression modeling, we chose Soil Organic Carbon

(SOC) as our target variable. This choice is not accidental. SOC is

perhaps one of the most important and most studied properties of soil,

and there are several fundamental reasons for this. Understanding its

role will help us better interpret the results of our simulations and realize

the practical significance of the maps created.

Why is SOC so important?

The organic carbon content is an integral indicator located at the

intersection of key environmental, agronomic and climatic processes.

 Soil Health and Fertility Indicator: Soil organic matter, of

which carbon is the main constituent, is the foundation for most

fertility processes. It improves soil structure by increasing soil

aggregation and erosion resistance; increases the ability to retain

moisture, which is critical in climate change; is a source of

nutrients for plants (nitrogen, phosphorus, sulfur); and supports

the biodiversity of soil microorganisms. SOC maps are

indispensable for accurate agriculture and sustainable

management of agroecosystems.

A key component of the global carbon cycle: Soils are the largest

terrestrial reservoir of carbon on the planet, containing several times

more carbon than the entire atmosphere and biomass combined. Even

small changes in soil carbon stocks can have a significant impact on the

concentration of greenhouse gases in the atmosphere. Therefore,

accurate maps of the spatial distribution of SOCs are critical for

modeling global climate change, assessing the potential of soils to

sequester (sequester) carbon and developing national strategies to

mitigate the effects of climate change.

145

SOC Data Features

As a continuous variable, SOC content data have certain statistical

properties that we must consider before modeling. One of the most

characteristic features of many soil properties, and SOC in particular, is

the positive-asymmetric (right-handed) distribution.

This means that most of the values are relatively low, but a small

number of very high values ("long right tail") are present in the data.

Such high values are often observed, for example, in peat soils

(histosols) or in the powerful humus horizons of the Chernozems.

We visualize a typical SOC distribution using a histogram.

--- Load Necessary Libraries ---

This script will install packages if they are not

already present.

packages <- c("sf", "dplyr", "ggplot2")

for (pkg in packages) {

 if (!require(pkg, character.only = TRUE)) {

 install.packages(pkg)

 library(pkg, character.only = TRUE)

 }

}

--- Chapter 11: Modeling SOC ---

--- Section 11.3: Data Transformation ---

1. Load the soil point data

We assume the data is in the 'gis_data' subfolder.

soil_points <-

st_read("gis_data/slovakia_soil_points_3857.gpkg")

2. Prepare the data for transformation and modeling

We will use SOC_t_ha as our target variable.

modeling_data <- soil_points %>%

 select(SOC_t_ha) %>% # Select only the target

variable

 as.data.frame() %>% # Convert sf object to a

regular dataframe

 select(-geom) # Remove the empty geometry

column

Plot 1: Histogram of original SOC stock data

p_original <- ggplot(modeling_data_transformed, aes(x =

SOC_t_ha)) +

146

 geom_histogram(bins = 30, fill = "darkolivegreen",

color = "black") +

 theme_bw() +

 labs(title = "Before Transformation", x = "SOC Stock,

t/ha", y = "Frequency")

Fig. 3.2. A histogram illustrating a typical positive-asymmetric distribution of

SOC content. A large number of low values and a long "tail" with few high

values are visible

Graph analysis: This asymmetry can create problems for some

statistical models that work better with data that have a normal

(symmetrical) distribution. In addition, the presence of extremely high

values can disproportionately affect the model's learning process.

Because of this feature, standard practice before modeling SOCs (and

many other ground properties) is to transform the data in order to make

their distribution more symmetrical. The most common and efficient

method for this is logarithmic transformation. We will discuss this

step in detail in the next subsection, as it is key to building a reliable

regression model.

147

11.3. Preparing Data for SOC Modeling (Logarithmic

Transformation)

In the previous subsection, we found that organic carbon content

(SOC) and many other soil properties often have a positive-asymmetric

distribution. This means that most values are relatively low, but there

are a small number of extremely high values, which creates a "long right

tail" on the histogram. Such asymmetry can negatively affect the

performance of regression models, especially linear ones, which often

make assumptions about the normality of the error distribution. Even

for more flexible models like Random Forest, strong asymmetries and

the presence of outliers can make the learning process difficult.

To solve this problem, standard practice is data transformation –

applying a mathematical function to our target variable in order to make

its distribution more symmetric, similar to normal (bell-shaped). For

positive-asymmetric data, the most common and most effective method

is logarithmic transformation.

How Does a Logarithmic Transformation Work?

The natural logarithm (log() in R) has the property of "compressing"

large values and "stretching" small ones. When we apply it to our

asymmetric distribution, it effectively "pulls in" the long right tail,

making the overall distribution much more symmetrical.

Important note: the logarithm is not defined for zero and negative

values. Since the SOC content cannot be negative, the main problem is

zeros. If there are zero SOC values in our data, the standard approach is

to add a small constant before logarithm, such as log(soc_percent + 1).

Practical implementation and visualization of the effect

We apply the logarithmic transformation to our SOC data and

visually evaluate its effect by comparing the histograms before and after

the transformation. We'll use the mutate() function with dplyr to create

a new column with transformed values.

3. Apply the Logarithmic Transformation

Create a new column with log-transformed SOC stock

values.

148

modeling_data_transformed <- modeling_data %>%

 mutate(log_soc = log(SOC_t_ha))

--- 4. Visualize the effect of the transformation ---

Plot 2: Histogram of log-transformed SOC stock data

p_transformed <- ggplot(modeling_data_transformed, aes(x

= log_soc)) +

 geom_histogram(bins = 30, fill = "skyblue", color =

"black") +

 theme_bw() +

 labs(title = "After Log Transformation", x = "log(SOC

Stock)", y = "Frequency")

Combine the two plots side-by-side using the patchwork

package

p_original + p_transformed

Fig. 3.3. Comparison of the distribution of SOC contents before (left) and after

(right) logarithmic transformation. You can clearly see how the asymmetrical

distribution turns into a symmetrical, bell-shaped one

Graph analysis: The result is obvious. The left histogram shows a

strongly asymmetric distribution of the original data. The right

histogram, showing the distribution of logarithmic values, is much more

symmetric and resembles a normal distribution. It is on these

transformed data (log_soc) that we will train our regression model.

The need for reverse transformation

This is a critical point that should not be overlooked. Our model will

learn to predict the logarithm of the SOC. Therefore, its predictions

149

(for both the test sample and the final map) will be on a logarithmic

scale. These values do not have a direct physical interpretation.

To get the predictions in original, understandable units (SOC

percentages), we must perform an inverse transformation. The inverse

function to the natural logarithm is the exponent (exp() in R)

SOC_predicted=exp(log(SOC_predicted))

We will apply this operation in the final stage, after receiving the

predictions from the model, to create a map on which the values can be

easily interpreted.

11.4. Exploratory Data Analysis

Once we have prepared and transformed our target variable, we

should not immediately move on to building a complex model. An

important intermediate step is Exploratory Data Analysis (EDA). The

purpose of the EDA is to investigate the relationships between our target

variable (now log_soc) and our predictors.

 Are there any statistically significant relationships

between our covariates and SOC content at all?

 Which of the predictors look the most promising?

 What is the nature of these relationships (linear, non-

linear)?

The answers to these questions give us a deep understanding of the

data, confirm the validity of the choice of our predictors according to the

SCORPAN model, and help in the further interpretation of the

simulation results. For EDA, we will use simple but powerful visual and

statistical methods.

Correlation analysis for continuous predictors

The first step is to estimate the linear relationship between our

target variable and all continuous predictors. The Pearson

correlation coefficient (r) measures the strength and direction of the

linear relationship between two variables. It ranges from -1 (perfect

negative relationship) to +1 (perfect positive relationship), where 0

means no linear relationship.

150

We calculate and visualize the correlation matrix for our data.

