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PREFACE 

 

Why this book? 

Soils underpin food security, climate regulation, biodiversity, and 

landscape resilience. Mapping soils and their properties at useful spatial 

scales is therefore a central task in environmental management. Over the 

last two decades, Digital Soil Mapping (DSM) has matured into a 

reproducible, data-driven practice that combines field observations, 

covariates from remote sensing and terrain analysis, and modern 

statistical learning. This textbook introduces DSM from first principles 

and shows how to implement the full workflow—data preparation, 

modelling, validation, and uncertainty communication—using open-

source R. 

Who this book is for? 

The book is intended for graduate and postgraduate students in soil 

science, geography, geoinformatics, environmental science, and related 

fields, as well as for researchers and practitioners who need a practical, 

reproducible route into DSM. 

What you will learn? 

After completing the book, readers will be able to (i) set up a 

reproducible R/RStudio project for spatial analysis; (ii) assemble and 

clean soil point data and spatial covariates; (iii) fit, tune, and interpret 

local and global predictive models (e.g., regression, tree-based and 

ensemble methods); (iv) assess predictive performance and quantify 

uncertainty with appropriate diagnostics; (v) generate soil maps and 

related products (e.g., SOC, texture classes) and communicate their 

limitations. 

How the book is organized? 

The book consists of three main parts: 

Part I. Fundamentals of Working in R and RStudio for Soil Science: 

This part lays down the fundamental skills needed for further work. We 

will start by setting up the workspace, learn the basics of R syntax, 



 

master the key tools for manipulating (dplyr) and visualizing (ggplot2) 

data, and most importantly, learn how to work with vector (sf) and raster 

(terra) geospatial data. 

Part II. Predictive modeling of soil types: In this part, we will move 

on to the first practical task – creating a predictive map of soil classes 

(classification problem). We will consider in detail the theoretical 

foundations of the DSM, go all the way through data preparation using 

the example of Slovakia, teach, validate and interpret models based on 

Decision Trees and Random Forest. 

Part III: Predictive Modeling of Soil Characteristics: The final part 

is devoted to modeling continuous soil properties (regression problem), 

focusing on organic carbon content. We will look at differences in 

modeling approaches, learn how to assess the accuracy of regression 

models, and, crucially, quantify the uncertainty of our predictions using 

Quantile Regression Forests. 

Prerequisites and software 

No prior experience with R is strictly required, though basic statistics 

and GIS concepts are helpful. Examples were tested with R (≥4.3) and 

widely used packages (e.g., sf, terra, dplyr, ggplot2, caret, ranger, 

randomForest, Cubist, tidymodels). Full package details and a 

reproducible session log are provided in the appendices. We recommend 

working inside an RStudio Project with relative paths to ensure 

portability. 

Data, code, and reproducibility 

All datasets and scripts used in the book are provided as companion 

materials so that readers can reproduce every figure and table. Where 

third-party figures or data are reused, the original authors and licenses 

are credited. Supplementary datasets used in Parts II and III are available 

for download; see the Appendix B. 
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INTRODUCTION 

 

Soil is not an inert substrate beneath our feet but a complex, dynamic 

resource at the intersection of the lithosphere, atmosphere, hydrosphere, 

and biosphere. The health and functioning of soils underpin food 

security, water quality, biodiversity, and climate regulation. For 

decades, soil scientists have produced soil maps to systematize 

knowledge about this invaluable resource. Traditional soil mapping—

based on field surveys and expert interpolation—has contributed 

enormously to our understanding of soil geography. Yet in the twenty-

first century, amid big data and global environmental challenges, these 

approaches alone are no longer sufficient. 

Conventional polygon maps are static, costly to update, and often 

subjective because polygon boundaries reflect the experience and 

judgment of individual cartographers. Most importantly, they represent 

the soil cover as discrete, homogeneous units that do not reflect the 

continuous nature of soil property variability in space. Against this 

backdrop, Digital Soil Mapping (DSM) has emerged as a rapidly 

developing paradigm that uses numerical and statistical methods to 

create spatial soil information systems (McBratney et al., 2003; Hengl 

& MacMillan, 2019). DSM marks a transition from art to science, from 

qualitative description to quantitative prediction. Figure 1 contrasts a 

traditional polygon map with a DSM product that shows a continuous 

gradient of a soil property at high spatial resolution. 

The relevance and feasibility of DSM flow from three interlocking 

revolutions: 

Geospatial revolution – unprecedented availability of global 

covariate datasets describing environmental factors: digital elevation 

models, high-resolution satellite imagery (e.g., Landsat, Sentinel), 

global climate surfaces, geological and topographic maps. 

Computing revolution – scalable computing and the rise of open-

source software, especially R, which provides powerful tools for data 

wrangling, modelling, and visualization (R Core Team, 2023). 

Statistical revolution – the development and popularization of 

machine learning methods capable of capturing complex, nonlinear 

relationships in soil-landscape systems (e.g., ensemble trees; Breiman, 
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2001). DSM enables the creation of information products that go well 

beyond static maps: (i) continuous surfaces of key soil properties (e.g., 

soil organic carbon (SOC), pH, bulk density); (ii) high-resolution soil 

type maps suitable for field- to regional-scale decision-making; (iii) 

uncertainty maps that quantify the confidence in predictions—essential 

for risk-aware applications. These products support tasks from precision 

agriculture and site-specific management to national inventories and 

global carbon cycle assessments, where reliable estimates of soil carbon 

stocks have planetary significance. The three revolutions demand a 

toolkit that is flexible, transparent, and reproducible. R has become a de 

facto academic standard for data science because it is open-source, 

extensible through thousands of community packages, and designed by 

and for statisticians (R Core Team, 2023; Pebesma & Bivand, 2023). 

For DSM workflows, packages for spatial data (sf, terra), data 

manipulation (tidyverse), machine learning (randomForest, ranger, 

caret), and visualization (ggplot2) provide an end-to-end environment – 

 

 
Fig. 1.1.Comparison of a soil organic carbon (%) map digitized from a conventional soil 

survey map (left) and a predictive digital soil map at 20 m resolution for the Keene area, 

Peterborough County, Ontario. © Daniel D. Saurette, Ontario Ministry of Agriculture, 

Food and Rural Affairs. Licensed CC BY. Adapted from Heung, Saurette, & Bulmer 

(2021). 
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from raw data to publishable figures (Breiman, 2001). A critical 

advantage is reproducibility: analyses are scripts, not clicks. Scripts 

serve as precise, transparent recipes that others can inspect and rerun, 

which is foundational to modern science and to the instructional goals 

of this book. 

To orient readers for the chapters that follow, DSM generally 

proceeds through the following stages: 

Problem framing & data assembly – define target variables, collect 

soil point observations, and compile environmental covariates (terrain, 

remote sensing, climate). 

Data preparation – harmonize units, handle outliers, align 

coordinate reference systems, and split data for model 

training/validation. 

Modelling – fit and tune predictive models (regression, tree-based 

ensembles, and other learners) appropriate to the target property and 

sampling design. 

Spatial prediction & mapping – generate wall-to-wall predictions 

at the desired resolution. 

Validation & uncertainty – assess accuracy with suitable 

diagnostics and produce uncertainty maps. 

Communication & use – translate results into maps, figures, and 

narratives that support decisions and scientific inference. 

 

Each chapter in this book maps to one or more of these stages and 

includes worked R examples, exercises, and summaries to reinforce 

learning. This book focuses on methods and workflows for DSM rather 

than exhaustive soil classification theory. While many examples are 

grounded in datasets from Central and Eastern Europe, the principles 

and code are broadly transferable. Readers should be mindful that model 

outputs are only as good as inputs: careful data quality control, 

appropriate model selection, and transparent reporting of uncertainty 

remain essential. This text is designed as a practical, step-by-step guide 

that guides the reader through the entire workflow of digital soil 

mapping using R. The material is structured in such a way as to provide 

a gradual immersion from basic concepts to complex practical tasks. 
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All scientific approaches, including those presented in this book, have 

limitations and must be understood as generalised representations of 

reality rather than exact reflections of the soil system. The examples in 

this book are drawn mainly from Central Europe, which means that 

model performance is tied to the local sampling design, density, and 

environmental conditions of those study areas. Predictions are most 

reliable within the ranges of covariates represented in the training data, 

while areas with sparse or unrepresentative samples usually carry higher 

uncertainty. Temporal mismatches between soil observations and 

covariates, such as when imagery and field data come from different 

years or seasons, can also introduce bias. 

A major factor affecting the transferability of Digital Soil Mapping is 

the covariate set. Models trained with specific digital elevation models, 

climate grids, or satellite indices may not transfer well if these inputs 

differ in another region or are available at different resolutions. 

Resampling can alter predictor distributions and thus model behaviour. 

For this reason, portability improves when based on stable, widely 

accessible covariates, complemented by careful documentation of 

sources, resolutions, and preprocessing. 

Model assumptions and validation methods also matter. Non-

stationarity in soil–landscape relationships means that models fitted in 

one setting may not hold in another. Overfitting can arise when many 

correlated predictors are used with limited samples. Furthermore, 

ordinary random cross-validation often inflates accuracy because nearby 

points share information; spatial cross-validation or blocking methods 

give more realistic estimates. 

For these reasons, predictions should always be interpreted together with 

uncertainty information. Uncertainty maps, prediction intervals, or 

class probabilities highlight where models are more or less trustworthy. 

Readers will find detailed guidance on prediction and uncertainty in 

Chapter 10, and on calibration and external validation in Chapter 13. 

Testing models against independent data from different sites or times is 

especially valuable for judging their true portability. 
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PART I.  FUNDAMENTALS OF WORKING IN R AND RSTUDIO 

FOR SOIL SCIENCE 

 
Chapter 1. Installing and configuring the work environment 

 

1.1. Introduction to R and RStudio 

 

Modern soil science, and especially its digital direction (Digital Soil 

Mapping, DSM), is inextricably linked with the processing of large data 

sets. Powerful and flexible tools are needed to effectively analyze, 

model, and visualize spatial information about soils. One such key tool 

that has become the de facto standard in the scientific world is the R 

programming language. 

R is both a programming language and a free software environment 

for statistical computing and graphics. Created as a descendant of the S 

language developed at Bell Labs, R inherited its power but became an 

open-source project. This means that anyone can download, use, modify 

and distribute it for free. Thanks to the efforts of thousands of developers 

and scientists from around the world, R has grown into an extremely rich 

ecosystem, containing tens of thousands of extensions, or packages that 

provide functionality to solve a wide variety of tasks (Kabacoff, 2021). 

For digital soil science, R is a particularly valuable platform. The 

success of the DSM depends largely on the ability to integrate and 

analyze data from a variety of sources: field survey results, Earth remote 

sensing data, digital terrain models, climate data, and geological maps. 

R offers unparalleled capabilities to perform the entire cycle of data 

work: from its import and cleaning to complex geostatistical modeling 

and the creation of high-quality cartographic materials (Malone et al., 

2017). Specialized packages such as sf for working with vector spatial 

data and terra for working with rasters turn R into a full-fledged, code-

driven geographic information system, which ensures a high level of 

reproducibility of research. At its core, R is an interactive environment 

where commands are executed through a console. You can enter 

commands one at a time and see the result instantly. For example, R can 

be used as a regular calculator or to create objects that store data. 
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# R can be used as a powerful calculator. 

# The result of this operation will be printed to the 

console. 

(112 / 4) * 3 + 1 

[1] 85 

 

# Assigning a value to an object named 'soil_ph'. 

# This object now stores the numeric value 6.5 and can be 

used later. 

soil_ph <- 6.5 

 

# Print the object's value to the console. 

soil_ph 

[1] 6.5 

 

While working directly in the R console is possible, for complex 

projects, which are the norm in the DSM, this approach is inefficient. It 

is much more convenient to use an Integrated Development 

Environment (IDE). The most popular IDE for R is RStudio. 

RStudio is a free application that provides a user-friendly and 

intuitive graphical interface for working with R. It is important to 

understand that RStudio is not a replacement for R; It is rather a control 

panel for the engine. R is the engine that performs all the calculations, 

and RStudio is the cockpit, which makes driving this engine much more 

comfortable and productive (Kabacoff, 2021). RStudio organizes the 

workspace into four main panels, allowing you to simultaneously write 

code, see its results, manage objects in memory, and view graphs and 

reference materials. 

The combination of R and RStudio creates a powerful platform that 

is ideal for digital soil science tasks. Not only does it simplify code 

writing and debugging, but it also supports key principles of modern 

science, such as research reproducibility, with tools for project 

management, integration with version control systems (such as Git), and 

dynamic reporting (R Markdown). It is this combination that will be our 

main working tool throughout the manual. 

In the following sections, we will take a closer look at the process of 

installing R and RStudio, familiarize ourselves with the interface, and 

learn how to manage projects and packages. These initial steps are the 

foundation on which we will build our skills to further immerse 

ourselves in the world of predictive soil modeling. 
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Fig. 1.2. RStudio interface. The four main panels provide an integrated environment 

for writing code (top left), executing commands (bottom left), viewing objects and 

history (top right), and accessing files, graphs, and help (bottom right) 

 

1.2. Installation Guide 

 

Before we can dive into the world of data analysis and digital soil 

science, it is necessary to set up our work environment. This process 

consists of two main steps: installing the R language itself, which is the 

computing core, and installing RStudio, an integrated development 

environment that will provide us with a user-friendly interface. It is 

important to follow the correct sequence: R is installed first, and only 

then – RStudio. This is due to the fact that RStudio is a shell and 

requires an already installed R "engine" for its operation. 

 

Step 1: Installing R 

The official and most reliable source for downloading R is the 

Comprehensive R Archive Network (CRAN). It is a network of FTP 

and web servers around the world that store identical, up-to-date 

versions of R code and documentation. Open a web browser and go to 

the main page of Project R at: https://www.r-project.org/. 

https://www.r-project.org/
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 On the main page, find the "download R" link in the "Getting 

Started" section.You will be redirected to the CRAN mirror 

selection page. A mirror is a server that is a copy of the main 

repository. You can choose any mirror geographically close to 

you for faster loading, or simply use the link https://cran.r-

project.org/ that will automatically direct you to the 

corresponding server.  

 On the main page of CRAN you will see links to download R 

for different operating systems: "Download R for Linux", 

"Download R for macOS" and "Download R for Windows". 

Select the link that matches your system. 
 

For Windows: Click on the "base" link. This is the basic distribution 

that contains everything you need to get started. On the next page, click 

on the large "Download R [version] for Windows" link. This will 

download the installation file (e.g. R-4.3.2-win.exe). 

For macOS: Select the installation package (.pkg) that matches your 

version of macOS and processor architecture (Intel or Apple 

Silicon/ARM). 

Once the installer is downloaded, launch it and follow the instructions. 

In most cases, it is safe to accept all default settings. There is no need to 

change the installation directory or the components to be installed. 

 

https://cran.r-project.org/
https://cran.r-project.org/
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Fig. 1.3. Home page of the Comprehensive R Archive Network (CRAN). R 

download links shown for Linux, macOS, and Windows operating systems 

 

Step 2: Installing RStudio 

Once R has been successfully installed, you can proceed to install 

RStudio. RStudio is developed by Posit (formerly known as RStudio, 

PBC).Go to the official website of Posit to download RStudio Desktop: 

https://posit.co/download/rstudio-desktop/. 

 The site will prompt you to download RStudio Desktop. There 

are several versions of the product, including commercial ones, 

but for our purposes, the free version  of RStudio Desktop, 

which is free and open-source, is quite sufficient. 

Click the download button. The site will automatically detect your 

https://posit.co/download/rstudio-desktop/
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operating system and suggest the appropriate installation file. If it 

doesn't, scroll down the page to find installer lists for Windows, macOS, 

and various Linux distributions. 

 

 
Fig. 1.4. RStudio Desktop download page. Shows the selection of the free 

version to download and installers for different operating systems 

 

Download and run the installer. As with R, the installation process is 

standard and you can accept all settings by default. 

Once the installation is complete, RStudio will automatically find the 

installed version of R on your computer and connect to it. 

 

Step 3: Checking the Installation 

To make sure everything is installed correctly, launch RStudio and 



11 

not R itself. 

In the console, you will see a greeting and information about the 

version of R. To finally check the health of the system, type the 

following command in the console and press Enter. This command 

displays detailed information about your current session, including the 

version of R, operating system, and downloaded packages. 

 
# This command provides details about the current R 

session. 

# It's a good way to check that everything is working 

correctly. 

sessionInfo() 

 

If the installation is successful, you will see a response similar to this 

(versions may vary): 

 
R version 4.4.2 (2024-10-31 ucrt) 

Platform: x86_64-w64-mingw32/x64 

Running under: Windows 11 x64 (build 22631) 

 

Matrix products: default 

 

locale: 

[1] C 

 

time zone: Europe/Budapest 

tzcode source: internal 

 

attached base packages: 

[1] parallel  stats     graphics  grDevices utils     

datasets  methods   base      

 

other attached packages: 

[1] doParallel_1.0.17 iterators_1.0.14  foreach_1.5.2     

tictoc_1.2.1      terra_1.8-42      here_1.0.1        

 

loaded via a namespace (and not attached): 

[1] compiler_4.4.2    rprojroot_2.0.4   tools_4.4.2       

rstudioapi_0.17.1 Rcpp_1.0.13       codetools_0.2-20  

 

If you see a similar output without error messages, congratulations! 

Your work environment is ready. Now we can move on to getting to 
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know the RStudio interface. 

 

1.3. Navigating the RStudio environment 

 

After successfully installing and running RStudio for the first time, 

you will see an integrated environment (Fig. 1.2), which, at first glance, 

may seem complicated due to the large amount of information. 

However, its structure is logical and designed for maximum 

performance. By default, the RStudio workspace is divided into four 

main panels (or three if you haven't opened any script files yet). 

Understanding the purpose of each of these panels is key to working 

effectively. 

 

Panel 1: Source Editor 

This panel appears in the upper left corner when you open or create 

a new file, such as an R script (a file with the extension . R). This is your 

main workspace, a text editor specifically adapted for writing code in R. 

 Writing and editing code: This is where you write sequences 

of commands that make up your analysis. Unlike the console, 

the code in the editor is not executed instantly. It allows you to 

prepare, edit, annotate, and structure your work before 

execution. 

 Syntax highlighting: RStudio automatically colors various 

code elements (functions, variables, comments), which greatly 

improves its readability. 

 Code Autocompletion: When typing, RStudio suggests options 

for function names, objects, and their arguments, which speeds 

up work and reduces errors. 

 Code execution: You can execute code directly from the editor. 

To do this, there are special buttons or keyboard shortcuts (such 

as Ctrl+Enter or Cmd+Enter) that send the current line or a 

dedicated block of code to the console for execution. 

 Working in the code editor is the basis for reproducible 

research. By saving your commands as scripts, you can always 

go back to them, modify them, or pass them on to colleagues 

who can fully reproduce your analysis. 

 



13 

Panel 2: Console 

The panel in the lower left corner is a direct access to the "engine" R. 

Every command you execute, whether from the code editor or typed 

directly into the console, is handled here. 

 Interactive operation: The console is ideal for quick 

calculations, testing individual commands, or checking object 

values. 

 Invitation Symbol (>): This symbol indicates that R is ready to 

accept a new command. 

 Output results: Command results, error messages, and 

warnings are displayed in the console. 

While the console is a powerful tool for interactive work, for basic 

analysis, always prefer a code editor. 

 

Panel 3: Environment, History, etc. 

This panel, located in the upper right corner, contains several tabs 

providing information about the current work session. 

 Environment: This is one of the most useful tabs. It shows a 

list of all the objects (variables, datasets, functions) that you 

have created that are currently stored in R memory. 

 History: A chronological list of all commands that have been 

executed in the console is stored here. This is useful if you want 

to find and reuse any of the previous commands. 

 Connections: This tab allows you to manage connections to 

external databases. 

 

Panel 4: Files, Plots, Packages, Help 

The lower right panel is multifunctional and also consists of several 

tabs. 

 Files: Works as a simple file manager, showing the contents of 

your current working directory. You can navigate through 

folders, open files, rename them, and more. 

 Plots: When you create a visualization with code, the result 

appears in this tab. RStudio makes it easy to view graphs, swipe 

between them, enlarge and export in various formats (PNG, 

PDF, JPG). 

 Packages: Shows a list of all R packages installed on your 
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system. 

 Help: Built-in help system R. Using the ? (e.g. ?mean) or by 

searching here, you can get detailed documentation for any 

feature or package. 

 Viewer: Used to display local web content, such as interactive 

maps or reports created with specialized packages. 

Once you've mastered navigating between these four panels, you'll 

be able to organize your work as efficiently as possible. The entire cycle 

of analysis – from writing code and executing it to viewing results, 

objects and graphs – takes place in a single, logically organized space. 

 

1.4. The importance of projects for the reproducibility of research 

 

Having mastered the basic navigation in the RStudio environment, 

we come to one of the fundamental concepts that underlies organized 

and, most importantly, reproducible scientific work – the use of RStudio 

Projects. Any data analysis, especially in such a complex field as digital 

soil science, quickly becomes overgrown with a large number of files: 

R scripts, input data sets (rasters, vector layers, tables), intermediate 

results,  final maps and reports. Without proper organization, managing 

this chaos becomes almost impossible. 

The RStudio project is, in fact, a way to encapsulate all the 

components of one analytical task into a single self-contained directory 

(folder). When you create a project, RStudio generates a special file with 

the extension . Rproj. This file does not contain your code or data, but it 

does "remember" settings related to this project, such as which files were 

last opened in the editor. Opening. Rproj file, you instantly return to the 

desktop environment in the exact state in which you left it. 

However, the main advantage of projects is not so much convenience 

as solving one of the most common problems that destroys the 

reproducibility of analysis –  managing the working directory. The 

working directory is the place on your computer from where R tries to 

read files by default and where it stores the results. Beginners often use 

the setwd() function to specify the path to this directory, which results 

in the following lines appearing in the code:  

 
# Bad practice: Using an absolute path with setwd() 
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# This code will fail on any computer other than the 

author's. 

setwd("C:/Users/YourNicName/Documents/Soil_Analysis/Slova

kia_Project/Data") 

soil_samples <- read.csv("samples.csv") 

 

This approach is fragile and completely unreproducible. As soon as 

you try to run this script on another computer or simply move the project 

folder, the code will stop working because the specified absolute path 

no longer exists. 

RStudio projects solve this problem elegantly. When you open a 

project, RStudio automatically sets the working directory to the root 

folder of that project. This means that you can reference any file within 

the project using relative paths that start from the root of the project. 

For example, if you have a data folder inside the project, the code to read 

the file would look like this: 

 
# Good practice: Using relative paths within an RStudio 

Project 

# This code is portable and will work on any machine. 

soil_samples <- read.csv("data/samples.csv") 

 

This code will work on any computer, regardless of where the project 

folder is located on the disk. This makes your analysis portable and 

makes it much easier to collaborate with colleagues. You can simply 

archive the project folder, send it, and the other person can open . Rproj 

file and run your code without any changes. 

 

How to create an RStudio project 

Creating a project is a simple procedure that should be followed at 

the very beginning of work on a new task. 

In RStudio, go to the File > New Project menu.... 

 A dialog box will open, offering three options. The first two are 

most often used to get started. 

 New Directory: Create a project in a new, empty folder. You 

select a disk location, give a name to the project, and RStudio 

creates the appropriate folder and . Rproj file inside it. This is 

ideal for starting from scratch. 
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 Existing Directory: Create a project based on an existing folder 

with files. If you already have a folder with data and scripts, you 

can turn it into a project. RStudio will simply add . Rproj file to 

this directory. 

 Version Control: Create a  project by cloning a repository 

from a version control system, such as Git. This is a more 

advanced option for collaboration. 

 
Fig. 1.5. Dialog box for creating a new project in RStudio. The options "New 

Directory", "Existing Directory" and "Version Control" are shown 

 

After selecting an option and specifying a name and location, RStudio 

will restart and open a new project. You will notice that the project name 

has appeared in the upper right corner of the RStudio window, and the 

path in the "Files" tab now leads to the root folder of your project. 

The habit of organizing each individual study or analysis into your 

own project is one of the most important steps towards professional and 

reproducible data work in R. It disciplines, simplifies file management, 

and ensures that your analysis can be replicated not only by you in the 

future, but by anyone else. 

 

1.5. R Package Management 
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One of the main reasons for R's phenomenal popularity in academia 

is its extensibility. A basic installation of R contains a set of fundamental 

functions for mathematical operations, statistics, and graphing. 

However, the true power of R is revealed through the use of packages. 

A package is a standardized collection of functions, data, and compiled 

code created by the developer community to solve specific problems.  

the main package repository, CRAN (Comprehensive R Archive 

Network), had over 22500 unique packages, making R a one-stop tool 

for any industry, including soil science. 

For our tasks in digital soil mapping, we will actively use packages 

for data manipulation (dplyr), visualization (ggplot2), working with 

spatial data (sf, terra) and machine learning (randomForest, rpart). Being 

able to manage packages efficiently – installing, downloading, and 

updating them – is a basic skill for any R user. 

 

Installing packages 

The process of installing a package is similar to installing a new app 

on your smartphone: you do it once and it becomes available for use. 

The installation downloads the package from the CRAN repository and 

places it in a special folder on your computer called a library. 

The easiest way to install a package is to use the install.packages() 

function. The package name must be quoted as follows. For example, 

we install the tidyverse package, which is a meta package containing a 

set of the most popular tools for working with data, including dplyr and 

ggplot2. 

 
# Installing a package from CRAN. 

# The package name must be in quotes. 

# This command needs to be run only once. 

install.packages("tidyverse") 

Installing package into ‘C:/Users/eucrariano/AppData/Local/R/win-library/4.4’ 

(as ‘lib’ is unspecified)trying URL 

'https://cran.rstudio.com/bin/windows/contrib/4.4/tidyverse_2.0.0.zip' 

Content type 'application/zip' length 431634 bytes (421 KB) 

downloaded 421 KB 

 

package ‘tidyverse’ successfully unpacked and MD5 sums checked 

 

The downloaded binary packages are in 

C:\Users\eucrariano\AppData\Local\Temp\RtmpGaTGwN\downloaded_packages 
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RStudio also provides a user-friendly graphical interface for 

managing packages. In the bottom right pane, go to the "Packages" tab 

and click the "Install" button. In the dialog box that appears, simply enter 

the name of the package and RStudio will execute the appropriate 

command for you. 

 
Fig. 1.6. The "Packages" tab in RStudio. The "Install" button and a list of already 

installed packages with a brief description are shown 

 

Downloading packages 

Installation makes the package available on your system, but in order 

to use its functions and data in the current R session, the package must 

be downloaded. This process can be compared to taking a book from a 

shelf (installation) and opening it to read (download). Every time you 

start a new R session (e.g. restarting RStudio), you need to re-download 

the packages,  that you plan to use. 

To load the package, use the library() function. This time, the 

package name is indicated without quotation marks. 

 
# Loading a package into the current R session to make 

its functions available. 

# The package name is typically not in quotes. 
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# This command must be run at the beginning of every new 

session. 

library(tidyverse) 

── Attaching core tidyverse packages ─────────── tidyverse 2.0.0 ── 

✔ dplyr     1.1.4     ✔ readr     2.1.5 

✔ forcats   1.0.0     ✔ stringr   1.5.1 

✔ ggplot2   3.5.1     ✔ tibble    3.2.1 

✔ lubridate 1.9.3     ✔ tidyr     1.3.1 

✔ purrr     1.0.2      

── Conflicts ───────────────────────────── 

tidyverse_conflicts() ── 

✖ dplyr::filter() masks stats::filter() 

✖ dplyr::lag()    masks stats::lag() 

ℹ Use the conflicted package to force all conflicts to become errors 

Warning messages: 

1: package ‘tidyverse’ was built under R version 4.4.3  

2: package ‘readr’ was built under R version 4.4.3  

3: package ‘forcats’ was built under R version 4.4.3  

 

After executing this command, all the functions from the tidyverse 

package become available to you. Usually, commands for loading all the 

necessary packages are placed at the very beginning of the R script. This 

makes the code organized and immediately makes it clear which 

dependencies are needed to execute it. 

 

Package updates and deletions 

The R ecosystem is constantly evolving: developers are fixing bugs 

and adding new functionality. Therefore, it is important to periodically 

update installed packages to the latest versions. This can be done using 

the update.packages() function or by clicking the "Update" button on the 

"Packages" tab in RStudio. 

If you no longer need a package, you can remove it from the library 

using the remove.packages() function, specifying the package name in 

quotation marks. 

 
# To remove a package from your library. 

remove.packages("unneeded_package") 

 

Effective package management is the key to successful work at R. It 
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opens up access to a huge number of tools created by the global scientific 

community, which allows you to solve the most complex problems of 

predictive modeling of soils without reinventing the wheel. 
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Chapter 2. Fundamental concepts of R 

 

2.1. R as a calculator 

 

The easiest way to get started with R is to use it as a powerful desktop 

calculator. This approach allows us to become familiar with basic 

syntax, arithmetic operators, and the order in which operations are 

performed without delving into more complex programming concepts. 

To do this, we will enter the commands directly into the console – the 

panel at the bottom left of RStudio, which is indicated by the invitation 

symbol >. 

R supports all standard arithmetic operations. You can enter 

mathematical expressions, and R will calculate and output the result 

instantly. The result in the console is usually denoted by the prefix [1], 

which indicates that it is the first element in the result vector (we will 

talk more about vectors later). 

The basic arithmetic operators in R are: 

+   Adding 

-  Subtraction 

*  Multiplication 

/  Division 

^ or **  Exponentiation 

We try to do some simple calculations. Type the following lines into 

the console one at a time, pressing Enter after each one. 

 
# Basic addition 

5 + 3 

[1] 8 

  

# Basic subtraction 

10 - 4 

[1] 6 

  

# Multiplication 

2.5 * 4 

[1] 10 

  

# Division 

100 / 8 

[1] 12.5 
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R follows the standard mathematical order of operations (sometimes 

remembered by the acronyms PEMDAS/BODMAS): parentheses are 

performed first, then exponentiation, then multiplication and division 

(from left to right), and finally addition and subtraction (from left to 

right). The use of parentheses () allows you to explicitly indicate the 

priority of operations and avoid ambiguity. 

 
> # Without parentheses, multiplication is performed 

first 

> 4*5+10 

[1] 30 

>  

> # With parentheses, the addition inside is performed 

first 

> 4 * (5+10) 

[1] 60 

 

In addition to basic operators, R has a huge library of built-in 

mathematical functions. A function in R is a named block of code that 

performs a specific action. To call a function, you need to write its name, 

and then pass one or more arguments (input values) to it in parentheses. 

For example, the sqrt() function calculates the square root and log() 

calculates the natural logarithm. 

 
> # Calculate the square root of 81 

> sqrt(81) 

[1] 9 

>  

> # Calculate the natural logarithm of 10 

> log(10) 

[1] 2.302585 

>  

> # Calculate the base-10 logarithm of 10 

> log10(10) 

[1] 1 

>  

> # Calculate the absolute value 

> ABS(-15.5) 

[1] 15.5 
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R also works seamlessly with very large or very small numbers, 

automatically representing them in scientific notation (e.g. 2.5e+8 

means 2.5times108). 

Using R as a calculator is a great starting point. It demonstrates the 

interactive nature of the console and introduces the basic syntax that is 

the foundation for all the subsequent, much more complex operations 

that we will encounter in predictive soil modeling. 

 

2.2. Objects and assignments 

 

Using R as a calculator is useful for quick calculations, but its true 

power is revealed when we start saving the results for later use. Imagine 

that you are performing a complex calculation whose result is required 

in the next few steps of the analysis. Constantly re-entering the entire 

formula would be inefficient and would lead to errors. Instead, we can 

store the result in an object. 

In R, almost everything is an object: a number, a set of data, the 

results of a statistical test, a graph. An object is essentially a named 

storage in the computer's memory where we can put any data. To create 

an object, we must give it a name and assign a specific value. 

The process of assigning a value to an object is done using the <- 

assignment operator. This operator looks like an arrow pointing from 

left to right and can be read as "gets value". 

 
# Create an object named 'soil_ph' and assign it the 

value 6.8 

soil_ph <-6.8 

 

After executing this command, nothing will appear in the console. 

This is normal behavior. R silently created an object named soil_ph in 

his memory (in the current environment) and wrote the value 6.8 into it. 

You can see this new object in the "Environment" panel in the upper 

right corner of RStudio. 

To view the contents of an object, simply type its name into the 

console and press Enter. 

 
> # Print the value of the 'soil_ph' object to the 

console 
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> soil_ph 

[1] 6.8 

 

Now that the value is stored, we can use the object name in further 

calculations in the same way we would use the number itself. 

 
> # Use the object in a calculation 

> soil_ph + 1 

[1] 7.8 

>  

> # Assign the result of a calculation to a new object 

> adjusted_ph <-soil_ph + 0.5 

> adjusted_ph 

[1] 7.3 

 

It is worth noting that in R you can also use an equal sign = for 

assignment, however, the operator <- is a generally accepted standard 

and a stylistically better choice. This is because = is also used to pass 

arguments to functions, while <- always means assigning a value to an 

object, which makes the code more unambiguous and easy to read. 

 

Rules and tips for naming objects 

Choosing names for objects is an important part of writing clean and 

understandable code. There are certain rules and generally accepted 

conventions: 

 Rules (mandatory): 

 Object names must begin with a letter. 

 They can contain letters, numbers, a period (.) and an 

underscore (_). 

 Names are case-sensitive: Soil_pH and soil_ph are two 

completely different objects. 

Conventions (recommended): 

 Use meaningful names: x <-10 says nothing about the purpose 

of the object, while plot_width <-10 is self-explanatory. 

 Stick to a uniform style: The most popular are snake_case 

(words separated by an underscore, such as 

soil_organic_carbon) and camelCase (each new word begins 

with a capital letter, such as soilOrganicCarbon). The 

snake_case style is very common, especially in the tidyverse 
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ecosystem, and we will follow it in this guide. 

 Avoid naming existing functions: You should not create an 

object named c or mean, as this can lead to confusion and errors. 

If you want to see a list of all objects in your current environment 

using code, you can use the ls() function. 

 
> # List all objects in the current environment 

> ls() 

[1] "adjusted_ph" "soil_ph"  

 

The concept of objects and assignment is fundamental to work in R. 

Each data analysis that we will carry out will consist of creating, 

manipulating and analyzing the different objects that store our data at 

each stage of work. 

 

2.3. Data types and structures (vectors, factors, matrices, data 

tables, lists) 

 

Until now, we have only worked with single values, assigning them 

to objects. However, in real analysis, especially in soil science, we 

almost always deal with data sets: measurement results from dozens of 

soil profiles, pixel values on a satellite image, coordinates of sampling 

points. In order to efficiently store and process such data, R uses a 

variety of data structures. 

Each object in R has a specific type that determines what kind of 

information it can contain (e.g., numbers, text, booleans). The structure 

of the data, in turn, determines how these values are organized. 

Understanding the basic data structures is absolutely necessary for 

further work. We consider the most important of them. 

 

Vectors 

A vector is the simplest and most fundamental data structure in R. It 

is an ordered sequence of values, with all values in a single vector 

having to be of the same type. Even the single number we created 

earlier is actually a vector that is one element long. 

To create a vector from several elements, the function c() is used 

(from the English. combine or concatenate). 

There are several main types of atomic vectors: 
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numeric (numeric): to store real numbers (decimals) and integers. It is 

the most common type for quantitative measurements. 