4. Load the raster stack of environmental covariates

covariate_stack <-

rast("gis_data/all_slovakia_terrain_derivatives.tif")

5. Create and add coordinate layers to the stack

This is necessary if the model was trained with x and y

as predictors.

x_coord_raster <- init(covariate_stack, "x")

y_coord_raster <- init(covariate_stack, "y")

names(x_coord_raster) <- "x"

names(y_coord_raster) <- "y"

full_stack <- c(covariate_stack, x_coord_raster,

y_coord_raster)

6. Extract covariate values for each point

Ensure CRS match before extraction

soil_points_proj <- st_transform(soil_points, crs =

crs(full_stack))

extracted_data <- extract(full_stack, soil_points_proj)

7. Prepare the final dataset for exploratory analysis

We combine the transformed SOC data with the extracted

predictor values.

exploratory_dataset <- modeling_data_transformed %>%

 bind_cols(extracted_data) %>%

 mutate(geology = as.factor(geology)) %>% # Ensure

geology is a factor

 na.omit() # Remove any rows with missing values

8. Prepare a numeric-only dataset for the correlation

matrix

numeric_dataset <- exploratory_dataset %>%

 select_if(is.numeric) %>%

 select(-ID, -SOC_t_ha) # Remove ID and original SOC

column

9. Calculate the correlation matrix

cor_matrix <- cor(numeric_dataset)

10. Visualize the correlation matrix for numeric

variables

corrplot(cor_matrix, method = "circle", type = "upper",

order = "hclust",

151

 tl.col = "black", tl.srt = 45)

Fig. 3.4. A correlogram that visualizes the correlation matrix. The size and color

of the circles show the strength and direction of correlation between the variables

Graph analysis: We are most interested in the first row (or column)

corresponding to log_soc. We can see, for example, a strong positive

correlation with elevation (large blue circle) and tri. This makes

complete soil science sense: mountainous areas (higher altitude) are

usually colder and wetter, which slows down the decomposition of

organic matter.

Analysis of relationships with categorical predictors

Correlation does not work for categorical variables such as geology.

To assess their relationship to log_soc, it is best to use box plots, which

allow you to visually compare the SOC distribution for each category of

the parent rock.

11. Create an optimized box plot for the 'geology'

variable with many categories

We will reorder the geology factor based on the median

log_soc value.

This makes the plot much more interpretable.

152

ggplot(exploratory_dataset, aes(x = reorder(geology,

log_soc, FUN = median), y = log_soc)) +

 geom_boxplot(fill = "purple", alpha = 0.7) +

 theme_bw() +

 labs(

 title = "Distribution of log(SOC) by Parent

Material",

 subtitle = "Categories are ordered by median SOC

value",

 x = "Parent Material (Geology)",

 y = "log(SOC Stock)"

) +

 # Remove x-axis text labels as they would be unreadable

 theme(axis.text.x = element_blank(),

 axis.ticks.x = element_blank())

Fig. 3.5. Box diagrams comparing the log(SOC) distribution for different

geological classes

Graph analysis: This graph can clearly show that the median values

and variability of SOC differ significantly between types of parent

153

rocks. For example, on loess rocks that are rich in nutrients, the SOC

content may be systematically higher than on poor sandstones. This

confirms that geology is an important predictor.

Exploratory analysis is an indispensable stage that allows you to "get

acquainted" with the data. It confirms that there are logical, earth-

science-interpretable relationships between our predictors and the target

variable. This gives us confidence that our approach is sound and we can

proceed to build a regression model with the expectation of obtaining

meaningful results.

154

Chapter 12. Regression Models: Random Forest and Cubist

12.1. Random forest for regression

In Part II, we successfully applied the Random Forest algorithm to

classify soil types. We saw how an ensemble of hundreds of decision

trees, each of which "votes" for a specific class, allows us to achieve

high accuracy and stability of the forecast. Now we adapt this same

powerful approach to solve the regression problem – predicting a

continuous quantitative variable, namely our logarithmic organic carbon

(log_soc) content.

The conceptual basis of the algorithm remains the same: we also

build a "forest" of a large number of trees on bootstrap data samples,

using a random subset of predictors at each step. However, key aspects

of its inner workings and the way in which the final forecast is obtained

change dramatically.

Key Differences of Regression Random Forest

 Criterion for splitting nodes: If in classification trees the

algorithm looked for a division that maximizes the "purity" of

classes in child nodes (for example, by the Gini index), then in

regression trees it looks for a division that minimizes the

variability (variance) of the target variable. In other words, it

tries to divide the data so that in each of the newly formed

groups, the SOC values are as similar to each other as possible.

Prediction: Instead of "voting" for the most popular class, the final

prediction for a new observation in the regression Random Forest is

obtained by averaging the predictions from all the individual trees in

the forest. Each tree gives its own numerical prediction, and the end

result is their arithmetic mean.

Practical implementation and analysis of the model

Fortunately, the randomForest package is versatile. The

randomForest() function automatically detects the type of task

(classification or regression) by the type of your target variable. Since

log_soc is numeric, the function will automatically switch to regression

mode.

155

Step 1: Data Preparation and Model Training
We will use the same approach to breaking down data into training

and test samples as before.

--- Chapter 12: Regression Modeling ---

1. Split data into training (75%) and testing (25%)

sets

We use the full exploratory dataset for this

set.seed(456)

data_split <- initial_split(exploratory_dataset, prop =

0.75)

train_data <- training(data_split)

test_data <- testing(data_split)

2. Train the Random Forest regression model using

ranger

ranger automatically detects the regression task from

the numeric target variable.

set.seed(456)

rf_model_reg <- ranger(

 formula = log_soc ~ . - SOC_t_ha - ID, # Predict

log_soc using all other variables except the original SOC

and ID

 data = train_data,

 num.trees = 500,

 importance = "permutation"

)

3. Print the model summary

It will show the R-squared value based on OOB data.

print(rf_model_reg)

Output Analysis: The print() output for the regression model

156

provides a different set of metrics:

 Type of forest: regression.

 Mean of squared residuals (MSE): The mean square of errors

calculated on OOB data. This is an indicator of the average

value of the model error. The smaller it is, the better.

 % Var explained: The percentage of variation explained. It is

analogous to the coefficient of determination (R2) for OOB

data. It shows what proportion of variability in SOC content in

the data our model was able to explain using predictors. A

value of 39% means that the model explains 39% of the

variability of the SOC, which is not the highest result, but

given the minimal set of predictors is quite good.

Estimating the importance of variables

As in classification, we can estimate which predictors contribute the

most to the accuracy of the regression model. The metrics of importance

here are also different:

 %IncMSE: Percentage increase in standard error (MSE). Shows

how many percent the average model error will increase if you

"shuffle" the value of a given predictor, destroying its relationship

with the target variable. This is the most important and reliable

indicator.

 IncNodePurity: Increase in the "purity" of nodes, measured by

decreasing the sum of the squares of the remainders.

4. Get and plot Variable Importance

Extract the importance scores from the model object

importance_scores <- importance(rf_model_reg)

Convert the named vector of scores into a data frame

for plotting with ggplot2

importance_df <- data.frame(

 Variable = names(importance_scores),

 Importance = importance_scores

) %>%

 # Arrange the variables by importance for a cleaner

plot

 arrange(Importance) %>%

 mutate(Variable = factor(Variable, levels = Variable))

This keeps the sorted order in the plot

157

Create the variable importance plot using ggplot2

ggplot(importance_df, aes(x = Importance, y = Variable))

+

 geom_col(fill = "darkred") +

 theme_bw() +

 labs(

 title = "Variable Importance for SOC Regression",

 x = "Importance (Permutation)",

 y = "Predictor"

)

Fig. 3.6. Graph of the importance of variables for a regression model.

Predictors are sorted by their effect on model accuracy

Graph analysis: This graph allows us to draw conclusions about the

key factors that control the distribution of organic carbon in our area.

For example, we may find that elevation, tri (Terrain Ruggedness Index)

and slope are much more important than, say, the aspect (slope

exposure).

The Random Regression Forest is an extremely powerful and flexible

158

tool. It does not make rigid assumptions about the linearity of

relationships, can work with a large number of predictors, and is

resistant to outliers. This makes it one of the best "ready-to-use"

algorithms for predictive mapping of continuous soil properties.

12.2. The Cubist model

The random forest is an extremely powerful and versatile tool for

regression. However, its main drawback is often considered to be low

interpretation. We can find out which predictors are important, but the

model itself remains a "black box" – we cannot easily understand how

exactly it turns the predictor values into the final prediction. This can

be a significant limitation.

Fortunately, there are alternative approaches that combine high

accuracy with excellent interpretation. One of the most famous and

efficient such algorithms is Cubist (Kuhn & Quinlan, 2025). This

algorithm, developed by Ross Quinlen (author of the famous C4.5

decision trees), is a unique hybrid that combines rule-based models and

linear regression.