 
# A numeric vector of soil organic carbon (SOC) 

measurements in percent 

soc_percent <- c(2.5, 3.1, 1.8, 2.9, 4.2) 

soc_percent 

[1] 2.5 3.1 1.8 2.9 4.2 

 

character (character): to store text data. Text is always enclosed in 

double (") or single (') quotation marks. 

 
# A character vector of soil horizon designations 

horizons <- c("Ap", "Bt", "C", "Ap", "Bw") 

horizons 

[1] "Ap" "Bt" "C"  "Ap" "Bw" 

 

logical : to store the values TRUE or FALSE. Often the result of logical 

checks. 

 
# A logical vector indicating the presence of carbonates 

(effervescence test) 

carbonates_present <- c(FALSE, TRUE, TRUE, FALSE, FALSE) 

carbonates_present 

[1] FALSE  TRUE  TRUE FALSE FALSE 

 

If you try to mix types in the same vector, R will apply a coercion 

rule (type casting), converting all elements to the least specific type 

(usually a symbolic type). 

 

Factors 

Factors are a special type of vector designed to store categorical 

data. Outwardly, they may look like symbolic vectors, but internally R 

stores them as integers, each of which corresponds to a certain "label" 

or level. This makes them very effective for statistical modeling and 

visualization, since R "understands" that these are not just text, but 

groups. 

You can create a factor using the factor() function. 
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# A character vector of soil types 

soil_types_char <- c("Chernozem", "Podzol", "Luvisol", 

"Chernozem", "Chernozem") 

 

# Convert the character vector to a factor 

soil_types_factor <- factor(soil_types_char) 

 

soil_types_factor 

[1] Chernozem Podzol    Luvisol   Chernozem Chernozem 

Levels: Chernozem Luvisol Podzol 

 

Pay attention to the output: R not only shows the values, but also lists 

unique Levels: Chernozem, Luvisol, Podzol. 

 

Matrices 

A matrix is a two-dimensional data structure resembling a 

rectangular table. As in vectors, all elements of a matrix must be of 

the same type (usually numeric). Matrices are often used in linear 

algebra and geostatistics, for example, to represent covariance matrices. 

You can create a matrix using the matrix() function. 

 
# Create a matrix with 6 elements, arranged into 2 rows 

and 3 columns 

# representing, for example, nutrient content (N, P, K) 

in 2 samples 

nutrient_matrix <- matrix(c(1.2, 0.4, 0.8, 1.5, 0.3, 

0.9), nrow = 2, ncol = 3) 

nutrient_matrix 

 

     [,1] [,2] [,3] 

[1,]  1.2  0.8  0.3 

[2,]  0.4  1.5  0.9 

 

Data Frames 

A data table, or data frame, is perhaps the most important and 

widespread data structure to analyze in R. It is a two-dimensional 

structure, similar to a table in Excel or a database, where rows 

correspond to observations (such as soil samples) and columns 

correspond to variables (properties). 

The main difference and advantage of a data frame from a matrix is 

that columns can have different types of data. One column can be 
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numeric (pH), another can be symbolic (sample ID), and the third can 

be a factor (soil type). 

You can create a data frame using the data.frame() function by 

combining several vectors of the same length. 

 
# Combine previously created vectors into a soil data 

frame 

soil_data <- data.frame( 

  horizon = horizons, 

  soc = soc_percent, 

  carbonate = carbonates_present, 

  soil_type = soil_types_factor 

) 

 

soil_data 

 

 

 
Fig. 1.7. Displaying an object soil_data in RStudio. A tabular structure is shown, 

where each column has its own name and data type, and each row represents a 

separate observation. 

 

Lists 

A list is the most flexible data structure in R. It is an ordered 

collection of elements, where each element can be any object R: 
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vector, matrix, data frame, other list, and so on. List items do not have 

to be the same length or type. 

Lists are extremely useful for grouping heterogeneous but logically 

related information. For example, you can store data about a field study 

in one list: a table with analyzes, a vector with the names of researchers 

and a numerical value of the average annual precipitation on the site. 

 
# Create a list containing various objects related to a 

study site 

study_site_info <- list( 

  site_name = "Polovetsky Steppe", 

  location_coords = c(49.5, 32.8), 

  soil_properties = soil_data, 

  average_rainfall_mm = 550 

) 

 

study_site_info 

$site_name 

[1] "Polovetsky Steppe" 

 

$location_coords 

[1] 49.5 32.8 

 

$soil_properties 

  horizon soc carbonate soil_type 

1      Ap 2.5     FALSE Chernozem 

2      Bt 3.1      TRUE    Podzol 

3       C 1.8      TRUE   Luvisol 

4      Ap 2.9     FALSE Chernozem 

5      Bw 4.2     FALSE Chernozem 

 

$average_rainfall_mm 

[1] 550 

 

Understanding these five basic data structures – vectors, factors, 

matrices, data tables, and lists – is the foundation on which all 

subsequent work with data in R is built. 

 

2.4. Data Import and Export 

 

Generating data directly in R, as we did in previous subsections, is 

useful for training and testing. However, in real research projects, data 
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almost always comes from external sources. These can be the results of 

laboratory analyzes uploaded in CSV or Excel format, data from GPS 

receivers, or geospatial layers prepared in GIS programs. Therefore, the 

ability to efficiently import data into R for analysis and export results is 

a fundamental skill. 

 

Import data 

The process of loading data from an external file into an R object 

(usually in a data frame) is called importing. R supports a huge number 

of data formats thanks to its basic features and specialized packages. 

 

Text Files (CSV) 

The most common format for exchanging tabular data is CSV 

(Comma-Separated Values). It is a simple text file where columns are 

separated by a comma and rows are separated by a new row. 

To read CSV files, the base R has a function read.csv(). However, 

we will use its modern counterpart read_csv() from the readr package 

(which is part of tidyverse) because it is much faster and smarter in 

determining column types. 

 
# First, ensure the tidyverse package is loaded 

library(tidyverse) 

 

# Import soil profile data from a CSV file located in the 

'data' subfolder 

# The result is stored in a data frame (specifically, a 

tibble) called 'soil_profiles' 

# Make sure you have a 'data' folder in your project 

directory with this file. 

soil_profiles <- read_csv("data/slovakia_soil_profiles.cs

v") 

Rows: 25 Columns: 9                                               

── Column specification 

─────────────────────────────────────────── 

Delimiter: "," 

chr (3): SVK-01, Ap, Chernozem 

dbl (6): 0, 4.2, 28, 6.8, 17.11, 48.15 

 

ℹ Use `spec()` to retrieve the full column specification 
for this data. 

ℹ Specify the column types or set `show_col_types = 
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FALSE` to quiet this message. 

 

Microsoft Excel File (.xlsx) 

A lot of data, especially from labs, is stored in Excel files. The readxl 

package is great for reading them. Its read_excel() function allows you 

to easily import data by specifying the path to the file and, if necessary, 

the name of the sheet or its number. 

 
# The readxl package is also part of the core tidyverse 

library(readxl) 

 

# Import soil chemical properties from the first sheet of 

an Excel file 

soil_chemistry <- read_excel("data/lab_results.xlsx", 

sheet = 1) 

 

 
 

Vector geospatial data 

To work with spatial data, we will use the sf (Simple Features) 

package. Its st_read() function is a universal tool for reading most 

common vector formats. Preload data from 

https://geodata.ucdavis.edu/gadm/gadm4.1/shp/gadm41_SVK_shp.zip 

into the "gis_data" folder. 

 
# Load the sf package 

library(sf) 

 

# Read a Shapefile of administrative boundaries 

# The function reads the .shp file, but automatically 

uses associated files (.dbf, .shx, etc.) 

 

slovakia_boundary <- st_read("gis_data/gadm41_SVK_0.shp") 

Reading layer `gadm41_SVK_0' from data source  

  `D:\TextbookPredSoilMapping\gis_data\gadm41_SVK_0.shp' 

using driver `ESRI Shapefile' 

https://geodata.ucdavis.edu/gadm/gadm4.1/shp/gadm41_SVK_shp.zip
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Simple feature collection with 1 feature and 2 fields 

Geometry type: POLYGON 

Dimension:     XY 

Bounding box:xmin:16.83446 ymin:47.73275 xmax:22.56791 

ymax:49.6138 

Geodetic CRS:  WGS 84 

 

# Load dplyr 

library(dplyr) # Select COUNTRY  

 

slovakia_boundary <- select(slovakia_boundary, COUNTRY) 

 

plot(slovakia_boundary) 

 
 

Data export 

Once the analysis, processing, or simulation is complete, the results 

must be saved to a file. This process is called exporting. 

Text Files (CSV) 

To save a data frame in CSV format, use the write_csv() function from 

the readr package.In the base R, there is a function write.csv(). If you 

use it, it is important to specify the argument row.names = FALSE to 

avoid writing an unnecessary column with row numbers. 

 
# Create folder "results" 

dir.create("results") 

 

# Assume we have a final data frame 'final_soil_data' 
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final_soil_data <- soil_chemistry 

 

# Export this data frame to a CSV file 

write_csv(final_soil_data, "results/final_soil_data.csv") 

Microsoft Excel File (.xlsx) 

To export to Excel, it is convenient to use the writexl package and its 

function write_xlsx(). It allows you to write one or more data frames to 

different sheets of the same file. 

 
library(writexl) 

 

# Export a single data frame to an Excel file 

write_xlsx(final_soil_data, 

"results/final_soil_data.xlsx") 

 

Vector geospatial data 

To export spatial objects sf, the universal function st_write() is used. 

The choice of file format is determined by the extension you specify in 

the name. We consider the most popular options. 

 Shapefile (.shp) It is historically the most common format for 

vector data interchange, developed by Esri. However, it has 

significant drawbacks. A shapefile is not a single file, but a set 

of several files (.shp, .shx, .dbf, .prj, etc.) that must be located 

in one folder. This often leads to copying errors. In addition, it 

has strict restrictions: column names in an attribute table cannot 

exceed 10 characters, which forces the abbreviation of 

meaningful variable names. 

 
# Exporting an sf object to a Shapefile 

# Note that long column names in 'predicted_soil_map' 

will be truncated 

 

# Create dummies 'predicted_soil_map' from 

slovakia_boundary (for example only!!!)   

 

predicted_soil_map <-slovakia_boundary 

 

st_write(predicted_soil_map, 

"results/predicted_soil_map.shp") 

Writing layer `predicted_soil_map' to data source  

  `results/predicted_soil_map.shp' using driver `ESRI 
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Shapefile' 

Writing 1 features with 1 fields and geometry type 

Polygon. 

 

 GeoPackage (.gpkg) GeoPackage is a modern, open-source, 

standardized file format developed by the Open Geospatial 

Consortium (OGC). It was created as a versatile, flexible, and 

efficient replacement for legacy formats like Shapefile. 

 

The advantages of GeoPackage are undeniable: 
One file: All data (geometry, attributes, projection information) is 

stored in a single .gpkg file, making it extremely portable and 

easy to manage. 

 Flexibility: There is no limit to the length of column names. A 

variety of data types are supported. 

 Versatility: Multiple layers of vector data, raster data, and even 

tables without geometry can be stored in a single GeoPackage 

file. 

 Performance: Due to its architecture, it often performs faster 

than Shapefile, especially with large datasets. 

 

Because of these advantages, GeoPackage is the recommended 

format for storing and sharing geospatial data in modern projects. 

 
# Exporting an sf object to a GeoPackage 

# This is the recommended way to save spatial vector data 

st_write(predicted_soil_map, 

"results/predicted_soil_map.gpkg") 

Writing layer `predicted_soil_map' to data source  

  `results/predicted_soil_map.gpkg' using driver `GPKG' 

Writing 1 features with 1 fields and geometry type 

Polygon. 

 

Choosing the right format for importing and exporting data is the key 

to efficient and error-free operation, and the use of modern standards 

like GeoPackage contributes to better reproducibility and compatibility 

of your research. 
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Chapter 3. Data manipulation with dplyr 

 

3.1. Introduction to Tidyverse and dplyr 

 

In the previous section, we got acquainted with the fundamental data 

structures in R. Now we are ready to move on to one of the most 

important and most frequently performed tasks in data analysis – data 

manipulation. Real data that soil scientists have to work with is rarely 

perfect. It may contain unnecessary columns, require filtering by certain 

criteria, require the creation of new variables based on existing ones, or 

require sorting. A species suitable for analysis and modeling often takes 

up to 80% of the researcher's total time. 

Traditionally, for these tasks, R used the so-called "basic R" – a set 

of functions that comes with the standard installation. While these tools 

are powerful, their syntax can often be cumbersome, counterintuitive, 

and difficult to read, especially for complex chains of operations. 

Fortunately, the R ecosystem has undergone a real revolution in 

recent years thanks to the advent of tidyverse. It is not just a package, 

but a whole philosophy of working with data and a coherent collection 

of R packages designed for modern data science. All packages in 

tidyverse share a common philosophy of design, grammar and data 

structure, which makes the process of working with data extremely 

logical, consistent and,  Most importantly, readable for a person. 

The tidyverse philosophy is based on the concept of "tidy data". 

This is a standard for organizing tabular data, which has three simple 

rules: 

 Each variable forms a column. 

 Each observation forms a line. 

 Each type of observed unit forms a table. 

Compliance with this standard greatly simplifies further work, since 

tidyverse tools are designed specifically to work with such "tidy" data. 

The heart of tidyverse for data manipulation is the dplyr package. It 

provides a simple and consistent set of "verbs" – functions that allow 

you to solve the most common data manipulation tasks. Instead of 

memorizing hundreds of different functions with obscure names, dplyr 

offers a small set of tools, each of which performs one distinct action.  

to dig, a dipstick to take samples, a pH meter to measure acidity. Each 
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tool has its own clear purpose. Likewise in dplyr, you have verbs for: 

 Select columns (select()). 

 String filtering (filter()). 

 Creating new columns (mutate()). 

 Data sorting (arrange()). 

 Data aggregation and summation (group_by() and 

summarise()). 

We look at a simple example. Suppose that we have data on the 

content of organic carbon (SOC) and clay in different genetic horizons. 

 
# Load the tidyverse library 

library(tidyverse) 

 

# Create a sample soil data frame (in tidyverse, we often 

use 'tibbles') 

soil_samples <- tibble( 

  profile_id = c("SVK-01", "SVK-01", "SVK-02", "SVK-02", 

"SVK-03"), 

  horizon = c("Ap", "Bt", "Ap", "BC", "A"), 

  soc_percent = c(3.2, 1.1, 4.5, 0.8, 5.1), 

  clay_percent = c(25, 38, 22, 31, 28)) 

 

Suppose we only need to take samples that were taken from the "Ap" 

horizon and we are only interested in the profile ID and carbon content. 

Using dplyr, this query is translated into code almost verbatim: 

 
# dplyr approach: filter the rows, then select the 

columns 

filter(soil_samples, horizon == "Ap") 

select(filter(soil_samples, horizon == "Ap"), profile_id, 

soc_percent) 

# A tibble: 2 × 4 

  profile_id horizon soc_percent clay_percent 

  <chr> <chr> <dbl> <dbl> 

1 SVK-01 AP 3.2 25 

2 SVK-02 AP 4.5 22 

> select(filter(soil_samples, horizon == "Ap"), 

profile_id, soc_percent) 

# A tibble: 2 × 2 

  profile_id soc_percent 

  <chr> <dbl> 

1 SVK-01 3.2 
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2 SVK-02 4.5 

The code is clear and consistent. In the following subsections, we 

will analyze each of these verbs in detail and learn how to combine them 

into powerful chains of operations using the pipeline operator (%>%), 

which will make our code even more elegant and readable. Learning 

dplyr is an investment that will drastically change your efficiency and 

approach to working with data in R. 

 

3.2. Basic verbs dplyr (select, filter, mutate, arrange) 

 

As we noted earlier, dplyr provides a small but extremely powerful 

set of functions, or "verbs," for manipulating data. Each verb is 

responsible for one specific action, which makes the code intuitive. In 

this subsection, we'll take a closer look at the four key verbs that form 

the basis of most data preparation operations: select(), filter(), mutate(), 

and arrange(). To demonstrate their work, we will use an extended soil 

sample dataset. 

 
# Load the tidyverse library first 

library(tidyverse) 

 

# An expanded dataset of soil samples for our examples 

soil_data <- tibble( 

  profile_id = c("SVK-01", "SVK-01", "SVK-02", "SVK-02", 

"SVK-03", "SVK-03"), 

  horizon = c("Ap", "Bt", "Ap", "BC", "A", "Bw"), 

  depth_cm = c(0, 25, 0, 40, 0, 15), 

  soc_percent = c(3.2, 1.1, 4.5, 0.8, 5.1, 2.5), 

  clay_percent = c(25, 38, 22, 31, 28, 32), 

  ph_h2o = c(6.8, 7.2, 6.5, 7.8, 6.2, 6.9)) 

 

Select columns with select() 

Very often, our initial data contains many more variables than is 

necessary for a specific analysis. The verb select() makes it easy  to 

select the columns that interest us, or, conversely, to exclude 

unnecessary ones. 

The first argument of the function is always the data table, and the 

next are the names of the columns that we want to keep. Unlike the basic 

R, column names do not need to be enclosed in quotation marks, which 
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makes the code cleaner. 

 
# Select three specific columns from the soil_data 

select(soil_data, profile_id, horizon, soc_percent) 

# A tibble: 6 × 3 

  profile_id horizon soc_percent 

  <chr>      <chr>         <dbl> 

1 SVK-01     Ap              3.2 

2 SVK-01     Bt              1.1 

3 SVK-02     Ap              4.5 

4 SVK-02     BC              0.8 

5 SVK-03     A               5.1 

6 SVK-03     Bw              2.5 

 

Compare this to the equivalent in base R, which is less intuitive: 

soil_data[, c("profile_id", "horizon", "soc_percent")] 

select() also has a set of useful helper functions that allow you to 

select columns based on their name patterns: 

 starts_with("prefix"): Selects columns whose names begin with 

a specific prefix. 

 ends_with("suffix"): selects columns ending in a suffix. 

 contains("text"): Selects columns whose names contain specific 

text. 

To exclude a column, it is enough to put a minus sign (-) in front of 

its name. 

 
# Select all columns except for the pH measurement 

select(soil_data, -ph_h2o) 

# Tibble: 6 × 5 

  profile_id horizon depth_cm soc_percent clay_percent 

  <chr> <chr> <dbl> <dbl> <dbl> 

1 SVK-01 AP 0 3.2 25 

2 SVK-01 Bt 25 1.1 38 

3 SVK-02 AP 0 4.5 22 

4 SVK-02 BC 40 0.8 31 

5 SVK-03 A 0 5.1 28 

6 SVK-03 Bw 15 2.5 32 

 

# Select all columns that contain the word "percent" 

select(soil_data, contains("percent")) 

# A tibble: 6 × 2 

  soc_percent clay_percent 
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        <dbl> <dbl> 

1         3.2           25 

2         1.1           38 

3         4.5           22 

4         0.8           31 

5         5.1           28 

6         2.5           32 

 

Filtering Strings with filter() 

Perhaps the most common task is data filtering – selecting only 

those strings (observations) that meet certain conditions. The verb 

filter() is intended for this. 

The first argument is the data table, and the next arguments are one 

or more logical conditions. Strings for which the condition is true 

(TRUE) remain in the result. 

 
# Filter for samples from the topsoil (depth_cm == 0) 

filter(soil_data, depth_cm == 0) 

# A tibble: 3 × 6 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o 

  <chr>      <chr>      <dbl>       <dbl>        <dbl>  

<dbl> 

1 SVK-01     Ap             0         3.2           25    

6.8 

2 SVK-02     Ap             0         4.5           22    

6.5 

3 SVK-03     A              0         5.1           28    

6.2 

 

# Filter for samples with high organic carbon content 

filter(soil_data, soc_percent > 3.0) 

# A tibble: 3 × 6 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o 

  <chr>      <chr>      <dbl>       <dbl>        <dbl>  

<dbl> 

1 SVK-01     Ap             0         3.2           25    

6.8 

2 SVK-02     Ap             0         4.5           22    

6.5 

3 SVK-03     A              0         5.1           28    

6.2 
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Note the use of a double equal sign == to check for equality. 

In basic R, a similar operation looks much more cumbersome due to 

the constant repetition of the table name: 

soil_data[soil_data$soc_percent > 3.0, ] 

filter() allows you to easily combine multiple conditions using 

boolean statements: 

 & – logical "AND" (both conditions must be true). 

 | – logical "OR" (at least one condition must be true). 

 ! – logical "NO" (negation). 

 
# Filter for topsoil samples with high organic carbon 

filter(soil_data, depth_cm == 0 & soc_percent > 4.0) 

# Tibble: 2 × 6 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o 

  <chr> <chr> <dbl> <dbl> <dbl> <dbl> 

1 SVK-02 AP 0 4.5 22 6.5 

2 SVK-03 A 0 5.1 28 6.2 

 

Creating new variables with mutate() 

The verb mutate() allows you to create new columns based on 

existing ones or modify existing ones. This is an extremely powerful 

tool for feature engineering. 

The syntax is simple: after the table name, you write 

new_column_name = expression. 

In soil science, it is common to convert organic carbon content (SOC) 

to organic matter content (SOM) using the Van Bemmellen ratio 

(~1.724). We do it: 

 
# Create a new column for soil organic matter (SOM) 

mutate(soil_data, som_percent = soc_percent * 1.724) 

# A tibble: 6 × 7 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o som_percent 

  <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 

1 SVK-01 AP 0 3.2 25 6.8 5.52 

2 SVK-01 Bt 25 1.1 38 7.2 1.90 

3 SVK-02 AP 0 4.5 22 6.5 7.76 

4 SVK-02 BC 40 0.8 31 7.8 1.38 
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5 SVK-03 A 0 5.1 28 6.2 8.79 

6 SVK-03 Bw 15 2.5 32 6.9 4.31 

The advantage of mutate() over the basic approach 

(soil_data$som_percent <- soil_data$soc_percent * 1.724) is that you 

can create multiple columns at a time, and even reference newly created 

columns in the same command. 

 
# Create SOM column and then immediately create a C:Clay 

ratio column 

mutate(soil_data,  

       som_percent = soc_percent * 1.724, 

       c_clay_ratio = soc_percent / clay_percent 

) 

# A tibble: 6 × 8 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o som_percent 

  <chr>      <chr>      <dbl>       <dbl>        <dbl>  

<dbl>       <dbl> 

1 SVK-01     Ap             0         3.2           25    

6.8        5.52 

2 SVK-01     Bt            25         1.1           38    

7.2        1.90 

3 SVK-02     Ap             0         4.5           22    

6.5        7.76 

4 SVK-02     BC            40         0.8           31    

7.8        1.38 

5 SVK-03     A              0         5.1           28    

6.2        8.79 

6 SVK-03     Bw            15         2.5           32    

6.9        4.31 

# ℹ 1 more variable: c_clay_ratio <dbl> 

 

Sorting data with arrange() 

The last of the base verbs, arrange(), is responsible for sorting the 

rows of the table by the values of one or more columns. 

 
# Arrange the data from lowest to highest SOC content 

arrange(soil_data, soc_percent) 

# A tibble: 6 × 6 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o 

  <chr> <chr> <dbl> <dbl> <dbl> <dbl> 

1 SVK-02 BC 40 0.8 31 7.8 
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2 SVK-01 Bt 25 1.1 38 7.2 

3 SVK-03 Bw 15 2.5 32 6.9 

4 SVK-01 AP 0 3.2 25 6.8 

5 SVK-02 AP 0 4.5 22 6.5 

6 SVK-03 A 0 5.1 28 6.2 

 

By default, arrange() sorts in ascending order. To change the 

descending order, you need to wrap the column name in the desc() 

function. 

 
# Arrange the data from highest to lowest SOC content 

arrange(soil_data, desc(soc_percent)) 

# A tibble: 6 × 6 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o 

  <chr> <chr> <dbl> <dbl> <dbl> <dbl> 

1 SVK-03 A 0 5.1 28 6.2 

2 SVK-02 AP 0 4.5 22 6.5 

3 SVK-01 AP 0 3.2 25 6.8 

4 SVK-03 Bw 15 2.5 32 6.9 

5 SVK-01 Bt 25 1.1 38 7.2 

6 SVK-02 BC 40 0.8 31 7.8 

 

Again, compare this to the basic R syntax, which requires the use of 

the order() function and is less obvious: 

soil_data[order(soil_data$soc_percent, decreasing = TRUE), ] 

You can sort by multiple columns. R will first sort by the first column 

and then, within the same values of the first column, sort by the second. 

 
# Arrange by profile ID, and then by depth within each 

profile 

arrange(soil_data, profile_id, depth_cm) 

# A tibble: 6 × 6 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o 

  <chr> <chr> <dbl> <dbl> <dbl> <dbl> 

1 SVK-01 AP 0 3.2 25 6.8 

2 SVK-01 Bt 25 1.1 38 7.2 

3 SVK-02 AP 0 4.5 22 6.5 

4 SVK-02 BC 40 0.8 31 7.8 

5 SVK-03 A 0 5.1 28 6.2 

6 SVK-03 Bw 15 2.5 32 6.9 
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These four verbs – select, filter, mutate, arrange – are dplyr's 

workhorses. Once you have mastered them, you will be able to complete 

the vast majority of data preparation and cleaning tasks, making your 

code not only efficient, but also extremely clear and easy to read. 

 

3.3. Strategy "Divide-Apply-Unite" (group_by, summarise) 

The previous four verbs – select, filter, mutate, and arrange – are 

extremely useful for working with data at the level of individual rows 

and columns. However, the real magic of data analysis often happens at 

the aggregate level, where we need to calculate the totals for different 

groups within our dataset. For example, in soil science, we are rarely 

interested in the pH of one particular sample; much more often we want 

to know the average pH for each genetic horizon, or the maximum 

organic carbon content within each soil profile. 

To solve such problems, dplyr implements a powerful strategy 

known as "Split-Apply-Combine". This concept, popularized by 

Hadley Wickham, consists of three steps: 

Split: A dataset is broken down into smaller groups based on the values 

of one or more categorical variables. 

 Apply: A certain function is applied to each group 

independently (for example, calculating the average, sum, 

quantity). 

 Combine: The results obtained from each group are collected 

together into a single summary table. 

This strategy is implemented in dplyr using two key verbs: 

group_by() and summarise(). They are almost always used together and 

are one of the most powerful tools in your arsenal. 

 

Grouping data using group_by() 

The verb group_by() itself does not change the appearance of your 

data. It adds metadata to the table, telling R that all subsequent 

operations should not be performed for the entire table at once, but for 

each group separately. Suppose that we want to calculate the averages 

for each soil profile in our set of soil_data. The first step is to group the 

data by profile ID. 
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# Load the tidyverse library and use the same data as 

before 

library(tidyverse) 

 

soil_data <- tibble( 

  profile_id = c("SVK-01", "SVK-01", "SVK-02", "SVK-02", 

"SVK-03", "SVK-03"), 

  horizon = c("Ap", "Bt", "Ap", "BC", "A", "Bw"), 

  depth_cm = c(0, 25, 0, 40, 0, 15), 

  soc_percent = c(3.2, 1.1, 4.5, 0.8, 5.1, 2.5), 

  clay_percent = c(25, 38, 22, 31, 28, 32), 

  ph_h2o = c(6.8, 7.2, 6.5, 7.8, 6.2, 6.9) 

) 

 

# Group the data by profile_id 

grouped_by_profile <- group_by(soil_data, profile_id) 

grouped_by_profile  

# A tibble: 6 × 6 

# Groups:   profile_id [3] 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o 

  <chr>      <chr>      <dbl>       <dbl>        <dbl>  

<dbl> 

1 SVK-01     Ap             0         3.2           25    

6.8 

2 SVK-01     Bt            25         1.1           38    

7.2 

3 SVK-02     Ap             0         4.5           22    

6.5 

4 SVK-02     BC            40         0.8           31    

7.8 

5 SVK-03     A              0         5.1           28    

6.2 

6 SVK-03     Bw            15         2.5           32    

6.9 

 

If you display grouped_by_profile on the screen, you will see that the 

data looks the same, but the inscription appears on top: A tibble: 6 × 6 

[Groups: profile_id [3]]. This means that R is now "aware" of the 

existence of three groups (SVK-01, SVK-02, SVK-03). 

 

Data Aggregation with summarise() 

Once the data is grouped, the verb summarise() (or its American 

variant summarize()) allows you to "collapse" each group into one line 
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by calculating the final statistical indicators for it. 

Inside summarise(), you create new columns by assigning them the 

results of aggregating functions such as mean() (mean), sd() (standard 

deviation), min() (minimum), max() (maximum), median() (median), 

and n() (number of observations in a group). 

 
# Calculate summary statistics for each profile 

summarise(grouped_by_profile,  

          avg_soc = mean(soc_percent), 

          max_clay = max(clay_percent), 

          num_horizons = n() 

) 

# A tibble: 3 × 4 

  profile_id avg_soc max_clay num_horizons 

  <chr> <dbl> <dbl> <int> 

1 SVK-01 2.15 38 2 

2 SVK-02 2.65 31 2 

3 SVK-03 3.8 32 2 

 

The result will be a new, much smaller table where each row 

represents a single soil profile and its generalized characteristics. This is 

the end result of the "Divide-Apply-Unite" strategy. 

Compare this to basic R, where to achieve the same result, you would 

have to use a cumbersome aggregate() function or a combination of 

split() and lapply() functions, which is significantly less readable:  

 
aggregate(soil_data[, c("soc_percent", "clay_percent")], 

by = list(profile_id = soil_data$profile_id), FUN = mean) 

 

You can group data by multiple variables at once. For example, if we 

had data from different regions, we could group them first by region and 

then by soil type within each region. summarise() will then create a 

summary string for each unique combination of these variables. 

The combination of group_by() and summarise() is the cornerstone 

of exploratory data analysis. It allows for a quick transition from raw, 

detailed data to meaningful, aggregated insights, which is absolutely 

essential for understanding patterns in soil properties and preparing data 

for further predictive modeling. 
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3.4. Pipeline operator (%>%) 

 

So far, we have  used dplyr verbs one at a time, creating intermediate 

objects or nesting function calls inside each other. For example, if we 

needed to filter the data and then group it and summarize it, we could 

write like this: 

 
# Nested approach: hard to read from inside out 

summarise(group_by(filter(soil_data, depth_cm > 0), 

profile_id), avg_soc = mean(soc_percent)) 

# Tibble: 3 × 2 

  profile_id avg_soc 

  <chr> <dbl> 

1 SVK-01 1.1 

2 SVK-02 0.8 

3 SVK-03 2.5 

 

Such code is functional, but it is very difficult to read. To understand 

what is happening, you need to start with the deepest nested function 

(filter) and move outward. This is contrary to the natural way of 

thinking, where we imagine a sequence of actions. 

Another approach is to create intermediate variables at each step: 

 
# Intermediate variables approach: verbose and clutters 

the environment 

filtered_data <-filter(soil_data, depth_cm > 0) 

grouped_data <-group_by(filtered_data, profile_id) 

summary_data <-summarise (grouped_data, avg_soc = 

mean(soc_percent)) 

 

summary_data 

# Tibble: 3 × 2 

  profile_id avg_soc 

  <chr> <dbl> 

1 SVK-01 1.1 

2 SVK-02 0.8 

3 SVK-03 2.5 

 

This option is much more readable, but it litters your work 

environment with objects that you may never need again. 

Fortunately, there is a much more elegant solution, which is one of 
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the hallmarks of tidyverse –  pipe operator %>%. This operator, which 

comes from the magrittr package and is an integral part of dplyr, allows 

you to "pass" the result of one function to the input of the next, creating 

logical and readable chains of operations. 

The %>% operator can be read as "and then". It takes the object to 

the left of it and passes it as  the first argument to the  function on the 

right. That is, the expression x %>% f(y) is equivalent to f(x, y). 

We rewrite our previous example using the pipeline operator: 

 
# The pipe approach: intuitive, readable, and efficient 

soil_data %>% 

  filter(depth_cm > 0) %>% 

  group_by(profile_id) %>% 

  summarise(avg_soc = mean(soc_percent)) 

# A tibble: 3 × 2 

  profile_id avg_soc 

  <chr>        <dbl> 

1 SVK-01         1.1 

2 SVK-02         0.8 

3 SVK-03         2.5 

 

Now the code reads as a sentence in English: "Take soil_data, and 

then filter the lines where depth_cm greater than 0, and then group by 

profile_id, and then sum by calculating avg_soc." The order of the code 

corresponds to the order of operations, which makes the logic of the 

analysis crystal clear. For ease of reading, it is customary to break long 

chains into separate lines after each %>% operator. 

 

 
Fig. 1.8. Schematic representation of the work of the conveyor operator. Data 

"flows" from left to right through a sequence of functions, where the result of 

each step becomes the input for the next  

 

Consider a more complex but realistic example from soil science. 
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Suppose we need to perform the following task: For a dataset, soil_data 

calculate the average pH and the range of clay content (the difference 

between maximum and minimum) for each genetic horizon. 

 

Without a pipeline operator, this request would turn into a cumbersome 

and confusing design. With it, the solution looks like a clear recipe: 

 
# A complex data manipulation task solved elegantly with 

the pipe 

soil_data %>% 

  filter(soc_percent > 1.0) %>% 

  group_by(horizon) %>% 

  summarise( 

    avg_ph = mean(ph_h2o), 

    clay_range = max(clay_percent) - min(clay_percent), 

    sample_count = n() 

  ) %>% 

  arrange(desc(avg_ph)) 

 

# A tibble: 4 × 4 

  horizon avg_ph clay_range sample_count 

  <chr> <dbl> <dbl> <int> 

1 Bt        7.2           0            1 

2 Bw 6.9 0 1 

3 Ap        6.65          3            2 

4 A 6.2 0 1  

 

The %>% operator is not just syntactic sugar. It is a tool that changes 

the way we think about data manipulation, encouraging the construction 

of consistent, logical and reproducible workflows. Once you get used to 

it, you are unlikely to want to go back to nested functions or intermediate 

variables. 

 

Note: Starting with version 4.1.0, R has its own, "native" pipeline 

operator |>. It performs a similar function, but the %>% operator with 

magrittr remains the standard in the tidyverse ecosystem and has some 

additional features, so we will use it in this guide. 
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Chapter 4. Data visualization with ggplot2 

 

4.1. Grammar of graphics 

 

Once we have  learned how to organize, filter, and aggregate our 

data, the next logical step is to visualize it. Graphs and charts are the 

most powerful tool for exploratory data analysis (EDA). The human 

brain is much better at perceiving visual patterns, outliers, and 

relationships than bare numbers in a table. Other. In the context of soil 

science, visualization helps to understand the distribution of soil 

properties, to identify relationships between, for example, organic 

matter content and depth, or to compare the characteristics of different 

types of soils. 

There are several systems for creating graphs in R. The basic 

graphics system (plot(), hist(), boxplot()) functions is powerful, but it 

works according to the "easel and brush" model: you create a basic graph 

and then sequentially add elements (points, lines, legends) to it with 

separate commands. This approach can be flexible, but for complex 

graphs, the code becomes cumbersome and its logic is not obvious. 

In contrast, the ggplot2 package, which is the cornerstone of the 

tidyverse ecosystem, offers a completely different, much more powerful 

philosophy. It is based on the concept  of "Grammar of Graphics", 

first described in the book by Leland Wilkinson. This grammar treats 

any graph not as a unique creation, but as a combination of independent 

components. Just as the grammar of a language allows us to construct 

an infinite number of meaningful sentences from a limited set of words 

and rules, the grammar of graphics allows you to create an infinite 

number of different visualizations from a limited set of components. 