How does Cubist work?

Cubist is a complex but intuitive algorithm that works in two main

stages:

 Creating Rules: In the first step, Cubist works like a decision

tree. It recursively divides the predictor space to create a set of

comprehensive and mutually exclusive rules. Each rule is

essentially a combination of if-and-then conditions that defines

a specific subset of data. For example, one rule might look like

this: IF elevation <= 550m AND geology = "Les".

Building linear models: This is a key difference from conventional

trees. For each subset of the data defined by the rule, Cubist does not

just calculate the mean, but builds a separate multiple linear

regression model. That is, each rule has its own unique equation that

relates the target variable to predictors. This allows the model to capture

local linear dependencies, which may be different in different parts of

the landscape.

The final prediction for a new observation is made by determining

159

which rule it falls under and then applying the corresponding linear

equation.

Fig. 3.7. Conceptual diagram of the Cubist model. It shows how the predictor

space is divided into several regions (rules), and each region builds its own linear

regression model (from Jacey Heuer, 2019)

Practical implementation with the Cubist package

We build a Cubist model based on our data. The Cubist package has

a slightly different syntax than randomForest: it requires the predictors

and the target variable to be passed as separate objects.

Load the Cubist library

Cubist package on CRAN: https://cran.r-

project.org/web/packages/Cubist/index.html

install.packages("Cubist")

library(Cubist)

library(dplyr)

We use the same train_data and test_data from the RF

example

Cubist requires predictors (x) and the target (y) to be

separate

Let's prepare the training data

train_predictors <- train_data %>% select(-log_soc)

train_target <- train_data$log_soc

Train the Cubist model

'committees' is an important hyperparameter, similar to

boosting.

https://opendatascience.com/cubist-models-in-r-balancing-interpretability-and-predictive-power/

160

It creates multiple models and averages their

predictions, improving accuracy.

cubist_model <- cubist(x = train_predictors, y =

train_target, committees = 5)

Print the model summary to see the rules and

performance

summary(cubist_model)

Output Analysis: The output summary() is extremely informative

and is the main advantage of Cubist.

 Performance Score: At the beginning, a mean and relative

error score calculated using internal cross-validation is output.

 Importance of Variables: Cubist shows how often each

variable has been used in rule conditions and in linear models.

This provides a deep understanding of the role of each predictor.

161

 Rules: The most interesting part. Cubist prints each rule and its

corresponding linear model.

 Example of a rule interpretation: Suppose the output for one

of the rules looks like this:

This output indicates that”: "For areas located at an altitude of up to

221.88 meters on loess or alluvial sediments (334 such cases in our

data), the content of log_soc can be predicted using the equation "3.96

– 0.002*elevation ...".

Cubist is a great alternative to the Random Forest, especially when

the interpretation of the model is as much a priority as its accuracy. In

the next section, we will perform a formal validation of both models on

a test sample in order to objectively compare their predictive power.

162

Chapter 13. Validation of regression models and uncertainty

analysis

Having built two powerful regression models – the Random Forest

and the Cubist – we, as in the case of classification, must carry out their

objective and comprehensive validation. Our goal is not just to choose

the "best" model, but also to deeply understand how accurate its

predictions are, what kind of mistakes it makes, and whether it has

systematic tendencies to over- or underestimate. To do this, we will use

a set of specialized metrics designed specifically to evaluate continuous

forecasts.

13.1. Key metrics for regression (R², RMSE, Bias)

As we have already noted, metrics from the classification, such as

the matrix of mismatches and the Kapp coefficient, are completely

unsuitable for regression. Instead of analyzing whether the class is

correctly guessed, we analyze errors (residuals) – the difference

between the true, observed value (y) and the predicted value (ŷ).

residuals = y − ŷ

Analyzing the distribution of these errors in the test sample is the

basis for calculating all key regression metrics.

Coefficient of determination (R2)

The coefficient of determination, or R-squared, is one of the most

popular metrics. It shows what fraction (proportion) of the total

variability (variance) of the target variable our model was able to

explain using predictors.

R2 ranges from 0 to 1 (or 0% to 100%).

 R2=1: Ideal model that explains 100% data variability.

 R2=0: A completely useless model that explains 0%

variability (its predictions are no better than just an

average of all data).

Interpretation: If we obtained R2=0.82, this means that 82% of the

variability in the SOC content in our test sample is due to the SCORPAN

factors included in our model. The remaining 18% is "unexplained"

163

variability due to noise in the data or factors that we did not take into

account.

Root Mean Squared Error (RMSE)

If R2 is a relative measure of model quality, then RMSE is an

absolute measure of the magnitude of error. It is essentially the

standard deviation of model errors, and most importantly, it is measured

in the same units as our target variable.

RMSE = √[Σ(Pi – Oi)
2 / n]

Interpretation: If our target variable is log_soc, then the RMSE will

be measured in units of log(%). If we got RMSE = 0.3, it means that, on

average, the predictions of our model deviate from the true values by

±0.3 units of log(%). usually, the best.

Fig. 3.8. Illustration of errors (residuals) for a regression model. A scatter plot

with a regression line is shown. Vertical segments from points to a line are

errors, and RMSE is a generalized measure of their average value

Biases (Bias or Mean Error, ME)

This metric shows whether the model has systematic error. It is

calculated as the simple arithmetic mean of all errors.

Interpretation:

 Bias > 0: The model systematically underestimates

forecasts (true values are on average greater than predicted).

 Bias < 0: The model systematically overestimates forecasts.

164

 Bias ≈ 0: The model is unbiased, that is, its errors are

random and cancel each other out on average. This is a

perfect result.

Practical calculation and comparison of models

We now apply these metrics to compare our rf_model_reg and

cubist_model models on the test sample.

--- Chapter 13: Model Validation ---

1. Make predictions on the test data for both models

For ranger, we need to access the '$predictions'

element and use the 'data' argument

rf_preds <- predict(rf_model_reg, data =

test_data)$predictions

For Cubist, we need to provide only the predictor

columns

cubist_preds <- predict(cubist_model, newdata = test_data

%>% select(-log_soc, -SOC_t_ha, -ID))

2. Create a results dataframe to hold true values and

predictions

results_df <- tibble(

 true_log_soc = test_data$log_soc,

 rf_pred = rf_preds,

 cubist_pred = cubist_preds

)

3. Calculate metrics for the Random Forest model

rf_metrics <- results_df %>%

 metrics(truth = true_log_soc, estimate = rf_pred)

print("--- Random Forest Validation Metrics ---")

print(rf_metrics)

4. Calculate metrics for the Cubist model

cubist_metrics <- results_df %>%

 metrics(truth = true_log_soc, estimate = cubist_pred)

print("--- Cubist Validation Metrics ---")

print(cubist_metrics)

165

Output Analysis: The yardstick package automatically calculates a

set of standard metrics, including rmse, rsq(R2), and mae (Mean

Absolute Error, similar to RMSE, but less sensitive to emissions). We

can easily compare tables for both models. For example, we can see that

Cubist has a slightly higher RMSE, suggesting lower accuracy, while

Random Forest has a single R2. Quantitative analysis allows us to make

an informed choice in favor of one or another model for the final spatial

forecasting.

13.2. Visual diagnostics

Quantitative metrics such as R2 and RMSE provide us with

important but very concise information about model performance. They

summarize millions of details about errors into a single number. To truly

understand how and where our model goes wrong, we need to go beyond

these generalizations and resort to visual diagnostics. Graphical error

analysis is an indispensable tool that allows you to identify systematic

problems, such as bias or heteroscedasticity (unevenness of errors),

which may not be noticeable when analyzing numerical metrics alone.

The most informative and common visual diagnostic tool for

regression models is the scatter plot "Observed vs. Predicted"

values.

Chart "Observed vs. Predicted"

This graph is built very simply:

166

 On the X axis, true, observed values from the test sample

(true_log_soc) are deposited.

 Along the Y axis, the values predicted by the model for the

same points (rf_pred, cubist_pred) are postponed.

Interpretation of the graph:

 Perfect model: If our model were perfect, all the points on this

graph would lie exactly on the 1:1 line (the line where y = x).

This line represents perfect consistency.

 Real model: In reality, the points will always be scattered

around this line. The degree of scattering visually shows us the

magnitude of the errors (the denser the points are grouped

around the line, the smaller the RMSE).

 Systematic deviations: The most important thing is to look for

systematic patterns in the deviations. For example, if for high

SOC values the points are systematically below the 1:1 line, it

means that the model underestimates for soils with high

organic content.

We plot this graph for our Random Forest model.

5. Visual Diagnostics: Observed vs. Predicted Plots

Create the plot for the Random Forest model

p_rf <- ggplot(results_df, aes(x = true_log_soc, y =

rf_pred)) +

 geom_point(alpha = 0.6, color = "darkblue") +

 geom_abline(slope = 1, intercept = 0, color = "red",

linetype = "dashed", size = 1) +

 geom_smooth(method = "lm", se = FALSE, color = "black")

+

 theme_bw() +

 labs(

 title = "Observed vs. Predicted (Random Forest)",

 subtitle = "Red line is the ideal 1:1 prediction",

 x = "Observed log(SOC)",

 y = "Predicted log(SOC)"

) +

 coord_equal()

Create the plot for the Cubist model

p_cubist <- ggplot(results_df, aes(x = true_log_soc, y =

167

cubist_pred)) +

 geom_point(alpha = 0.6, color = "darkgreen") +

 geom_abline(slope = 1, intercept = 0, color = "red",

linetype = "dashed", size = 1) +

 geom_smooth(method = "lm", se = FALSE, color = "black")

+

 theme_bw() +

 labs(

 title = "Observed vs. Predicted (Cubist)",

 subtitle = "Red line is the ideal 1:1 prediction",

 x = "Observed log(SOC)",

 y = "Predicted log(SOC)"

) +

 coord_equal()

Display plots side-by-side for comparison

p_rf + p_cubist

Fig. 3.9. Scatter plot "Observed vs. Predicted" for the regression model. The dots

show individual predictions, the red dotted line shows perfect consistency

Graph analysis: This graph provides much more information than

just the number R2. We can visually evaluate:

 Overall accuracy: How tightly the points fit the 1:1 line.

Bias: If a trend line (black solid) systematically passes above or below

the red line, this indicates an overall bias.

Nonlinear errors: If the points form a curved rather than straight cloud,

this may indicate that the model does not pick up relationships well in

extreme ranges of values. For example, a model may work well for

average SOC values, but systematically err for very low or very high

values.

168

Such visual analysis is a mandatory addition to quantitative metrics.

It allows us not only to state accuracy, but to deeply understand the

behavior of our model, identify its weaknesses and, if necessary, return

to the stage of feature engineering or model selection to improve the

results.

13.3. Quantification of forecast uncertainty (quantile regression

forests)

So far, when evaluating our regression models, we have focused on

the accuracy of the point forecast – the single "best" value that the

model produces for each observation. Metrics like RMSE tell us how

wrong this point prediction is, on average. However, in the real world,

in order to make informed decisions, we often need to know not only the

most likely value, but also how confident we are in that prediction.

This is the concept of uncertainty.

Imagine two situations:

 The model predicts a SOC content of 3.5%, and we are 90%

sure that the true value lies in the range of [3.4%, 3.6%]. This is

a very reliable forecast.

The model predicts the same 3.5%, but the 90% confidence interval is

[1.5%, 5.5%]. This is a very unreliable forecast, although the point value

is the same.

The standard Random Forest, by averaging tree predictions, loses

information about the spread of these predictions and cannot provide us

with this confidence interval. Fortunately, there is a powerful

modification of it designed specifically for this purpose – Quantile

Regression Forests (QRF).

How does QRF work?

The idea of QRF is ingeniously simple. Instead of simply averaging

predictions from 500 trees in a forest, QRF stores all 500 predictions

for each new observation. Thus, for each point, we get not a single

number, but a whole empirical distribution of probable values.

With this distribution, we can calculate any quantile. A quantile is a

value below which a certain percentage of data lies.

169

 0.05 quantile (5th percentile): a value below which is 5% of the

predictions from all trees.

 0.5 Quantile (50th percentile): This is the median, which is a

more emission-tolerant alternative to the mean.

 0.95 quantile (95th percentile): a value below which 95% of

predictions are located.

By calculating the lower (e.g., 0.05) and upper (e.g., 0.95) quantiles,

we get a 90% Prediction Interval. This is our quantification of

uncertainty.

Practical implementation with ranger

To build the QRF, we will use a modern, fast ranger package, which

is an efficient implementation of the Random Forest and supports

quantile regression.

--- Chapter 13.3: Quantifying Uncertainty with QRF ---

1. Train a Quantile Regression Forest model

The key is to set the argument quantreg = TRUE

set.seed(456)

qrf_model <- ranger(

 formula = log_soc ~ . - SOC_t_ha - ID,

 data = train_data,

 num.trees = 500,

 quantreg = TRUE,

 importance = "permutation"

)

2. Make predictions on the test set to get the

quantiles

We specify which quantiles we are interested in (5th,

50th/median, 95th)

qrf_preds <- predict(qrf_model, data = test_data, type =

"quantiles", quantiles = c(0.05, 0.5, 0.95))

3. The result is a matrix, let's convert it to a

dataframe

qrf_results_df <- as.data.frame(qrf_preds$predictions)

colnames(qrf_results_df) <- c("q05", "q50_median", "q95")

4. Combine with true values for plotting

final_qrf_results <- bind_cols(

170

 true_log_soc = test_data$log_soc,

 qrf_results_df

)

Visualization of uncertainty

Now, having for each point not only a forecast (median), but also the

limits of the confidence interval, we can create a much more informative

diagnostic graph.

5. Visualize the QRF predictions with uncertainty

intervals

ggplot(final_qrf_results, aes(x = true_log_soc, y =

q50_median)) +

 # Add the 90% prediction interval as a shaded ribbon

 geom_ribbon(aes(ymin = q05, ymax = q95), fill =

"skyblue", alpha = 0.5) +

 # Add the median prediction points

 geom_point(alpha = 0.6, color = "darkblue") +

 # Add the ideal 1:1 line

 geom_abline(slope = 1, intercept = 0, color = "red",

linetype = "dashed") +

 theme_bw() +

 labs(

 title = "QRF Validation with 90% Prediction

Interval",

 x = "Observed log(SOC)",

 y = "Predicted log(SOC) (Median)"

) +

 coord_equal()

Graph analysis: This graph is extremely informative. We see not

only how close the median forecast is to the ideal line, but also the

width of the predictive interval. We gain a deep understanding of its

limitations.

171

Fig. 3.10. Chart "Observed vs. Predicted" for QRF. The dots show the median

forecast and the blue bar shows the width of 90% of the predictive interval,

visualizing the uncertainty

The ability to quantify uncertainty is one of the greatest advantages

of the modern DSM. It allows us to create not just one "best forecast"

map, but a whole set of maps: a map of the median forecast, a map of

the lower and upper limits of the confidence interval, and, most

importantly, a map of the width of the predictive interval, which

directly shows in which parts of our territory the forecasts are the most

reliable, and where additional field research is needed.

172

173

Chapter 14. Construction of final maps and their practical

application

14.1. Creating final maps (forecast, interval boundaries,

uncertainty)

We have successfully trained and thoroughly validated our

regression models, choosing Quantile Regression Forests (QRF) as a

powerful tool that allows not only to make point predictions, but also to

quantify their uncertainty. Now it's time to apply this learned model to

our entire study area, turning abstract statistical dependencies into a set

of concrete, spatially explicit, and extremely useful maps.

Unlike the classification, where we created a single map of predicted

classes, QRF allows us to generate a whole package of cartographic

products:

 Median prediction map: Our "best guess" for the SOC content

in each pixel.

Predictive interval boundary maps: Maps of the lower (e.g., 5th

percentile) and upper (e.g., 95th percentile) boundaries that delineate the

range of probable values.

Uncertainty Map: A map that directly visualizes the width of the

predictive interval, showing where our predictions are most reliable and

where they are least certain.

Practical implementation of spatial forecasting

The spatial prediction process for regression is similar to what we did

for classification. We'll be using the predict() function from the terra

package, which integrates nicely with models trained with ranger.