The main components of this grammar are: 

Data: The dataset you want to visualize. For ggplot2, it should always 

be a data table (data frame or tibble) in a "tidy" format. 

Aesthetics: This is how variables from your data are mapped to the 

visual properties of the graph. Aesthetics are specified inside the aes() 

function. The most common aesthetics are x and y (position on the axes), 

but there are also color, fill, shape, size, alpha, and others.  

Geometries: These are geometric objects that directly represent data on 

a graph. They are added as layers using functions starting with geom_, 
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such as geom_point() to create a scatter plot, geom_bar() for a bar chart, 

geom_boxplot() for a "whisker box". This is how you see your data. 

 

  

 

 
Fig. 1.9. Conceptual scheme of the Grammar of graphics. Shows how data, 

aesthetic mappings, and geometric objects are combined into layers to create the 

final graph 

 

Plotting in ggplot2 is the process of adding layers. You start with the 

ggplot() function, where you specify a dataset and basic aesthetic 

mappings. Then, using the + sign, you add one or more geometric layers. 

Now we look at this with our example with soil data. Let us create a 

scatter plot to investigate the relationship between organic carbon 

content (soc_percent) and clay content (clay_percent). 

 
# Load the tidyverse library which includes ggplot2 

library(tidyverse) 

 

# Use the same soil_data from the previous chapter 

soil_data <- tibble( 

  profile_id = c("SVK-01", "SVK-01", "SVK-02", "SVK-02", 

"SVK-03", "SVK-03"), 

  horizon = c("Ap", "Bt", "Ap", "BC", "A", "Bw"), 

  depth_cm = c(0, 25, 0, 40, 0, 15), 

  soc_percent = c(3.2, 1.1, 4.5, 0.8, 5.1, 2.5), 

  clay_percent = c(25, 38, 22, 31, 28, 32), 

  ph_h2o = c(6.8, 7.2, 6.5, 7.8, 6.2, 6.9) 

) 

 

# Create a scatter plot 

ggplot(data = soil_data, mapping = aes(x = soc_percent, y 

= clay_percent)) + 

  geom_point() 
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Now we analyze this code: 

 ggplot(data = soil_data, ...): We initialize the graph by indicating 

that we will use table soil_data. 

 mapping = aes(x = soc_percent, y = clay_percent): we create an 

aesthetic mapping. We say ggplot2: "Take column soc_percent and 

map it on the x-axis. Take column clay_percent and plot it on the y-

axis." 

 + geom_point(): we add a geometric layer. We say: "Represent 

these mappings as points." 

The power of grammar lies in how easily a graph can be modified 

and expanded. What if we want to see if this relationship is different for 

different genetic horizons? We just have to add another aesthetic 

reflection: color = horizon. 

 
# Add a third variable (horizon) mapped to the color 

aesthetic 

ggplot(data = soil_data, mapping = aes(x = soc_percent, y 

= clay_percent, color = horizon)) + 

  geom_point(size = 3) # Make points a bit larger for 

better visibility 
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We only added one argument color = horizon inside aes(). ggplot2 

automatically did the rest: assigned a unique color to each horizon, 

colored the dots accordingly, and created a legend. This is radically 

different from the basic R approach, where to achieve the same result, 

you would have to manually create a color picker, draw subsets of the 

data with different colors in a loop, and then manually add the legend. 

This layer- and grammar-based approach makes ggplot2 an 

extremely powerful and flexible tool. Having mastered its basic 

principles, you can create both simple exploration graphs and complex, 

ready-to-publish visualizations with minimal effort. 

 

4.2. Creation of basic graphs for exploratory data analysis 

(histograms, scatter plots, box plots) 

 

Having mastered the theoretical foundations of the "Grammar of 

Graphics", we can move on to creating the most common types of 

graphs, which are the workhorses of any exploratory data analysis. Each 

type of graph is designed to answer a specific question about your data. 

We will look at three main types: histograms (to study the distribution 

of a single continuous variable), scatter plots (to investigate the 

relationship between two continuous variables), and box diagrams (to 

compare the distribution of a continuous variable between different 

categories). 

 

Histograms: the study of the distribution 

Question: How are the values of a certain soil property distributed? 
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Is the distribution symmetrical? Are there emissions? 

A histogram is the best tool for visualizing the distribution of one 

continuous (quantitative) variable. It breaks down the range of values 

of a variable into a series of intervals (or "bins", bins) of the same width 

and shows how many observations fall into each of them. 

To create a histogram in ggplot2, geom_histogram() is used. The 

main aesthetics to specify is x, that is, the variable whose distribution 

we want to see. 

We explore the pH distribution in our dataset. 

 
# Plotting the distribution of soil pH 

ggplot(data = soil_data, mapping = aes(x = ph_h2o)) + 

  geom_histogram(binwidth = 0.25, color = "black", fill = 

"lightblue") 

 

Graph analysis: From this histogram, we can see that most of our 

samples have a pH in the range of 6.2 to 7.2, with a peak of about 6.8-

7.0. The distribution looks a bit asymmetrical. The binwidth argument 

controls the width of the "baskets" and is very important; it is worth 

experimenting with it to find the optimal representation. color specifies 

the color of the lines around the columns, and fill specifies the color of 

their fill.  that these arguments are specified outside of aes(), since we 

are specifying a fixed color rather than mapping some variable from the 

data to it. 

Compare this to the base R:hist(soil_data$ph_h2o). Although the 

result is easy to obtain, further customization of the appearance (colors, 

captions) requires much more additional arguments. 
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Fig. 1.10. Histogram of the distribution of pH_h2o values. Along the X axis, the 

pH value is deferred, along the Y axis - the number of samples that fell into the 

corresponding interval 

 

Scatterplots: A Study of Relationships 

Question: Is there a relationship between the two quantitative 

properties of soil? For example, is the organic carbon content related to 

the clay content? 

A scatter plot is a standard for visualizing  the relationship between 

two continuous variables. Each observation is represented by a point 

on a two-dimensional plane. geom_point() is used to create it, and in 

aes() it is necessary to specify variables for the x and y axes. 

 
# Creating a scatter plot to investigate the relationship 

between SOC and clay 

ggplot(data = soil_data, mapping = aes(x = soc_percent, y 

= clay_percent)) + 

  geom_point(size = 3, alpha = 0.8) 
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Fig. 1.11. Scatter plot showing the relationship between organic carbon content 

(soc_percent) and clay content (clay_percent) 

 

Graph analysis: It is difficult to draw a definitive conclusion based 

on these few points, but there does not seem to be a clear linear 

relationship. However, we can see that the sample with the highest SOC 

content has a relatively low clay content. Scatterplots are indispensable 

for detecting linear and nonlinear trends, clusters, and outliers. 

 

Box Charts: Distribution Comparison 

Question: How does the distribution of the quantitative variable 

differ for different groups (categories)? For example, does the organic 

carbon content of different genetic horizons differ? 

A box plot, or "box plot", is an ideal tool for comparing the 

distribution of a continuous variable between several groups defined 

by a categorical variable. It compactly displays key statistical indicators: 

median (center line), interquartile span (box height, IQR), as well as 

"whiskers" showing the range of typical values, and individual points 

for potential outliers. 

To create it, geom_boxplot() is used. In aes(), we map a categorical 

variable to the x-axis, and a continuous variable to the y-axis. 

 
# Comparing the distribution of SOC across different soil 

horizons 

ggplot(data = soil_data, mapping = aes(x = horizon, y = 

soc_percent)) + 

  geom_boxplot() 
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Fig. 1.12. Box diagrams comparing the distribution of organic carbon content 

(soc_percent) for different genetic horizons (horizon) 

 

Graph analysis: This graph shows us a lot of information at once. 

For example, the horizons 'Ap' and 'A' have a significantly higher and 

more variable SOC content compared to the lower horizons 'Bt', 'BC' 

and 'Bw'. The median value for the horizon 'A' is the highest. This type 

of visualization is extremely effective for comparing groups, which is a 

constant task in soil science. 

These three types of graphs – histogram, scatter plot, and box plot – 

form the basis of exploratory analysis. ggplot2 allows you to create them 

using a simple and logical syntax, allowing you to quickly test 

hypotheses and gain a deep understanding of the structure of your data. 

 

4.3. Refining plots and figure design 

 

The graphs we created in the previous unit are great for quick 

exploratory analysis. They allow us to see the structure of the data, but 

they lack context and a professional appearance to be included in a 

report, presentation or scientific article. Axis names generated 

automatically from column names may be unclear (e.g. soc_percent), 

graphics may lack a title, and the standard gray theme ggplot2 is not 

always the best choice. 

The strength of "Graph Grammar" is that we can consistently add 

new layers to improve and customize almost every element of our graph. 
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These layers do not change the main view of the data (geom), but only 

modify its appearance and add annotations. We consider the most 

important tools for "polishing" our visualizations. 

 

Adding axis headers and captions (labs()) 

The very first step to improving your schedule is to give it clear 

captions. The labs() function allows you to manage all text labels on a 

graph: 

 title: Main title. 

 subtitle: subtitle for more details. 

 x, y: Captions for the X and Y axes. 

 color, fill, shape, etc.: name for the corresponding legend. 

 caption: the data source or notes at the bottom of the graph. 

Now we take our scatter plot and make it more informative. 

 
# Start with the basic scatter plot 

p1 <- ggplot(data = soil_data, mapping = aes(x = 

soc_percent, y = clay_percent, color = horizon)) + 

geom_point(size = 3) 

 

# Now, add informative labels 

p1 + labs( 

title = "Relationship between organic carbon and clay 

content", 

subtitle = "Data on soil profiles in Slovakia", 

x = "Organic carbon content, %", 

y = "Clay content, %", 

color = "Genetic\nhorizon", 

caption = "Source: fictitious data for example" 

) 
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Fig. 1.13. Improved scatter plot with informative titles, axis labels, and a 

redesigned legend name 

 

Changing the theme of the graph (theme()) 

The graphic theme controls all non-data elements: background color, 

gridlines, font and text size, legend position, etc. ggplot2 has several 

built-in "complete" themes that allow you to radically change the 

appearance of the graph with one command. The most popular of them 

are: 

 theme_bw(): A theme with a white background and gray grid lines 

(black and white). 

 theme_classic(): a minimalist theme reminiscent of graphs from 

scientific publications, only with X and Y axes, without background 

and grid. 

 theme_minimal(): A theme without background colors. 

 theme_void(): removes absolutely everything, leaving only the 

geomes themselves (useful for maps). 

 
# Apply the classic theme to our plot 

p1 + labs( 

title = "Relationship between organic carbon and clay 

content", 

x = "Organic carbon content, %", 

y = "Clay content, %", 

color = "Horizon" 

) + 
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theme_classic() 

 

 
Fig. 1.14. Scatter plot with applied theme_classic() 

 

In addition to pre-made themes, you can fine-tune individual 

elements using the theme() function. For example, move the legend 

down. 

 

Manage scales (scale_*()) 

The scale_*() functions control exactly how data is displayed in 

aesthetics. They allow you to customize colors, shapes, sizes, as well as 

graph axes. The name of the function consists of three parts: scale_, the 

name of the aesthetic (color, fill, x) and the name of the scale type 

(manual, gradient, continuous). 

For example, ggplot2's standard color palette is well-matched, but 

sometimes we want to set custom colors that have a certain semantic 

load (e.g. darker colors for deeper horizons). For this, 

scale_color_manual() is used. 

 
# Manually setting colors for each horizon 

p1 + labs( 

title = "Relationship between organic carbon and clay 

content", 

x = "Organic carbon content, %", 

y = "Clay content, %", 
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color = "Horizon" 

) + 

theme_bw() + 

scale_color_manual(values = c("Ap" = "#5D4037", "Bt" = 

"#A1887F", "BC" = "#D7CCC8", "A" = "#3E2723", "Bw" = 

"#795548")) 

 

 
 

Faceting: Creating subgraphs (facet_wrap()) 

What if we want to compare patterns for different subsets of data, but 

plotting them on a single graph using a color or shape makes it 

overloaded? ggplot2 offers an extremely powerful tool – faceting. It 

allows you to split a single graph into a grid of several smaller subgraphs 

(facets), where each subgraph shows data for a specific subgroup. 

To do this, the function facet_wrap() is used. Its main argument is a 

formula starting with ~, followed by the name of the categorical variable 

by which the data is to be split. 

Now we need to create a separate box diagram of the pH distribution 

for each soil profile. 

 
# Create faceted boxplots 

ggplot(data = soil_data, mapping = aes(x = horizon, y = 

ph_h2o)) + 

geom_boxplot() + 

facet_wrap(~ profile_id) + 

labs( 

title = "Distribution of pH by horizons within each 

profile", 

x = "Genetic horizon", 
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y = "pH (H2O)" 

) + 

theme_bw() 

 

 
Fig. 1.15. Faceted graph showing box diagrams of the pH distribution for each 

profile_id separately 

 

Faceting is one of the most effective ways to visualize complex, 

multidimensional data, allowing you to easily compare patterns between 

groups. By combining geomes, aesthetics, labels, themes, and facets, 

you can transform a simple exploration graph into a rich, publication-

ready visualization with complete control over every aspect of its 

appearance. And most importantly, this whole process is fully 

reproducible and recorded in your R script. 
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Chapter 5. Working with spatial data in R 

 

5.1. Modern spatial packages: sf and terra 

 
So far, we have worked mainly with tabular, or "aspatial", data. 

However, digital soil science is inherently a geospatial discipline. Our 

data – whether sampling points, soil contour polygons, or raster surfaces 

of environmental factors – is always geographically referenced. 

Therefore, being able to process, analyze, and visualize spatial data 

efficiently is absolutely essential (Lovelace et al., 2019). 

For a long time, the R ecosystem for working with spatial data has 

been somewhat fragmented. For vector data, the sp package was used, 

and for interaction with the GDAL, GEOS, and PROJ geospatial 

libraries, the rgdal and rgeos packages were used. For raster data, the 

standard was the raster package. While these tools have been and 

continue to be powerful, their syntax and data structures have not always 

been intuitive and have not integrated well with the modern tidyverse 

ecosystem. 

Fortunately, there have been significant advances in recent years, and 

today we have two modern, fast and coordinated packages that have 

become the new standard for geospatial analysis in R: 

sf (Simple Features) – for working with vector data (points, lines, 

polygons). 

terra – for working with raster data (grids, images). 

These two packages are designed to seamlessly integrate with each 

other and with tidyverse, creating an extremely powerful and logical 

environment for solving the challenges of digital soil science. 

 

Vector data from sf 

The sf package (Pebesma, 2018) implements the "Simple Features" 

standard from the Open Geospatial Consortium (OGC), a generally 

accepted way of representing vector geodata. The main innovation of sf 

is how it stores data. An sf object is essentially a regular data.frame (or 

tibble) that has one special column, usually named geometry. This 

column is a "list-column", where each element is the geometry of the 

corresponding row (for example, a point, line, or polygon object). 
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Fig. 1.16. Conceptual representation of the object sf . (c) 2018 by Allison 

Horst) 

 
This approach is revolutionary because it means that all the dplyr verbs 

we have  learned work "out of the box" with sf objects! You can filter, 

select, mutate, and group spatial data as easily as you would with regular 

tables. 

We read a vector file with soil profile points using the basic function of 

the package – st_read(). Most functions in sf start with the prefix st_ (from 

spatial type). 

 
# Load the sf package 

library(sf) 

 

# Read a GeoPackage file containing soil sample locations 

# This file should be in a 'gis_data' subfolder of your 

project 

soil_points <-

st_read("gis_data/slovakia_soil_points.gpkg") 

 

# Look at the structure of the sf object 

print(soil_points)Simple feature collection with 26 

features and 7 fields 

https://twitter.com/allison_horst/status/1071456081308614656
https://twitter.com/allison_horst/status/1071456081308614656
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Geometry type: POINT 

Dimension:     XY 

Bounding box: 17.11 Edge: 47.88 xmax: 20.25 ymax: 49.22 

Geodetic CRS:  WGS 84 

First 10 features: 

   profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o   WRB                geom 

1      SVK-01      Ap        0         4.2           28    

6.8 Chernozem POINT (17.11 48.15) 

2      SVK-01       A       25         2.1           29    

7.1 Chernozem POINT (17.11 48.15) 

3      SVK-01       C       60         0.5           25    

8.2 Chernozem POINT (17.11 48.15) 

4      SVK-02      Ap        0         3.8           32    

6.5  Phaeozem POINT (17.55 48.05) 

5      SVK-02       A       22         1.9           33    

6.8  Phaeozem POINT (17.55 48.05) 

6      SVK-02       C       70         0.4           30    

7.9  Phaeozem POINT (17.55 48.05) 

7      SVK-03      Ap        0         2.5           22    

6.2   Luvisol POINT (18.23 48.34) 

8 SVK-03 and 20 0.8 15 5.8 Luvisol POINT (18.23 48.34) 

9 SVK-03 Bt 50 0.6 35 6.1 Luvisol POINT (18.23 48.34) 

10 SVK-04 A 0 3.1 18 5.9 Cambisol POINT (19.04 48.73) 

 
The output shows us that soil_points is a Simple feature collection with 

26 features and 7 fields. We see information about the coordinate system 

(CRS) and a regular table, but with an additional geometry column of type 

POINT. 

 

Raster data from terra 

The terra package is the modern successor to the raster package. Written 

from scratch in C++ by the raster author himself, it offers significantly higher 

performance, especially when working with large files, and a simpler and 

more consistent syntax. 

Raster data in soil science are, as a rule, our covariates for modeling: 

digital elevation model (DEM), derivatives from it (slope, exposure), satellite 

indices (NDVI), etc. 