--- Chapter 14: Spatial Prediction (Memory-Safe

Version) ---

1. Prepare the full raster stack for prediction

First, load the boundary to mask the predictors

slovakia_boundary <-

st_read("gis_data/slovakia_boundary.gpkg")

slovakia_boundary_proj <- st_transform(slovakia_boundary,

crs = crs(full_stack))

174

Mask the predictor stack to only include pixels within

the boundary

final_stack_masked <- mask(full_stack,

slovakia_boundary_proj)

Ensure the names match the model predictors

predictor_names <-

qrf_model$forest$independent.variable.names

final_stack_for_pred <-

final_stack_masked[[predictor_names]]

2. Spatially predict by processing the raster in chunks

(tiles)

Create a grid of 8 tiles (4 rows, 2 columns) covering

the raster extent

tiles <- st_make_grid(st_bbox(final_stack_for_pred), n =

c(4, 2))

tile_files <- character() # To store the paths of the

predicted tiles

3. Loop through each chunk, predict, and save to a

temporary file

for (i in 1:length(tiles)) {

 print(paste("Processing chunk", i, "of",

length(tiles)))

 # Crop the raster stack to the chunk's extent

 chunk_raster <- crop(final_stack_for_pred, tiles[i],

snap = "out")

 # Define a temporary filename for the predicted chunk

 temp_filename <- file.path("results",

paste0("temp_tile_", i, ".tif"))

 # Spatially predict on the smaller chunk

 q_values <- c(0.05, 0.5, 0.95)

 predict(

 chunk_raster,

 qrf_model,

 fun = function(model, ...) predict(model, ..., type =

"quantiles", quantiles = q_values)$predictions,

 filename = temp_filename,

 overwrite = TRUE,

 wopt = list(memfrac = 0.7, datatype = "FLT4S")

)

175

 # Store the path to the created tile file

 tile_files[i] <- temp_filename

}

4. Merge all the predicted tiles back into a single

raster

Create a SpatRasterCollection from the list of file

paths

tile_collection <- sprc(tile_files)

Merge the collection into one final map

predicted_quantiles_map <- merge(tile_collection,

filename = "results/predicted_soc_quantiles.tif",

overwrite = TRUE)

5. Clean up temporary tile files

file.remove(tile_files)

6. Rename the layers of the resulting multi-layer

raster for clarity

names(predicted_quantiles_map) <- c("soc_q05",

"soc_q50_median", "soc_q95")

print("Spatial prediction of quantiles is complete.")

Process analysis: We have received a new, three-layer raster file.

Each layer corresponds to one of the calculated quantiles. Now we can

easily manipulate these layers. It is worth warning that this step is quite

long and demanding on the RAM and processor of the computer.

Therefore, it is written taking into account these features.

Uncertainty map calculation and visualization

The most direct measure of uncertainty is the width of the 90%

predictive interval (PI), which is calculated as the difference between

the 95th and 5th percentiles.

--- Chapter 14.1: Create Final Maps ---

1. Calculate the Prediction Interval Width (PIW)

This is the difference between the 95th and 5th

percentile predictions.

piw_map <- predicted_quantiles_map$soc_q95 -

predicted_quantiles_map$soc_q05

176

names(piw_map) <- "prediction_interval_width"

2. Extract the median prediction map

median_prediction_map <-

predicted_quantiles_map$soc_q50_median

3. Mask both maps to the country boundary for clean

visualization

Ensure boundary is in the correct projection

slovakia_boundary_proj <- st_transform(slovakia_boundary,

crs = crs(median_prediction_map))

median_map_masked <- mask(median_prediction_map,

slovakia_boundary_proj)

piw_map_masked <- mask(piw_map, slovakia_boundary_proj)

4. Save the final, interpretable maps

Save the median prediction map

writeRaster(median_map_masked,

"results/soc_log_median_prediction.tif", overwrite =

TRUE)

Save the uncertainty map

writeRaster(piw_map_masked,

"results/soclog_uncertainty_map.tif", overwrite = TRUE)

5. Plot the two key maps separately with better color

schemes

Define color palettes

prediction_palette <- brewer.pal(9, "YlGnBu")

uncertainty_palette <- brewer.pal(9, "YlOrRd")

Plot the median prediction map

plot(median_map_masked,

 main = "Median Prediction of log(SOC)",

 col = prediction_palette)

plot(st_geometry(slovakia_boundary_proj), add = TRUE,

border = "black")

Plot the uncertainty map

plot(piw_map_masked,

 main = "90% Prediction Interval Width",

 col = uncertainty_palette)

plot(st_geometry(slovakia_boundary_proj), add = TRUE,

border = "black")

177

Fig. 3.11. Key results of regression modeling. Above is a map of the median

forecast log(SOC). Below is an uncertainty map (the width of the predictive

interval), where lighter colors indicate higher confidence, and darker colors

indicate higher uncertainty

Map analysis:

 The median forecast map shows the expected spatial

patterns: higher log(SOC) values in mountainous and forest

areas and lower values for arable land in lowlands.

 The uncertainty map provides unique additional

information. We can see that the uncertainty is not the same

across the territory. It can be higher, for example, in high-

178

altitude areas or in areas with rare combinations of parent

rocks and terrain, where we had little training data. This map

is an invaluable tool for planning future field studies: to

improve the model, new samples should be taken precisely in

the areas with the highest uncertainty.

At this stage, we have received a powerful set of maps reflecting not

only our knowledge of the distribution of SOCs, but also the limits of

this knowledge. However, before using them, we must perform the last,

critical step – reverse transformation – to return the values to their

original, interpreted units.

14.2. Reverse Conversion

At the moment, we have a complete set of spatial predictions: a map

of the median value, maps of the boundaries of the predictive interval

and an uncertainty map. However, there is one last but extremely

important problem: all of these maps are on a logarithmic scale.

whether he is an agronomist, an environmentalist or a politician.

To make our results useful and understandable, we must perform a

back-transformation – returning all our predictions from the

logarithmic scale to the original units of measurement (t/ha). This step

is an integral part of any simulation using data transformation.

Mathematical basis

The inverse of the mathematical operation to the natural logarithm

(log()) is the exponent (exp()). By applying the exp() function to our

logarithmic predictions, we return them to the original scale.

SOC_original=exp(log(SOC_predicted))

Practical implementation with terra

Due to the power of map algebra in the terra package, applying this

feature to our raster layers is extremely simple. We can apply the exp()

function directly to our entire multi-layered SpatRaster object.

--- Chapter 14.2: Back-transformation ---

1. Apply the exponential function to all layers of the

179

raster stack

This converts the log-transformed predictions back to

the original scale (t/ha)

backtransformed_soc_maps <- exp(predicted_quantiles_map)

Process analysis: We now have a new three-layer raster, where the

pixel values represent:

 soc_q05: lower bound of 90% of the predictive interval

for SOC, %.

 soc_q50_median: median SOC projection, %.

 soc_q95: upper limit of 90% of the predictive interval

for SOC, %.

Recalculation and analysis of uncertainty in the original scale

An important point: we cannot simply exponentiate our old

uncertainty map (piw_map). Due to the nonlinearity of the logarithmic

function, the width of the predictive interval must be recalculated based

on the already transformed limits.

2. Recalculate the Prediction Interval Width on the

original scale

piw_map_original_scale <-

backtransformed_soc_maps$soc_q95 -

backtransformed_soc_maps$soc_q05

names(piw_map_original_scale) <- "uncertainty_soc_t_ha"

3. Extract the final median prediction map

final_median_map <-

backtransformed_soc_maps$soc_q50_median

names(final_median_map) <- "Median_SOC_t_ha"

4. Mask the final maps to the country boundary for

clean visualization

final_median_map_masked <- mask(final_median_map,

slovakia_boundary_proj)

piw_map_original_scale_masked <-

mask(piw_map_original_scale, slovakia_boundary_proj)

5. Save the final, interpretable maps

Save the median prediction map

writeRaster(final_median_map_masked,

"results/soc_median_prediction.tif", overwrite = TRUE)

180

Save the uncertainty map

writeRaster(piw_map_original_scale_masked,

"results/soc_uncertainty_map.tif", overwrite = TRUE)

6. Plot the final, interpretable maps

Define color palettes

prediction_palette <- brewer.pal(9, "YlGn")

uncertainty_palette <- brewer.pal(9, "YlOrRd")

Plot the median prediction map

plot(final_median_map_masked,

 main = "Median Prediction of SOC Stock (t/ha)",

 col = prediction_palette)

plot(st_geometry(slovakia_boundary_proj), add = TRUE,

border = "black")

Plot the uncertainty map

plot(piw_map_original_scale_masked,

 main = "90% Prediction Interval Width (t/ha)",

 col = uncertainty_palette)

plot(st_geometry(slovakia_boundary_proj), add = TRUE,

border = "black")

Map analysis: After the reverse conversion, we can make an

important observation. If on the uncertainty map on the logarithmic

scale the error spread was more or less the same (homoscedastic), then

on the map on the original scale, the uncertainty is likely to be

heteroscedastic. This means that the absolute error of the forecast (in

t/ha) is significantly higher in areas with high stocks organic carbon.