The main function for reading raster data in terra is rast(). We need to 

download DMR3.5 (we will use DMR3.5 for the entire territory of Slovakia 

with a resolution of 100 m). 
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# Load the terra package 

library(terra) 

 

# Read a GeoTIFF file representing a Digital Elevation 

Model (DEM) 

# This file should be in a 'data' subfolder 

dem <- rast("gis_data/dmr3_5_100.tif") 

 

# Look at the structure of the SpatRaster object 

print(dem) 

class       : SpatRaster  

dimensions  : 3523, 6649, 1  (nrow, ncol, nlyr) 

resolution  : 100, 100  (x, y) 

extent      : 1853712, 2518612, 6045427, 6397727  (xmin, 

xmax, ymin, ymax) 

coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857)  

source      : dmr3_5_100.tif  

name        : dmr3_5_100 

 
The output shows the key metadata of the raster: the number of layers, 

dimensions (rows, columns, cells), resolution, extent, and coordinate system. 

 

Synergy of sf and terra 

The true power of these packages is revealed when they are used together. 

A classic task in the DSM is to extract (extract) the values of raster covariates 

at the locations of point samples. Terra makes this extremely simple with the 

extract() function. 

 
# Extract DEM values for each soil point location 

# The function takes the raster and the sf object as 

input 

point_elevations <- extract(dem, soil_points) 

 

# The result is a data frame, let's bind it to our 

original sf object 

soil_points_with_dem <- cbind(soil_points, 

point_elevations) 

 

print(soil_points_with_dem) 

Simple feature collection with 26 features and 9 fields 

Geometry type: POINT 

Dimension:     XY 
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Bounding box: 17.11 Edge: 47.88 xmax: 20.25 ymax: 49.22 

Geodetic CRS:  WGS 84 

First 10 features: 

   profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o   WRB ID dmr3_5_100 

1      SVK-01      Ap        0         4.2           28    

6.8 Chernozem  1   153.2029 

2 SVK-01 A 25 2.1 29 7.1 Chernozem 2 153.2029 

3      SVK-01       C       60         0.5           25    

8.2 Chernozem  3   153.2029 

4      SVK-02      Ap        0         3.8           32    

6.5  Phaeozem  4   115.9645 

5 SVK-02 A 22 1.9 33 6.8 Phaeozem 5 115.9645 

6      SVK-02       C       70         0.4           30    

7.9  Phaeozem  6   115.9645 

7 SVK-03 AP 0 2.5 22 6.2 Luvisol 7 210.0391 

8 SVK-03 and 20 0.8 15 5.8 Luvisol 8 210.0391 

9 SVK-03 Bt 50 0.6 35 6.1 Luvisol 9 210.0391 

10 SVK-04 A 0 3.1 18 5.9 Cambisol 10 723.4901 

                  Geom 

1  POINT (17.11 48.15) 

2  POINT (17.11 48.15) 

3  POINT (17.11 48.15) 

4  POINT (17.55 48.05) 

5  POINT (17.55 48.05) 

6  POINT (17.55 48.05) 

7  POINT (18.23 48.34) 

8  POINT (18.23 48.34) 

9  POINT (18.23 48.34) 

10 POINT (19.04 48.73) 

 

 
Fig. 1.17. Visualization of the extraction process. Points (sf object) 
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superimposed on the DEM raster surface (terra object) are shown 

 
With one team, we solved the key task of data preparation. The 

combination of sf for vector operations, terra for raster operations, and 

dplyr for general manipulations creates a modern, fast, and logically 

consistent workflow that is ideal for all stages of predictive soil 

modeling. 

 

5.2. Processing vector data from sf 

 

As we have already found out, the sf package represents vector data 

in the form of regular tables with an additional geometry column. This 

elegant structure allows us to apply not only the standard verbs dplyr to 

manipulate attributes, but also to use a rich set of specialized functions 

to perform geospatial operations. These operations are the basis for data 

preparation in digital soil science, allowing us to solve tasks such as 

selecting samples within the study area, creating buffer zones or 

redesigning data. 

Most spatial functions in sf are prefixed st_ (from spatial type). We 

consider the most important of them. 

 

Coordinate System Management (CRS) 

Each geospatial dataset has  a Coordinate Reference System (CRS) 

that determines how coordinates from the two-dimensional file space 

relate to real places on the Earth's surface. Working with data that has 

different or undefined CRS is a common source of errors. sf provides 

simple tools for working with CRS. 

 
st_crs(): Allows you to check the CRS of an existing 

object. 

 

# Load sf and dplyr 

library(sf) 

library(dplyr) 

 

# Let's assume we have our soil_points object from the 

previous section 

# First, check the current CRS 

st_crs(soil_points) 
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Coordinate Reference System: 

  User input: WGS 84  

  wkt: 

GEOGCRS["WGS 84", 

    ENSEMBLE["World Geodetic System 1984 ensemble", 

        MEMBER["World Geodetic System 1984 (Transit)"], 

        MEMBER["World Geodetic System 1984 (G730)"], 

        MEMBER["World Geodetic System 1984 (G873)"], 

        MEMBER["World Geodetic System 1984 (G1150)"], 

        MEMBER["World Geodetic System 1984 (G1674)"], 

        MEMBER["World Geodetic System 1984 (G1762)"], 

        MEMBER["World Geodetic System 1984 (G2139)"], 

        MEMBER["World Geodetic System 1984 (G2296)"], 

        ELLIPSOID["WGS 84",6378137,298.257223563, 

            LENGTHUNIT["metre",1]], 

        ENSEMBLEACCURACY[2.0]], 

    PRIMEM["Greenwich",0, 

        ANGLEUNIT["degree",0.0174532925199433]], 

    CS[ellipsoidal,2], 

        AXIS["geodetic latitude (Lat)",north, 

            ORDER[1], 

            ANGLEUNIT["degree",0.0174532925199433]], 

        AXIS["geodetic longitude (Lon)",east, 

            ORDER[2], 

            ANGLEUNIT["degree",0.0174532925199433]], 

    USAGE[ 

        SCOPE["Horizontal component of 3D system."], 

        AREA["World."], 

        BBOX[-90,-180,90,180]], 

    ID["EPSG",4326]] 

 

 st_transform(): Reprojects data from one CRS to another. 

This is critically important, since operations such as calculating 

distances or areas give correct results only in projected (flat) coordinate 

systems (e.g. UTM/Mercator etc) and not in geographic ones 

(latitude/longitude). 

 
# Let's say we need to transform it to a projected CRS, 

e.g., WGS 84 / Pseudo-Mercator (EPSG:3857) 

soil_points_mercator <- st_transform(soil_points, crs = 

3857) 

 

# Check the new CRS 

st_crs(soil_points_mercator) 
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Coordinate Reference System: 

  User input: EPSG:3857  

  wkt: 

PROJCRS["WGS 84 / Pseudo-Mercator", 

    BASEGEOGCRS["WGS 84", 

        ENSEMBLE["World Geodetic System 1984 ensemble", 

            MEMBER["World Geodetic System 1984 

(Transit)"], 

            MEMBER["World Geodetic System 1984 (G730)"], 

            MEMBER["World Geodetic System 1984 (G873)"], 

            MEMBER["World Geodetic System 1984 (G1150)"], 

            MEMBER["World Geodetic System 1984 (G1674)"], 

            MEMBER["World Geodetic System 1984 (G1762)"], 

            MEMBER["World Geodetic System 1984 (G2139)"], 

            MEMBER["World Geodetic System 1984 (G2296)"], 

            ELLIPSOID["WGS 84",6378137,298.257223563, 

                LENGTHUNIT["metre",1]], 

            ENSEMBLEACCURACY[2.0]], 

        PRIMEM["Greenwich",0, 

            ANGLEUNIT["degree",0.0174532925199433]], 

        ID["EPSG",4326]], 

    CONVERSION["Popular Visualisation Pseudo-Mercator", 

        METHOD["Popular Visualisation Pseudo Mercator", 

            ID["EPSG",1024]], 

        PARAMETER["Latitude of natural origin",0, 

            ANGLEUNIT["degree",0.0174532925199433], 

            ID["EPSG",8801]], 

        PARAMETER["Longitude of natural origin",0, 

            ANGLEUNIT["degree",0.0174532925199433], 

            ID["EPSG",8802]], 

        PARAMETER["False easting",0, 

            LENGTHUNIT["metre",1], 

            ID["EPSG",8806]], 

        PARAMETER["False northing",0, 

            LENGTHUNIT["metre",1], 

            ID["EPSG",8807]]], 

    CS[Cartesian,2], 

        AXIS["easting (X)",east, 

            ORDER[1], 

            LENGTHUNIT["metre",1]], 

        AXIS["northing (Y)",north, 

            ORDER[2], 

            LENGTHUNIT["metre",1]], 

    USAGE[ 

        SCOPE["Web mapping and visualisation."], 

        AREA["World between 85.06°S and 85.06°N."], 
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        BBOX[-85.06,-180,85.06,180]], 

    ID["EPSG",3857]] 

Spatial queries and subsets 

For example, to select only those sample points that fall within the 

boundaries of a certain administrative unit or experimental area. For this, 

spatial predicate functions (for example, st_intersects, st_within) or, 

which is easier for beginners,  the function st_intersection() are used. 

 
#st_intersection() "crops" the first object according to 

the geometry of the second, leaving only the part that 

falls inside. 

# Let's load a polygon of our study area 

study_area <- st_read("gis_data/study_area_polygon.gpkg") 

Reading layer `study_area_polygon' from data source  

  

`D:\TextbookPredSoilMapping\gis_data\study_area_polygon.g

pkg' using driver `GPKG' 

Simple feature collection with 1 feature and 0 fields 

Geometry type: POLYGON 

Dimension:     XY 

Bounding box:  xmin: 1980952 ymin: 6128390 xmax: 2304214 

ymax: 6305790 

Projected CRS: WGS 84 / Pseudo-Mercator 

 

# Ensure both layers have the same CRS before 

intersection 

study_area <- st_transform(study_area, crs = 

st_crs(soil_points)) 

 

# Select only the points that fall within the study area 

points_in_area <- st_intersection(soil_points, 

study_area) 

 

# Print selectedd points in the study area 

points_in_area 

Simple feature collection with 12 features and 7 fields 

Geometry type: POINT 

Dimension:     XY 

Bounding box:  xmin: 18.23 ymin: 48.34 xmax: 20.25 ymax: 

49.01 

Geodetic CRS:  WGS 84 

First 10 features: 

   profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o  WRB                geom 
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7      SVK-03      Ap        0         2.5           22    

6.2  Luvisol POINT (18.23 48.34) 

8      SVK-03      Et       20         0.8           15    

5.8  Luvisol POINT (18.23 48.34) 

9      SVK-03      Bt       50         0.6           35    

6.1  Luvisol POINT (18.23 48.34) 

10     SVK-04       A        0         3.1           18    

5.9 Cambisol POINT (19.04 48.73) 

11     SVK-04      Bw       25         1.2           24    

6.2 Cambisol POINT (19.04 48.73) 

12     SVK-04       C       80         0.3           22    

6.5 Cambisol POINT (19.04 48.73) 

19     SVK-07       A        0         6.5           25    

5.5 Cambisol POINT (19.45 49.01) 

20     SVK-07      Bw       30         2.8           28    

5.9 Cambisol POINT (19.45 49.01) 

21     SVK-08       A        0         0.8            5    

4.8 Leptosol POINT (20.25 48.91) 

22     SVK-08       C       15         0.2            8    

5.2 Leptosol POINT (20.25 48.91) 

 

 

 
Fig. 1.18. Visualization of spatial filtering. A set of points and a test site of the 

experimental site are shown. As a result of the operation, only those points that 

are inside the landfill remain st_intersection 

 

Creating buffer zones (st_buffer()) 

Buffering is the process of creating a zone of a certain distance 

around a geospatial feature. This is an extremely useful operation in soil 
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science. For example, we can create a buffer with a radius of 500 meters 

around each sampling point, and then calculate the average of the slope 

or other terrain indicator within that zone. 

Important: for the correct calculation of the buffer, the data must be 

in the designed coordinate system, where the units of measurement are 

meters, not degrees.  

 
# Use our Mercator-projected points 

# Create a 50-meter buffer around each point 

point_buffers < st_buffer(soil_points_mercator, dist = 

500) 

 

 
Fig. 1.19. The result of the buffering operation. A circular polygon with a radius 

of 500 meters has been created around each point 

 

Combination of sf and dplyr 

The true beauty of sf is revealed when we combine spatial functions 

with dplyr verbs in a single %>% chain. Since the sf object is a table, 

we can integrate operations seamlessly. 

Suppose we need to: 1) select only points with a horizon of "Ap", 2) 

create a buffer zone of 500 meters for them, 3) calculate the area of each 

buffer zone. 

 
# A powerful workflow combining dplyr verbs and sf 

functions 
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ap_horizon_buffers <- soil_points_mercator %>% 

  filter(horizon == "Ap") %>% 

  st_buffer(dist = 500) %>% 

  mutate(buffer_area_sqm = st_area(.)) 

 

print(ap_horizon_buffers) 

Simple feature collection with 5 features and 8 fields 

Geometry type: POLYGON 

Dimension:     XY 

Bounding box:  xmin: 1904176 ymin: 6114677 xmax: 2037647 

ymax: 6174160 

Projected CRS: WGS 84 / Pseudo-Mercator 

  profile_id horizon depth_cm soc_percent clay_percent 

ph_h2o   WRB                           geom 

1     SVK-01      Ap        0         4.2           28    

6.8 Chernozem POLYGON ((1905176 6131846, ... 

2     SVK-02      Ap        0         3.8           32    

6.5  Phaeozem POLYGON ((1954157 6115177, ... 

3     SVK-03      Ap        0         2.5           22    

6.2   Luvisol POLYGON ((2029854 6163606, ... 

4     SVK-09      Ap        0         4.5           30    

7.2 Chernozem POLYGON ((1909629 6136853, ... 

5     SVK-10      Ap        0         2.8           25    

6.0   Luvisol POLYGON ((2037647 6173660, ... 

  buffer_area_sqm 

1  785039.3 [m^2] 

2  785039.3 [m^2] 

3  785039.3 [m^2] 

4  785039.3 [m^2] 

5  785039.3 [m^2] 

 

This code is concise, readable, and fully reproducible. It 

demonstrates how sf transforms R into a full-fledged, code-driven 

geographic information system that perfectly meets the needs of today's 

digital soil science. Compared to the old sp package approach, where 

different syntaxes and access methods had to be used for each operation 

with attributes (data.frame) and geometry (Spatial*), the workflow with 

sf is much more intuitive and consistent. 

 

5.3. Processing raster data from terra 

 

If vector data represent discrete objects on the earth's surface, then 

raster data represent continuous phenomena. A raster is essentially a 
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grid of cells (pixels), where each cell has a specific value that 

characterizes the phenomenon at a given point (e.g. altitude, 

temperature, concentration of a chemical element). In digital soil 

science, rasters are our main source of predictive variables (covariate) 

for modeling:  digital elevation model (DEM), indicators derived from 

it, such as slope and exposure, remote sensing data, climatic surfaces, 

etc. 

The terra package is a modern, fast and efficient tool for working 

with raster data in R. It replaced its predecessor, the raster package, 

offering significantly higher performance and more intuitive syntax. We 

consider the key raster operations that are necessary to prepare data for 

modeling. 

 

Basic Operations and Raster Mathematics (Map Algebra) 

The basis for many operations is the concept of "Map Algebra". It 

allows mathematical functions and operators to be applied to raster 

layers as if they were ordinary variables. Terra performs these 

operations pixel-by-pixel. 

We download our Digital Elevation Model (DEM) and perform a few 

basic operations. 

 
# Load the terra package 

library(terra) 

 

# Load the DEM raster 

time <- true ("gis_data/dem_slovakia_subset.tif") 

 

# Basic arithmetic: convert elevation from meters to feet 

dem_feet <- dem * 3.28084 

 

# We can also apply functions, e.g., calculate the 

natural logarithm of elevation 

# Adding 1 to avoid log(0) if there are sea-level pixels 

log_dem <- log(dem + 1) 

 

'terra' automatically creates new raster objects in memory. To 

visualize the results, you can use the built-in 'plot()' function. 

 
# Plot the results 

plot(log_dem, main = "Log-transformed Elevation") 
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Fig. 1.20. Visualization of a raster of logarithmic height. The color scale shows 

the changed values, but the spatial structure of the data remains the same 

 

Calculation of relief derivatives 

One of the most important steps in the preparation of covariate is the 

calculation of morphometric indicators based on DEM. The terra 

package has a built-in terrain() function that makes it easy to calculate 

the most common ones. 
# Calculate slope (ухил) and aspect (експозиція) from the 

DEM 

# The 'unit' argument specifies whether the result should 

be in degrees or radians 

slope <- terrain(dem, v = "slope", unit = "degrees") 

aspect <- terrain(dem, v = "aspect", unit = "degrees") 

 

# We can create a multi-layer SpatRaster object to hold 

all terrain variables 

terrain_derivatives <- c(dem, slope, aspect) 

names(terrain_derivatives) <- c("elevation", "slope", 

"aspect") 

 

# Save the multi-layer raster to a GeoTIFF file 

writeRaster(terrain_derivatives, 

"gis_data/terrain_derivatives.tif", overwrite = TRUE) 

 

# Plot all layers at once 
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plot(terrain_derivatives) 

 

 
Fig. 1.21. Maps of relief derivatives. Three rasters are shown: the original DEM, 

the calculated slope map, and the exposure map 

 

Area statistics 

It is often necessary to generalize the raster values within certain 

zones defined by the vector polygonal layer. For example, calculate the 

average height or average slope for each administrative unit. This 

operation is called zonal statistics. In terra, the zonal() function is 

designed for this. 

 
# Assume we have a vector layer of study regions 

('study_area' from previous section) 

# Calculate the mean and standard deviation of elevation 

for each region 

zonal_stats <- extract(dem, study_area, fun = "mean", 

na.rm = TRUE) 

 

print(zonal_stats) 

  ID dem_slovakia_subset 

1  1            593.9552 

 

The result will be a table where the corresponding statistical indicator 

will be calculated for each polygon from study_area (in the tutorial 

example, there is only one polygon, so only one value is displayed). It 
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is an extremely powerful tool for data aggregation. 

 

Changing the resolution and trimming the raster 

For predictive modeling, all raster covariates must have the same 

extent (spatial coverage) and the same resolution (pixel size). Terra 

provides simple tools for this. 

 crop(): trims the raster to the extent of another spatial object (raster 

or vector). 

 
# Assume we have another raster 'land_cover' with a 

different extent and resolution 

land_cover <- 

rast("gis_data/SVK_ESA_WorldCover_2020_25m_study_area.tif

") 

 

# Crop the DEM to match the extent of the land cover 

raster 

dem_cropped <- crop(dem, land_cover) 

dem_cropped 

class       : SpatRaster  

dimensions  : 1773, 3232, 1  (nrow, ncol, nlyr) 

resolution  : 100, 100  (x, y) 

extent      : 1981012, 2304212, 6128427, 6305727  (xmin, 

xmax, ymin, ymax) 

coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857)  

source      : dem_slovakia_subset.tif  

name        : dem_slovakia_subset  

 

 resample(): resamples the raster to the resolution and mesh of 

another raster template. 

 
# Resample the land cover raster to match the grid of our 

cropped DEM 

land_cover_resampled <- resample(land_cover, dem_cropped, 

method = "near") # 'near' for categorical data 

 

land_cover 

class       : SpatRaster  

dimensions  : 7095, 12929, 1  (nrow, ncol, nlyr) 

resolution  : 25, 25  (x, y) 

Magnitude : 1980975, 2304200, 6128400, 6305775 (xmin, 

xmax, ymin, ymax) 

coord. ref.: WGS 84 / Pseudo-Mercator (EPSG:3857)  
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Source: SVK_ESA_WorldCover_2020_25m_study_area.tif  

name        : SVK_ESA_WorldCover_2020_25m_study_area  

min value   :                                      0  

max value   :                                     90 

 

land_cover_resampled  

class       : SpatRaster  

dimensions  : 1773, 3232, 1  (nrow, ncol, nlyr) 

resolution  : 100, 100  (x, y) 

Magnitude : 1981012, 2304212, 6128427, 6305727 (xmin, 

xmax, ymin, ymax) 

coord. ref.: WGS 84 / Pseudo-Mercator (EPSG:3857)  

source(s)   : memory 

varname : dem_slovakia_subset  

name        : SVK_ESA_WorldCover_2020_25m_study_area  

min value   :                                      0  

max value   :                                     90  

 

These operations are critical to creating a consistent stack of raster 

predictors, which are inputs to machine learning algorithms. 

The terra package provides a complete set of tools for efficient and 

fast processing of raster data. Its close integration with sf and dplyr 

creates a single, logical and high-performance environment for the 

implementation of the entire cycle of geospatial data preparation for 

digital soil science. 

 

5.4. Integration of spatial data 

 

In the previous sections, we learned how to work with vector (sf) and 

raster (terra) data separately. We transformed coordinate systems, 

created buffers, calculated relief derivatives, and prepared rasters for 

joint analysis. Now it's time to merge these two worlds. Spatial data 

integration is the process of combining information from different data 

sources and types (vector and raster) into a single, coherent structure. 

For digital soil science, this is perhaps the most important step in data 

preparation, as this is where we link our field observations (points) to 

the continuous surfaces of environmental factors (raster covariates). 

The main task at this stage is to create a final table for modeling, 

where each row corresponds to an observation point (soil profile) and 

the columns contain both the soil properties measured at that point (our 
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target variable, such as soil type or SOC content) and the values of all 

our raster predictors at that same point. 

 

Extraction of raster stack values by points 

The key operation for integration is extraction (extraction). This 

process consists, as described above, of "piercing" one or more raster 

layers at the locations defined by vector points and writing the values of 

the corresponding pixels to the attribute table of these points. The terra 

package makes this operation extremely simple and fast with the 

extract() function. 

In the previous steps, we prepared a stack of raster covariates (height, 

slope, and exposure) and now want to get the values of these predictors 

for each sampling point. 

 
# Load necessary libraries 

library(terra) 

library(sf) 

library(dplyr) 

 

# Load the multi-layer raster of terrain derivatives we 

created earlier 

# It contains 'elevation', 'slope', and 'aspect' 

terrain_derivatives <- True 

("gis_data/terrain_derivatives.tif")  

 

# Load the vector points of soil samples 

soil_points <-

st_read("gis_data/slovakia_soil_points_3857.gpkg") 

 

# Ensure the CRS of both datasets match 

# Let's assume they are already aligned from previous 

steps 

soil_points <-st_transform (soil_points, crs = crs 

(terrain_derivatives)) 

 

# Perform the extraction 

# The function returns a data frame with an ID and values 

for each raster layer 

extracted_values <- extract(terrain_derivatives, 

soil_points) 

 

# View the rows of the result 

extracted_values 
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   ID elevation      slope     aspect 

1 1 NA NA 

2 2 THAT IS ALREADY 

3 3 THAT IS ALREADY 

4 4 NA NA 

5 5 THAT IS ALREADY 

6 6 THAT IS ALREADY 

7   7  210.0391  0.9473696 198.664124 

8   8  210.0391  0.9473696 198.664124 

9   9  210.0391  0.9473696 198.664124 

10 10  723.4901  8.9733219   2.968902 

11 11  723.4901  8.9733219   2.968902 

12 12  723.4901  8.9733219   2.968902 

13 13 NA NA 

14 14 NA 

15 15 NA 

16 16 

17 17 NA NA 

18 18 IS ALREADY THERE 

19 19  970.3638 22.3610878 129.136536 

20 20  970.3638 22.3610878 129.136536 

21 21  914.6369 14.0763817 116.459236 

22 22  914.6369 14.0763817 116.459236 

23 23 NA NA 

24 24  226.6492  1.0106043  68.995308 

25 25 NA NA 

26 26 1064.1965 11.9279490 273.044006 

 

The result is a regular data table. The first column (ID) corresponds 

to the point number, and the next columns are the values from each layer 

of our raster stack at that point. Note that points that lie outside the raster 

layer when extracting raster stack values received a value of NA – Not 

Avaible. 

 

Creating the final dataset for modeling 

Now we only need to attach these extracted values to our original 

table with points. This can be done with cbind() or, more reliably and 

tidyverse-style, with dplyr::bind_cols(). 

 
library(dplyr) 

# Combine the original sf object with the extracted 

covariate values 

final_modeling_data <-bind_cols(soil_points, 
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extracted_values) %>% 

  select(-ID) # We can remove the redundant ID column 

 

# View the resulting integrated dataset 

print(final_modeling_data) 

 

 
Fig. 1.22. Structure of the final dataset for modeling. A table is shown, where 

the first columns contain the initial attributes of the points (ID, soil type), 

followed by values extracted from the raster covariates (elevation, slope, aspect), 

and the last columns contain the geometry of the points 

 

Now our final_modeling_data object is a complete dataset ready for 

modeling. It contains all the necessary information in a "neat" format: 

Observation IDs . 

 The target variable (for example, soil_type). 

Predictor variables (covariates) extracted from raster layers. 

The spatial geometry of each point. 

This integrated approach, combining the power of sf, the speed of 

terra and the readability of dplyr, is the foundation of the modern 

workflow in digital soil science. It allows you to automate and reproduce 

one of the most time-consuming stages of research – the preparation and 

harmonization of data from various sources. 

Having completed this part, we have prepared a solid foundation. We 

have gone from installing R to creating a full-fledged, integrated 

geospatial dataset. Now we are ready to move on to the second part of 

this manual and use the knowledge of obtaining this kind of data to build 

predictive models of soil types and properties. 
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PART II. PREDICTIVE MODELING OF SOIL TYPES 

 

Chapter 6. Theoretical foundations of digital soil mapping 

 

6.1. DSM Concept 

 

By completing the first part of this tutorial, we have mastered a 

powerful set of tools for working with data in R. We have learned how 

to import, manipulate, visualize, and integrate a variety of spatial and 

aspatial data. Now we are ready to apply these skills to solve the central 

task of our book – predictive soil modeling, also known as Digital Soil 

Mapping (DSM). 
What is DSM? At its core, DSM is the creation and dissemination of 

soil information using numerical methods based on soil observations 

and associated data on environmental factors (McBratney et al., 2003). 

This is a radical departure from traditional soil mapping, which relied 

heavily on manual interpolation, expert knowledge, and qualitative 

delineation of soil contours in the field. The DSM, on the other hand, is 

a quantitative, objective and reproducible approach. 

The fundamental theoretical premise on which all digital soil 

mapping is based is the famous concept of soil formation factors, first 

formulated by V.V. Dokuchaev, and later formalized by Hans Jenny in 

the form of an equation: 

S=f(cl,o,r,p,t,...) 

where: 

 S is the soil or a specific property of the soil (e.g. soil type, clay 

content, pH). 

 f – denotes "function of" or "dependence on". 

 Cl – climate. 

 o – organisms or biota, including vegetation and human activities 

(organisms). 

 r – relief or topography. 

 p – parent material. 

 t – час (time). 

 ... – three dots indicate that there may be other, locally significant 

factors (for example, spatial position). 

Traditional soil science used this model conceptually: a soil scientist 
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in the field, observing changes in relief or vegetation, inferated a change 

in soil type. The DSM takes the next step: it tries to quantify this 

function f. 

The idea behind DSM is to use available point data on soils (where 

we know property S) and large geospatial data sets that characterize soil 

formation factors (cl, o, r, p, t) to build a statistical or machine learning 

model. This model "learns" on point data by finding quantitative 

relationships between soil properties and values of environmental 

factors at these points. 

 
 
Fig. 2.1. Conceptual diagram of the DSM workflow. It is shown how point data 

about soils and the stack of raster covariates (relief, climate, remote sensing) are 

fed to the input to the machine learning model. The model examines 

dependencies and is then applied to the entire covariate stack to create a 

continuous predictive map of soil property (figure from Divya R.K) 

 

The DSM workflow can be thought of as follows: 

 Data collection: We have a set of points (soil profiles) where we 

know the target property (e.g. soil type). We also have a set of 

raster layers (covariate) covering our entire area and 

representing soil formation factors (e.g. DEM, slope, satellite 

indices, geologic map). 

Integration: Using the methods we learned in Chapter 5, we extract the 

values of all the raster covariates at each observation point. In this way, 

we create a single table to train the model. 

Modeling: We use this table to "train" a model (e.g., a decision tree or a 

random forest) to find patterns. The model learns, for example, that 

https://www.researchgate.net/publication/342330834_An_Introduction_to_Digital_Soil_Mapping/figures?lo=1
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"high organic matter is typically observed on northern slopes with a low 

slope and under forest vegetation." 

Prediction: Once the model is trained, we apply it to our entire raster 

covariate stack. For each pixel on the map, the model takes the values 

of elevation, slope, vegetation, etc., and, based on the learned patterns, 

predicts the most likely soil property value for that pixel. 

The result is a continuous digital map that predicts soil property for 

the entire area, not just at observation points. This approach not only 

allows for more detailed and objective maps, but also provides an 

opportunity to assess the uncertainty of our forecasts, which is a huge 

advantage over traditional methods. 

 

6.2. Detailed overview of the SCORPAN model 

 

In the previous subsection, we found that the DSM is based on the 

quantification of the classical equation of soil formation factors 

S=f(cl,o,r,p,t,...). Although this formula is conceptually powerful, it has 

been extended and refined for practical application in predictive 

modeling. The most common and functional version of this model in the 

modern DSM is the SCORPAN model (McBratney et al., 2003). 

SCORPAN is a mnemonic acronym that not only incorporates the 

classic Yenne factors, but also adds new ones, which are critical for 

statistical modeling. The equation takes the form: 

S=f(s,c,o,r,p,a,n) 

where S is now explicitly taken out as the target variable (soil property), 

and a (age) and n (spatial position) are added to the classical factors . 

This extension makes the model more pragmatic and adaptable to the 

real-world data we are working with. We take a closer look at each 

component of this model and, most importantly, how we can represent 

it as digital, spatial data (covariate) for our model in R. 

 S – Soil attributes: This is our target variable – what we want to 

predict. These can be: 

 Categorical variables: for example, the type of soil 

according to the national or international classification 

(WRB, USDA Soil Taxonomy). In this case, we solve 

the classification problem. 

 Continuous (quantitative) variables: organic carbon 
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content (SOC), pH, clay content, cation exchange 

capacity (ECO), folding density, etc. Here we solve the 

regression problem. The source of this data is our field 

observations and laboratory analyses. 

 C – Climate: Climatic factors (precipitation, temperature) are the 

driving forces of weathering, transport of substances and biological 

activity. In DSM models, climate is usually represented by raster 

surfaces of long-term averages, for example: 

 Average annual rainfall. 

 Average annual temperature. 

 Evapotranspiration indicators. This data can be 

obtained from global climate databases such as 

WorldClim or from regional meteorological networks. 

 O – Organisms: This factor includes the influence of vegetation, 

microorganisms, animals and, more and more importantly, humans 

(land use). As covariates we can use: 

 Remote sensing data: satellite indices characterizing 

vegetation, such as the NDVI (Normalized Difference 

Vegetation Index) obtained from Landsat or Sentinel-2 

images. 

 Land Cover/Land Use Maps: e.g. from CORINE 

Land Cover projects. 

 Maps of forest or other natural vegetation types. 

 R – Relief or Topography: Relief is one of the most important 

factors at the local and regional levels, as it redistributes energy and 

moisture. Almost all covariates describing the relief are obtained by 

analyzing the Digital Relief Model (DEM). They are divided into: 

 Primary derivatives: absolute height (DEM itself), 

slope, exposure (aspect). 

 Secondary derivatives: topographic wetness index 

(TWI), profile and plan curvature, stream power index. 

We can easily calculate these indicators using terra 

packages or specialized GIS programs (SAGA, 

GRASS). 

 P – Parent material: It is the starting material from which the soil 

is formed, and it determines its mineralogical and initial chemical 

composition. This factor is usually represented as: 
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 Digitized geological or quaternary maps that are 

rasterized so that each pixel has a value corresponding 

to a specific type of rock. 

 A – Age: This is the time during which soil formation factors acted 

on the parent rock. This is the most difficult factor to quantify in 

space. There are no direct age maps, so proxy variables are used: 

 Maps of geomorphological surfaces (e.g. river terraces of 

different ages). 

 Distance to rivers or glacier boundaries, if relevant to the 

territory. 

 N – Spatial position: This factor was added to explicitly account 

for the spatial dependence (autocorrelation) in soil properties, which 

cannot be fully explained by other SCORPA factors. As covariates 

can be used: 

 Geographic coordinates (X and Y) directly as predictors. 

 Distance to certain objects (for example, to the coast, to a 

mountain range). 

 

 
Fig. 2.2. Visualization of the components of the SCORPAN model. A diagram 

where each letter of the acronym is associated with an example of the 

corresponding raster layer-covariate (figure from Alfiya Quraishi) 

 

Thus, the SCORPAN model provides us with a clear and 

comprehensive conceptual framework for the selection of predictor 

variables. Our challenge as digital soil scientists is to find the best 

available spatial data that represents each of these factors for our study 

https://alfiyaq.medium.com/the-ultimate-guide-to-digital-soil-mapping-an-introduction-caf0803d635b
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area and use it to build an accurate predictive model.  
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6.3. DSM Workflow Overview 

 

Armed with the SCORPAN conceptual model, we can now outline a 

standardized workflow for digital soil mapping. This process is a 

sequence of logical steps that leads us from raw data to the final 

predictive map and evaluating its reliability. since it allows you to 

systematize work, ensure its reproducibility and avoid common 

mistakes. 

The entire DSM workflow can be roughly divided into three main 

phases: Data Preparation, Modeling and Validation, and Spatial 

Forecasting. 

 
Fig. 2.3. Detailed flowchart of the Digital Soil Mapping workflow (from Yan et 

al., 2020) 

 

Phase 1: Data Preparation and Integration 

 

This is the most time-consuming, but also the most important phase, 

since the quality of the final map directly depends on the quality of the 
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input data. This phase includes the steps that we have covered in detail 

in Part I. 

 Collection of Point Soil Data (S): Formation of a 

georeferenced dataset containing our target variable (e.g., soil 

type, pH, SOC). 

 Spatial Covariate Collection (CORPAN): Search, load, and 

pre-treatment of raster and vector layers representing soil 

formation factors. 

 Covariate harmonization: Bringing all raster layers to a single 

coordinate system, spatial extent, and resolution. This is a 

critical step to create a consistent "stack" of predictors. 

 Data Integration: Extracting values from a harmonized 

covariate stack at the locations of point soil data. The result of 

this phase is a single, "tidy" table ready for modeling. 

 

Phase 2: Simulation and Validation 

 

At this point, we use the prepared table to build and evaluate our 

predictive model. 

 Data splitting: The entire set of point data is usually divided 

into two parts: a training set, which is used to "train" the model 

(usually 70-80% of the data), and a test (or validation) set, 

which is deferred and not used for training. 

 Model Training: A training sample is fed into the input of the 

selected machine learning algorithm (e.g., Random Forest, 

Decision Trees). The algorithm analyzes the data and builds a 

mathematical model describing the relationship between the 

predictors (CORPAN) and the target variable (S). 

 Model validation: After training, we must objectively assess 

how well our model works. To do this, we use a test sample that 

the model "did not see" during training. We force the model to 

make predictions for points from the test sample and compare 

these predictions with real values known to us. This allows us 

to calculate accuracy metrics (e.g. overall accuracy, Kapp 

coefficient for classification; R², RMSE for regression) and 

understand whether our model is overtrained and whether it is 

capable of generalizing patterns to new data. 
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Phase 3: Spatial Forecasting and Interpretation 

Once we have made sure that our model is accurate enough, we can 

use it to create the final product – the map. 

 Spatial Forecasting: The trained model is applied to the entire 

stack of raster covariates. For each pixel of our study area, the 

model takes the values of all predictors and makes a prediction 

of the target variable. 