For example, for soil with a forecast SOC of 50 t/ha, the uncertainty may

be ±15 t/ha, while for soil with a forecast of 150 t/ha, it may reach ±40

t/ha. This is logical and is an important characteristic of the model. Our

uncertainty map now clearly shows not only where we are less certain,

but also that the magnitude of this uncertainty depends on the predicted

value itself.

By completing this final step, we have obtained a complete,

scientifically based and ready-to-use set of cartographic materials that

honestly reflects not only our knowledge of the spatial distribution of

organic carbon, but also the limits of this confidence.

181

Fig. 3.12. Final cards in original units. On the left is a map of the median forecast

of SOC content in t/ha for the 0-30 cm layer. On the right is an absolute

uncertainty map showing the width of the predictive interval in t/ha

14.3. Practical application (estimation of carbon stocks, policy

justification, inputs for models)

By creating detailed, quantified and spatially explicit maps of the

organic carbon content and associated uncertainty, we have completed

the technical part of our work. However, the true value of digital soil

mapping is revealed when these maps become a tool for solving real-

182

world problems. Our maps are not just static images, but dynamic data

sets that can serve as the basis for a wide range of application tasks. We

consider three key areas of their practical application.

1. Organic Carbon Stocks Estimation (SOC Stocks)

Our maps show SOC stocks in tonnes per hectare Which is very

good for many tasks, especially for national reporting under climate

agreements or for assessing carbon sequestration potential.

2. Rationale for policy and sustainable governance

SOC maps and their uncertainties are a powerful tool for decision-

making at the national and regional levels.

 Identification of "hot spots": Maps allow you to identify areas

with a critically low content of organic matter that require priority

restoration measures (e.g. introduction of green manure, non-dump

cultivation).

 Land-use planning: Based on maps, recommendations for optimal

land use can be developed, e.g. removing land from intensive

cultivation on steep slopes with a low SOC content that are

vulnerable to erosion and converting them to alkalinization.

 Monitoring and reporting: Re-mapping at regular intervals

allows you to track the dynamics of carbon content and evaluate the

effectiveness of implemented agro-environmental policies. At the

same time, the uncertainty map helps to properly plan the network

of monitoring sites.

3. Inputs for other models

Very often, DSM products are not the end goal, but only an

intermediate but critical input layer for other, more complex models:

 Yield patterns: The organic matter content is one of the key

factors determining the potential yield of crops.

 Hydrological models: SOC affects the moisture-holding

capacity of the soil, which is an important parameter for models

that predict runoff, infiltration and flood risks.

 Erosion models (e.g., USLE/RUSLE, SIMWE etc): Organic

matter improves soil structure, making it more resistant to water

and wind erosion. The SOC map is an important component for

183

calculating the soil erosion resistance factor.

Thus, after completing this guide, we didn't just learn how to create

maps. We have mastered the workflow that allows us to generate

fundamental spatial information, which is the basis for many further

scientific research and practical solutions in the field of natural resource

management.

184

Conclusions

Digital Soil Mapping (DSM) has become a central tool for

understanding and managing one of the Earth’s most critical resources

– soil. Throughout this textbook, we have presented both the conceptual

foundations and the practical workflows necessary to apply predictive

modelling in soil science. By combining classical soil survey principles

with modern geospatial data, open-source software, and machine

learning methods, DSM bridges the gap between traditional cartography

and data-driven environmental science.

The practical exercises demonstrated how real-world soil data can be

harmonized, integrated with covariates, and transformed into predictive

models. Using R and its extensive ecosystem of packages, students and

researchers are equipped to move from raw data to reproducible outputs:

maps of soil properties, indicators of model uncertainty, and validation

metrics that support objective decision-making. The case studies for

Slovakia illustrate not only the potential of local models, but also the

broader transferability of these methods to other regions, provided that

environmental covariates and sampling strategies are carefully adapted.

A recurring theme across the chapters has been the importance of

rigor and transparency. Reproducibility through scripting, careful

harmonization of spatial data, and explicit communication of model

uncertainty are not optional details, but essential practices that make

DSM products credible and useful. At the same time, we emphasized the

limitations inherent in any modelling approach: restricted sampling

coverage, scale mismatches, and the challenges of non-stationary soil–

landscape relationships. These boundaries do not diminish the value of

DSM but remind us that soil maps are always generalisations, to be

interpreted with caution and context.

Future Directions

Looking ahead, DSM is poised to benefit from several transformative

technological shifts:

185

 Artificial Intelligence (AI) and Deep Learning. New AI

architectures, including convolutional and transformer-based

neural networks, have shown promise in extracting soil–landscape

patterns directly from high-dimensional data such as hyperspectral

imagery or time-series satellite observations. These methods can

complement traditional regression and ensemble approaches by

capturing more complex, non-linear dependencies.

 Remote Sensing Data Explosion. The availability of high-

resolution global datasets from satellites (e.g., Sentinel, Landsat,

PlanetScope) and UAV platforms will dramatically expand the pool

of covariates available for soil modelling. Near-real-time

monitoring of vegetation, moisture, and land-use change can

improve the temporal alignment of covariates with soil sampling

campaigns, reducing bias and enabling dynamic soil property

mapping.

 Cloud Computing and Big Data Frameworks. Platforms such as

Google Earth Engine, Google Cloud, TensorFlow, Amazon Web

Services, OpenEO, and high-performance R/Python libraries allow

the analysis of massive raster archives without the constraints of

local hardware. This will make national and continental DSM

products more feasible and reproducible.

 Integration with Process-Based Models. Hybrid approaches that

combine machine learning with mechanistic soil models (e.g.,

water and carbon cycling simulations) are expected to yield more

robust predictions, especially under changing climate conditions.

These advances will not eliminate the need for careful sampling design,

uncertainty quantification, or context-specific interpretation, but they

will broaden the scope and scalability of DSM applications.

It is our hope that this textbook will serve as both a practical manual

and a starting point for deeper exploration. By engaging with the

methods presented here, readers are encouraged not only to reproduce

the examples, but also to adapt them creatively to their own landscapes,

questions, and datasets. In doing so, they will contribute to a growing

community of practice that uses data science to better understand and

steward the soils on which all terrestrial life depends.

186

187

APPENDIX A: List of recommended R packages

Throughout this tutorial, we have used a number of R packages, each

of which plays a key role in the digital soil mapping workflow. This app

provides a generalized list of these packages with a brief description of

their primary purpose. Installing these packages at the beginning of your

project will provide you with all the tools you need.

Data Manipulation and Visualization

dplyr – Provides an intuitive grammar of data transformation through

verbs such as select, filter, mutate, group_by, and summarise, enabling

efficient manipulation of tabular data (Wickham et al., 2025a).

tidyverse – A meta-package that bundles key packages for modern data

science, including dplyr, ggplot2, and readr, offering a coherent and

consistent workflow (Wickham et al., 2025b).

ggplot2 – Implements the Grammar of Graphics, allowing for both

exploratory data visualization and high-quality publication graphics

(Wickham, 2016).

readr – Provides fast and efficient functions for importing and exporting

delimited text files such as CSV (Wickham et al., 2023).

readxl / writexl – Support reading and writing of Microsoft Excel files

(.xls, .xlsx), making integration with common spreadsheet formats

straightforward (Wickham & Bryan, 2023; Ooms, 2023).

corrplot – Specialized in visualizing correlation matrices in the form of

correlograms, offering a clear way to explore relationships among

variables (Wei & Simko, 2021).

patchwork – Adds a simple grammar for combining multiple ggplot2

plots into coherent multi-panel figures (Pedersen, 2023).

RColorBrewer – Supplies high-quality, perceptually robust colour

palettes curated for thematic cartography and visualization (Neuwirth,

2022).

Working with spatial data

188

sf (Simple Features) – Provides a standardized and modern approach

to working with vector spatial data (points, lines, polygons), fully

compatible with tidyverse workflows (Pebesma, 2018).

terra – A fast and efficient package for working with raster data,

supporting chunk-based processing and large-area analysis that may

exceed available RAM (Hijmans, 2025).

Modeling and validation

rsample – Part of the tidymodels ecosystem, offering flexible

resampling infrastructure for partitioning data into training and test sets,

with stratification support (Kuhn & Wickham, 2020).

rpart – Implements classical recursive partitioning for building decision

trees in classification and regression tasks (Therneau & Atkinson, 2019).

rpart.plot – Enhances the visualization of trees built with rpart,

improving interpretability (Milborrow, 2022).

randomForest – A well-established implementation of the Random

Forest algorithm for classification and regression (Liaw & Wiener,

2002).

ranger – A modern, fast C++ implementation of Random Forests, also

supporting Quantile Regression Forests for uncertainty estimation

(Wright & Ziegler, 2017).

Cubist – Builds rule-based regression models that combine accuracy

with interpretability, extending beyond decision trees (Kuhn & Quinlan,

2025).

caret – Provides a unified framework for machine-learning workflows,

here used primarily to build confusion matrices and compute associated

accuracy metrics (Kuhn, 2008).

yardstick – Part of tidymodels, offering consistent functions for

computing performance metrics in classification and regression (Kuhn

& Vaughan, 2023).

189

APPENDIX B: Data sources for the example of Slovakia

During the practical part of this manual (Parts II and III), we used a

geospatial data set for the territory of Slovakia. Although some of this

data has been modified or simplified for educational purposes, it is based

on real, publicly available sources. This appendix provides an overview

and links to primary sources that can be used for similar research. This

set of materials (source files and results) can be downloaded from

the following permanent links:

Cherlinka, V., Gallay, M., & Dmytruk, Y. (2025). Predictive Modeling

of Soil Types and Their Characteristics - supplementary data [Data set].

in Predictive Modeling of Soil Types and Their Characteristics (1st ed.,

198 p). Zenodo. https://doi.org/10.5281/zenodo.16926392

Administrative boundaries

The vector layer with the borders of Slovakia was obtained from the

GADM (Database of Global Administrative Areas) database. It is a

high-quality, publicly available resource that provides administrative

boundaries for all countries of the world at several levels of detail.

Source: GADM (https://gadm.org/)

Format: GeoPackage, Shapefile, R Spatial objects (.rds)

https://geodata.ucdavis.edu/gadm/gadm4.1/shp/gadm41_SVK_shp.zip

https://geodata.ucdavis.edu/gadm/gadm4.1/gpkg/gadm41_SVK.gpkg

Level of detail: Level 0 (national border) has been used for this guide.

Point soil data

A set of point data on soil types and organic carbon content used in

the manual will be generated from two different sources, by randomized

sampling from original vector or raster maps, in particular soil organic

carbon reserves were obtained from data from the GSOCmap project.

This dataset was created with the initial purpose of demonstrating the

workflow and, we believe, has fully fulfilled its task. Despite this, the

following sources can be used for more detailed research:

LUCAS Soil Database: A Eurostat project that provides harmonized

data on topsoil properties for thousands of points across the

European Union. It is one of the most important sources for large-

https://doi.org/10.5281/zenodo.16926392
https://gadm.org/
https://geodata.ucdavis.edu/gadm/gadm4.1/shp/gadm41_SVK_shp.zip
https://geodata.ucdavis.edu/gadm/gadm4.1/gpkg/gadm41_SVK.gpkg

190

scale digital mapping.

Source: European Soil Data Centre (ESDAC)

(https://esdac.jrc.ec.europa.eu/)

National Soil Services: More detailed data can usually be obtained from

national soil or geological institutes. For Slovakia, such a body is

the National Agricultural and Food Center (NPPC) - Research

Institute for Soil Science and Soil Protection.

Digital Elevation Model (DEM)

The DMR3.5 digital elevation model was used as the basis for all

morphometric covariates (height, slope, exposure, etc.). The digital

relief model DMR3.5 was created for the purpose of creating layers for

the cartographic representation of the elevation in accordance with

ZBGIS data. DMR3.5 is based on the original DMR3 model

supplemented with recalculated areas of flat parts of lowlands, basins

and valleys of large rivers. Before the creation of DMR3.5, 3D

geodatabase ZBGIS collected by the photogrammetric method was

selected as the input data source. The output format is ESRI GRID with

a resolution of 10 m/pixel, 25 m/pixel, 50 m/pixel and 100 m/pixel..

Source: DMR3.5 https://rpi.gov.sk/en/metadata/0e6e1625-5c59-4ea4-

a483-dc459fbff20b

Resolution: 10 m/pixel, 25 m/pixel, 50 m/pixel and 100 m/pixel.

Geological map

The rasterized geological map used as a predictor of the parent rock

is based on data normally provided by national geological surveys. For

Slovakia, such a source is the Dioniz Štúr State Geological Institute

(Štátny geologický ústav Dionýza Štúra, ŠGÚDŠ).
Source: ŠGÚDŠ (https://www.geology.sk/)

Note: For use in DSM, vector geologic maps require pre-processing,

including rasterization and bringing to a single classification system

suitable for modeling.

https://esdac.jrc.ec.europa.eu/
https://rpi.gov.sk/en/metadata/0e6e1625-5c59-4ea4-a483-dc459fbff20b
https://rpi.gov.sk/en/metadata/0e6e1625-5c59-4ea4-a483-dc459fbff20b
https://www.geology.sk/

191

APPENDIX C: Glossary of Terms

Bagging (Bootstrap Aggregating) – An ensemble machine learning

method that creates multiple training subsamples from the original

dataset by random selection with replacement. A separate model is

trained on each subsample, and the final prediction is obtained by

averaging (regression) or voting (classification).

Bootstrap – Resampling with replacement from a dataset, forming the

basis for Bagging and other ensemble methods.

Classification – A type of supervised machine learning task where the

goal is to predict a categorical outcome (class). For example, predicting

soil type.

Confusion Matrix – A contingency table used to assess classification

accuracy by comparing predicted and true classes. It forms the basis for

most accuracy metrics (e.g., overall accuracy, Kappa, precision, recall).

Coordinate Reference System (CRS) – A coordinate system that

defines how two-dimensional map coordinates correspond to real-world

locations on the Earth’s surface.

Covariate (Predictor, Independent Variable) – In DSM, a spatial layer

(typically raster) representing a factor of soil formation (e.g., elevation,

slope, land cover) used as an explanatory variable in models.

Cross-validation (CV) – A resampling method where data are

repeatedly split into training and validation folds to provide robust

accuracy estimates.

Data Frame – A basic R structure for storing tabular data, where rows

represent observations and columns may contain variables of different

data types.

Data “tidy” (Tidy Data) – A concept of data organization where each

row corresponds to an observation, each column to a variable, and each

table to one type of observational unit. It underpins the tidyverse

philosophy.

Decision Tree – A machine learning algorithm that models data using a

hierarchical structure of decision rules (“if–then” statements)

resembling a branching tree.

192

Ensemble Learning – A family of machine learning methods that

combine multiple base models to improve predictive accuracy and

stability (e.g., Bagging, Random Forests, Boosting).

Extraction – The process of retrieving values from raster layers at the

locations of vector objects (usually points), a key step in linking

covariates with soil observations in DSM.

Extent – The spatial coverage of a geospatial dataset, defined by its

minimum and maximum X and Y coordinates.

Harmonization – The process of aligning all raster layers (covariates)

to a common spatial grid with the same coordinate system, extent, and

resolution. Essential before spatial modelling.

Kappa Coefficient (κ) – A statistical measure of classification accuracy

that adjusts for agreement occurring by chance. It is particularly useful

for imbalanced datasets.

Machine Learning (ML) – A branch of artificial intelligence that

develops algorithms capable of learning patterns from data and making

predictions without explicit programming.

Overfitting – A situation where a model becomes overly complex and

fits noise or random patterns in the training data, reducing its ability to

generalize to new data.

Package (in R) – A standardized collection of functions, datasets, and

documentation designed to extend R with specialized functionality.

Pipeline Operator (%>%) – An operator from the magrittr package that

passes the output of one function directly into the input of the next,

enabling readable and concise workflows.

R² (Coefficient of Determination) – A regression metric that indicates

the proportion of variance in the dependent variable explained by the

model.

Raster – A spatial data model that represents geographic phenomena as

a regular grid of cells (pixels), each holding a value (e.g., elevation,

temperature).

Regression – A type of supervised machine learning task where the goal

is to predict a continuous numerical variable, such as soil organic carbon

content.

193

RMSE (Root Mean Squared Error) – A regression accuracy metric

that measures the average squared difference between predicted and

observed values, expressed in the units of the target variable.

Random Forest – A widely used ensemble learning algorithm for

classification and regression. It builds multiple decision trees using

random subsets of data and predictors, then combines their results by

majority vote (classification) or averaging (regression).

SCORPAN – A mnemonic acronym representing soil formation factors

extended for DSM: Soil, Climate, Organisms, Relief, Parent material,

Age, and spatial Position.

sf (Simple Features) – An R package implementing the OGC Simple

Features standard for vector spatial data (points, lines, polygons). It

integrates well with tidyverse workflows.

terra – An R package for efficient and large-scale raster data analysis,

supporting spatial modelling and operations that exceed available RAM

by using chunk-based processing.

Tidyverse – A collection of R packages (including dplyr, ggplot2, readr)

that share a consistent grammar, design philosophy, and data structures

for modern data science.

Training / Test Split – The practice of dividing data into a training set

(for building a model) and a test set (for evaluating model performance

on unseen data).

Uncertainty – A measure of confidence in model predictions. In

regression, often expressed as prediction intervals; in classification, as

class probabilities.

Validation – The process of objectively evaluating a model’s accuracy

and reliability, usually performed on test data not used for training.

Vector – A basic R data structure consisting of an ordered sequence of

elements of the same type (numeric, character, or logical).

194

REFERENCES

1. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324

2. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and

Psychological Measurement, 20(1), 37–46.

https://doi.org/10.1177/001316446002000104

3. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of

remotely sensed data. Remote Sensing of Environment, 37(1), 35–46.

https://doi.org/10.1016/0034-4257(91)90048-B

4. Global Soil Partnership. (2022). Global soil organic carbon map – GSOCmap v.

1.6: Technical report. FAO.

5. Hengl, T., & MacMillan, R. A. (Eds.). (2019). Predictive soil mapping with R.

OpenGeoHub Foundation.

6. Heung, B., Saurette, D., & Bulmer, C. E. (2021). Digital soil mapping. In Digging

into Canadian soils (pp. 313–327). Canadian Society of Soil Science.

7. Hijmans, R. J. (2025). terra: Spatial data analysis (Version 1.8-62) [R package].

https://github.com/rspatial/terra

8. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to

statistical learning: With applications in R. Springer. https://doi.org/10.1007/978-

1-4614-7138-7

9. Kabacoff, R. I. (2021). R in action (3rd ed.). Manning Publications.

10. Kuhn, M. (2008). Building predictive models in R using the caret package. Journal

of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05

11. Kuhn, M., & Quinlan, R. (2025). Cubist: Rule-based regression modeling

(Version 0.4) [R package]. https://topepo.github.io/Cubist/

12. Kuhn, M., & Vaughan, D. (2023). yardstick: Tidy characterizations of model

performance (Version 1.2.0) [R package]. https://yardstick.tidymodels.org

13. Kuhn, M., & Wickham, H. (2020). rsample: General resampling infrastructure

(Version 1.1.1) [R package]. https://rsample.tidymodels.org

14. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for

categorical data. Biometrics, 33(1), 159–174. https://doi.org/10.2307/2529310

15. Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R

News, 2(3), 18–22.

16. Lovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation with R. CRC

Press. https://doi.org/10.1201/9780203730058

17. Malone, B. P., Minasny, B., & McBratney, A. B. (2017). Using R for digital soil

mapping. Springer. https://doi.org/10.1007/978-3-319-44327-0

18. McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil

mapping. Geoderma, 117(1–2), 3–52. https://doi.org/10.1016/S0016-

7061(03)00223-4

https://github.com/rspatial/terra
https://topepo.github.io/Cubist/
https://yardstick.tidymodels.org/
https://rsample.tidymodels.org/

195

19. Milborrow, S. (2022). rpart.plot: Plot ‘rpart’ models: An enhanced version of

plot.rpart (Version 3.1.0) [R package]. https://cran.r-

project.org/package=rpart.plot

20. Neuwirth, E. (2022). RColorBrewer: ColorBrewer palettes (Version 1.1-3) [R

package]. https://cran.r-project.org/package=RColorBrewer

21. Ooms, J. (2023). writexl: Export data frames to Excel ‘xlsx’ format (Version 1.4.2)

[R package]. https://cran.r-project.org/package=writexl

22. Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector

data. The R Journal, 10(1), 439–446. https://doi.org/10.32614/RJ-2018-009

23. Pebesma, E., & Bivand, R. (2023). Spatial data science: With applications in R.

Chapman & Hall/CRC. https://doi.org/10.1201/9780429459016

24. Pedersen, T. L. (2023). patchwork: The composer of plots (Version 1.1.3) [R

package]. https://cran.r-project.org/package=patchwork

25. R Core Team. (2023). R: A language and environment for statistical computing.

R Foundation for Statistical Computing. https://www.R-project.org

26. Therneau, T., & Atkinson, E. (2019). rpart: Recursive partitioning and regression

trees (Version 4.1-15) [R package]. https://cran.r-project.org/package=rpart

27. Wei, T., & Simko, V. (2021). corrplot: Visualization of a correlation matrix

(Version 0.92) [R package]. https://cran.r-project.org/package=corrplot

28. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer.

https://doi.org/10.1007/978-3-319-24277-4

29. Wickham, H., & Bryan, J. (2023). readxl: Read Excel files (Version 1.4.3) [R

package]. https://cran.r-project.org/package=readxl

30. Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2025a). dplyr:

A grammar of data manipulation (Version 1.1.4) [R package].

https://dplyr.tidyverse.org

31. Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2025b).

tidyverse: Easily install and load the tidyverse (Version 2.0.0) [R package].

https://tidyverse.tidyverse.org

32. Wickham, H., Grolemund, G. (2017). R for data science: Import, tidy, transform,

visualize, and model data. O’Reilly Media.

33. Wickham, H., Hester, J., & François, R. (2023). readr: Read rectangular text data

(Version 2.1.4) [R package]. https://cran.r-project.org/package=readr

34. Wilkinson, L. (2005). The grammar of graphics (2nd ed.). Springer.

https://doi.org/10.1007/0-387-28695-0

35. Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementation of random

forests for high dimensional data in C++ and R. Journal of Statistical Software,

77(1), 1–17. https://doi.org/10.18637/jss.v077.i01

36. Yan, F., Shangguan, W., Zhang, J., & Hu, B. (2020). Depth-to-bedrock map of

China at a spatial resolution of 100 meters. Scientific Data, 7(1), 2.

https://doi.org/10.1038/s41597-020-0372-7

37. Zhong, S. H., Liu, Y., Li, S. Z., & Hu, B. (2023). A machine learning method for

distinguishing detrital zircon provenance. Contributions to Mineralogy and
Petrology, 178(35). https://doi.org/10.1007/s00410-023-02017-9

https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1201/9780429459016
https://www.r-project.org/
https://dplyr.tidyverse.org/
https://tidyverse.tidyverse.org/
https://doi.org/10.1007/s00410-023-02017-9

196

Predictive Modeling of Soil Types and Their Characteristics

University Textbook

Authors:

doc. Vasyl Cherlinka, DrSc.; doc. Mgr. Michal Gallay, PhD.; Prof. Yuriy Dmytruk,
DrSc.

Publisher:

Pavol Jozef Šafárik University in Košice,

ŠafárikPress

Year of publication: 2025

Number of pages: 204

Extent: 7,6 author sheets

Edition: First

This book was funded by the European Union’s NextGenerationEU through the Recovery and

Resilience Plan for Slovakia (project No. 09I03-03-V01-00049).

https://doi.org/10.33542/DSM-0XXX-X