 Creation of final maps: The result of the prediction is a new 

raster layer (or multiple layers), which is a predictive map of the 

soil property. For continuous variables, this can be a map of the 

average expected value, as well as maps of the lower and upper 

limits of the confidence interval, visualizing the uncertainty of 

the forecast. 

 Post-processing and interpretation: The final maps are 

visualized, drawn up and analyzed. It is important not only to 

obtain the map, but also to interpret it from the point of view of 

soil science, to check whether the spatial patterns on the map 

correspond to our expert ideas about the territory. 

 

In the following sections, we will go through all these stages step by 

step with a practical example, using R to build predictive maps of soil 

types and organic carbon content for the territory of Slovakia. 
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Chapter 7. Preparing data for modeling: the case of Slovakia 

 

Moving from theoretical foundations to practical application, in the 

following sections we will go step by step through the entire workflow 

of digital soil mapping with a real example. This country in Central 

Europe is an excellent example, as it is characterized by a significant 

variety of natural conditions – from lowland plains in the south to the 

mountain systems of the Carpathians in the north, – which leads to the 

formation of a wide range of soil types. 

We will build two predictive models: 

 Classification model for forecasting the main types of soils. 

A regression model for predicting the content of organic carbon (SOC) 

– one of the key quantitative characteristics of the soil. 

This section will be entirely devoted to the first and most important 

phase of the DSM workflow – data preparation and integration. 

 

7.1. Determination of the study area 

 

The first and fundamental step of any geospatial analysis is to clearly 

define the boundaries of the study area. This step is not a formality; The 

vector polygon delineating our territory will serve as a "template" for all 

further operations. It is outside of it that we will crop and mask all our 

raster covariates to ensure their complete spatial consistency. 

For our example, we will use the administrative borders of Slovakia. 

Suppose that this data is stored in a file of the GeoPackage format, which 

is a modern and efficient standard for storing geospatial data. 

We load this layer into R using the sf package and render it to make 

sure everything is loaded correctly. 

 
# Load necessary libraries for spatial data handling and 

visualization 

library(sf) 

library(ggplot2) 

 

# Define the path to our boundary data 

# It's good practice to store spatial data in a dedicated 

subfolder, e.g., 'gis_data' 

boundary_path <- "gis_data/slovakia_boundary.gpkg" 
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# Read the GeoPackage file into an sf object 

slovakia_boundary <- st_read(boundary_path) 

 

# Print the object to see its structure 

 

print(slovakia_boundary) 

Simple feature collection with 1 feature and 2 fields 

Geometry type: MULTIPOLYGON 

Dimension:     XYZ 

Bounding box:  xmin: 1873858 ymin: 6062250 xmax: 2511997 

ymax: 6379651 

z_range:       zmin: 0 zmax: 0 

Projected CRS: WGS 84 / Pseudo-Mercator 

  OBJECTID Area_km2                           geom 

1        2 49026.12 MULTIPOLYGON Z (((2165404 6... 

 

The output in the console will show us that slovakia_boundary is an 

sf object with one object (one polygon) and multiple attribute fields. It 

is important to pay attention to the information about the coordinate 

system (CRS). For further work, we will need to make sure that all our 

data is in a single CRS. 

The best way to check if spatial data has been loaded correctly is to 

visualize it. ggplot2 has a specialized geom for SF objects – geom_sf(), 

which makes creating maps extremely easy. 

 
# Create a simple map of the study area 

ggplot() + 

  geom_sf(data = slovakia_boundary, fill = "lightgray", 

color = "black") + 

  theme_bw() + 

  labs( 

    title = " Study area: Slovakia", 

x = "Longitude", 

y = "Latitude" 

) 

 

Result Analysis: We have obtained a simple yet clear outline of our 

territory. geom_sf() automatically uses the geometry column and CRS 

information to display the data correctly. This object will 

slovakia_boundary become our primary tool for spatial filtering and 

preparation of all other data layers, ensuring that our final stack of 

predictors is perfectly aligned in spatial coverage. 



93 

 

 
Fig. 2.4. Map of the study area. Shows the administrative borders of Slovakia 

downloaded from the GeoPackage file and visualized with ggplot2 

 

7.2. Sources of point data on soils 

 

Once the boundaries of our territory have been determined, the next 

step is to collect and analyze point soil data. This data is the empirical 

basis, the "ground truth" on which our model will be trained. This is the 

S (Soil) component of the SCORPAN model. The quality, quantity, and 

spatial distribution of this data directly determine the potential accuracy 

and reliability of our final predictive map. 

For our example, we will use a dataset based on the data obtained as 

part of the creation of the Global Soil Organic Carbon Map (GSOCmap) 

based on the detailed soil survey program of Slovakia. We have also 

attached data containing information about soil types, including their 

geographical coordinates and classification belonging to the main 

abstract soil taxon (Major Soil Group) according to the WRB (World 

Reference Base for Soil Resources) classification. 

We download this data, which, like the boundaries, is stored in 

GeoPackage format, and conduct an initial exploratory analysis. 

 
# Load necessary libraries 

library(sf) 
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library(dplyr) 

library(ggplot2) 

 

# Path to the soil point data 

points_path <- "gis_data/slovakia_soil_points_3857.gpkg" 

 

# Read the GeoPackage file into an sf object 

soil_points <- st_read(points_path) 

Reading layer `slovakia_soil_points_3857' from data 

source  

  

`D:\TextbookPredSoilMapping\gis_data\slovakia_soil_points

_3857.gpkg' using driver `GPKG' 

Simple feature collection with 5478 features and 2 fields 

Geometry type: POINT 

Dimension:     XY 

Bounding box:  xmin: -589817.7 ymin: -1334011 xmax: -

166759.8 ymax: -1132904 

Projected CRS: S-JTSK / Krovak East North 

 

# Display the first few rows and the structure of the 

data 

glimpse(soil_points) 

Rows: 5,478 

Columns: 3 

$ WRB      <chr> "Cambisols", "Cambisols", "Cambisols", 

"Cambisols", "Cambisols", "Cambisols", "Fluvisols", 

"Fluvisols", "Flu… 

$ SOC_t_ha <dbl> 124.4495, 121.8000, 124.4000, 109.1000, 

77.7000, 113.4000, 83.6000, 83.6000, 415.8000, 37.8000, 

66.4000, 210… 

$ geom     <POINT [m]> POINT (-387872.3 -1132904), POINT 

(-387579.4 -1135850), POINT (-387596.7 -1137717), POINT 

(-390370.4 -… 

 

The glimpse() function from the dplyr package provides a compact 

overview of our table. We see the columns: profile_id (unique profile 

ID), WRB (our target variable – soil type), and a geometry column 

containing the coordinates of each point. 

 

Class Distribution Analysis 

Before moving on to modeling, it's critical to understand what kind 

of data we're dealing with. For the classification problem, we are 

primarily interested in how many observations (profiles) fall on each 
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class (soil type). A significant imbalance, where some classes are 

represented by hundreds of points and others by only a few, can 

negatively affect the model's ability to recognize rare classes. 

We can easily calculate the number of points for each soil type using 

the verb count() with dplyr and visualize the result. 

 
# Count the number of occurrences for each soil type 

soil_type_counts <- soil_points %>% 

  st_drop_geometry() %>% # Drop geometry for non-spatial 

operations 

  count(WRB, sort = TRUE) 

 

print(soil_type_counts) 

                                    WRB    n 

1                             Cambisols 1441 

2                     Rendzic Leptosols  737 

3                             Fluvisols  534 

4              Planosols and Stagnosols  519 

5  Mollic Fluvisols and Mollic Gleysols  452 

6                       Haplic Luvisols  355 

7                            Chernozems  351 

8                               Podzols  270 

9                    Calcaric Cambisols  261 

10                       Albic Luvisols  248 

11                            Arenosols  181 

12                             Andosols   57 

13                            Histosols   38 

14        distinctly contaminated soils   24 

15                            Leptosols   10 

 

# Visualize the class distribution 

ggplot(soil_type_counts, aes(x = n, y = reorder(WRB, n))) 

+ 

  geom_col(fill = "steelblue") + 

  theme_bw() + 

  labs( 

title = "Distribution of soil profiles by soil type", 

x = "Number of profiles", 

y = "Soil type (WRB)" 

) 
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Fig. 2.5. Bar chart showing the number of observations for each soil type. 

Columns are sorted in ascending order for better readability 

 

Graph analysis: We can see that the classes are unevenly 

distributed. The most represented are Cambisols and Rendzic Leptosols, 

which is typical for the mountainous and foothill areas of Slovakia. At 

the same time, soils such as Histosols are represented by a much smaller 

number of points. This class imbalance is an important data 

characteristic that will need to be taken into account during the modeling 

phase. 

 

Spatial distribution analysis 

Equally important is the analysis of where our points are located. Do 

they evenly cover the entire study area? Are there spatial clusters? We 

visualize the location of points on the map, coloring them according to 

the type of soil. 

 
# Plot the spatial distribution of soil points 

ggplot() + 

  geom_sf(data = slovakia_boundary, child = "gray95") + # 

Base map 

  geom_sf(data = soil_points, aes(color = WRB), size = 2, 

alpha = 0.7) + # Soil points 

  theme_bw() + 

  labs( 
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title = "Spatial distribution of point data", 

subtitle = "Points colored by soil type (WRB)", 

color = "Soil type", 

x = "Longitude", y = "Latitude"  ) 

 

 
Fig. 2.6. Map of the spatial distribution of soil profiles on the territory of 

Slovakia. Each point corresponds to a profile and has a color indicating its type 

of soil 

 

Map analysis: The map shows that the points are distributed over 

the area relatively unevenly, with obvious clusters in certain regions, 

which often happens with historical data. We can also see geographical 

patterns: for example, the Chernozems are predominantly concentrated 

in the southern lowlands, while the Cambisols dominate the 

mountainous areas. This visual analysis confirms that our data have a 

clear relationship with the landscape, and is a good sign for further 

predictive modeling. 

 

7.3. Collection and pre-treatment of raster covariates 

 

Once we have prepared the data for our target variable (S), it is time 

to collect and process the predictors – a set of raster layers that quantify 

the factors of soil formation according to the SCORPAN model. These 

raster covariates are the "eyes" of our model; it is through them that the 

model "sees" the landscape and learns to relate its characteristics to soil 

properties. 

For our example with Slovakia, we will focus on obtaining a set of 
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covariates representing R (Relief) and P (Parent Rock). Relief is the 

dominant factor at this scale, and we can obtain a large number of 

informative predictors from a single source – the Digital Elevation 

Model (DEM). 

 

Step 1: Processing the DEM and obtaining relief derivatives 

We will start with the DEM for the territory of Slovakia. Suppose we 

have it as a GeoTIFF file. Our first task is to download it and, using the 

powerful functions of the terra package (Hijmans, 2023), calculate a set 

of primary and secondary morphometric indicators. 

 
# Load necessary libraries 

library(terra) 

library(sf) 

 

# Load the base DEM for Slovakia 

dem <- rast("gis_data/dmr3_5_100.tif") 

 

# Calculate primary terrain derivatives using the 

terrain() function 

slope <- terrain(dem, v = "slope", unit = "degrees") 

aspect <- terrain(dem, v = "aspect", unit = "degrees") 

 

# Calculate some secondary derivatives 

# TPI (Topographic Position Index) - indicates ridges vs 

valleys 

tpi <- terrain(dem, v = "TPI") 

# TRI (Terrain Ruggedness Index) - measures local 

elevation variation 

tri <- terrain(dem, v = "TRI") 

 

# It's good practice to combine all derived rasters into 

a single multi-layer object 

# and give them meaningful names 

terrain_covariates <- c(dem, slope, aspect, tpi, tri) 

names(terrain_covariates) <- c("elevation", "slope", 

"aspect", "tpi", "tri") 

 

# Plot one of the derivatives to check the result 

plot(slope, main = "Surface slope, degrees") 
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Fig. 2.7. Slope map calculated on the basis of DEM. The difference between the 

flat lowlands in the south and the Tatra mountain systems with steep slopes is 

clearly visible 

 

Step 2: Preparation of other covariates (e.g. geology) 

Suppose we have a rasterized geological map where each pixel has a 

numerical code corresponding to a specific type of rock. This is a 

categorical raster and its processing is slightly different, especially in 

the oversampling phase. 

 
# Load the rasterized geological map 

geology <- rast("gis_data/slovakia_geology.tif") 

plot(geology) 

 

Step 3: Raster Stack Harmonization 

This is a critical stage. In order for the model to work, all raster 

predictors must have exactly the same spatial properties: 

 Coordinate System (CRS): All layers must be in the same 

projection. 

Extent: All layers must cover the same geographic area. 

Resolution: All layers must have the same pixel size and be aligned to 

a single grid. 

 

We use our DEM as a "template" and bring all other rasters to its 
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parameters. In addition, we will crop and mask the final stack along the 

exact contour of our research territory (slovakia_boundary) to avoid 

processing unnecessary data. 

 
# Load the boundary polygon 

slovakia_boundary <- 

st_read("gis_data/slovakia_boundary.gpkg") 

 

# --- Harmonization Workflow --- 

 

# 1. Project geology raster to match the DEM's CRS 

#    Note: This step is only needed if CRSs are 

different. We assume they are for demonstration. 

geology_proj <- project(geology, crs(dem), method = 

"near") # Use 'near' for categorical data 

 

# 2. Resample the projected geology raster to match the 

DEM's grid 

geology_resampled <- resample(geology_proj, dem, method = 

"near") 

 

# 3. Combine all prepared rasters into a single stack 

final_stack <- c(terrain_covariates, geology_resampled) 

names(final_stack)[6] <- "geology" # Rename the last 

layer 

 

# 4. Crop and mask the final stack to the exact boundary 

of Slovakia 

final_stack_masked <- crop(final_stack, 

slovakia_boundary) 

final_stack_masked <- mask(final_stack_masked, 

slovakia_boundary) 

 

# Check the properties of the final stack 

print(final_stack_masked) 

class       : SpatRaster  

dimensions  : 3174, 6382, 6  (nrow, ncol, nlyr) 

resolution  : 100, 100  (x, y) 

extent      : 1873812, 2512012, 6062227, 6379627  (xmin, 

xmax, ymin, ymax) 

coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857)  

source(s)   : memory 

varname     : dmr3_5_100  

names       :  elevation,    slope, aspect,       tpi,      

tri, geology  



101 

min values  :   94.41817,  0.00000,      0, -41.83284,   

0.0000,       1  

max values  : 2609.17456, 53.46109,    360,  60.06293, 

105.1039,     348  

 

# Save the multi-layer raster to a GeoTIFF file 

writeRaster(final_stack_masked, 

"gis_data/all_slovakia_terrain_derivatives.tif", 

overwrite = TRUE) 

 

plot(final_stack_masked) 

 

 

 
 
Fig. 2.9. Visualization of the final harmonized stack of raster covariates. Several 

layers are shown that overlap perfectly within the borders of Slovakia 

 

Result Analysis: The output of the print() command will show us 

that final_stack_masked is a SpatRaster object with 6 layers. All of them 

now have identical sizes, resolution, extent, and coordinate system. 

 

This careful preparation and harmonization process ensures that in 

the next step, when we extract the values of the covariate for our points, 

we will obtain consistent and reliable data, which is the key to building 

a quality predictive model. 

 

7.4. Creating the final dataset for modeling 

 

We have come to the culminating point in data preparation. In the 

previous sections, we have separately prepared two key ingredients: 

 Point Soil Data (soil_points): Our sf (Pebesma, 2018) facility 
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containing the geographic location and soil type for each profile 

(S component). 

 Harmonized Covariate Stack (final_stack_masked): Our 

multilayer SpatRaster object, where all predictors (elevation, 

slope, geology, etc.) are brought to a single spatial grid 

(SCORPAN components). 

Now our task is to integrate these two data sets to create a single, 

"neat" table. This table, often referred to as a "modeling matrix" or 

"training matrix", is the final product that we will feed to machine 

learning algorithms. Each row in this table will represent one 

observation (ground profile), and the columns will represent the target 

variable and all the predictors for that observation. 

 

Step 1: Extraction of covariate values 

The main operation at this stage is extraction – the process of 

extracting pixel values from the raster stack at the exact locations of our 

soil profiles. The terra package performs this task extremely efficiently 

with the extract() function. It "pierces" the entire raster stack at each 

point and returns values from all layers. 

 
# Load necessary libraries 

library(terra) 

library(sf) 

library(dplyr) 

library(tidyverse) 

 

# Load the two key datasets prepared in previous sections 

final_stack_masked <- 

rast("gis_data/all_slovakia_terrain_derivatives.tif") 

 

soil_points <- 

st_read("gis_data/slovakia_soil_points_3857.gpkg") 

 

Reading layer `slovakia_soil_points_3857' from data 

source  

  

`D:\TextbookPredSoilMapping\gis_data\slovakia_soil_points

_3857.gpkg' using driver `GPKG' 

Simple feature collection with 5478 features and 2 fields 

Geometry type: POINT 

Dimension:     XY 
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Bounding box:  xmin: 1875992 ymin: 6063841 xmax: 2510017 

ymax: 6379423 

Projected CRS: WGS 84 / Pseudo-Mercator 

 

# --- Data Integration Workflow --- 

 

# Ensure the CRS of points matches the raster stack 

before extraction 

# This is a crucial sanity check 

soil_points <- st_transform(soil_points, crs = 

crs(final_stack_masked)) 

 

# 1. Extract covariate values for each point 

#    The result is a data frame 

# The xy=TRUE argument tells the function to include the 

coordinates in the output  

 

extracted_covariates <- extract(final_stack_masked, 

soil_points, xy = TRUE) 

 

# Let's inspect the result 

head(extracted_covariates) 

 
Fig. 2.9. Results of the extraction process. Vector points 

"punctured" the multilayer raster stack by extracting values from 

each layer and writing them to a new table 

 

As you can see, extracted_covariates is a table where the first column 

ID corresponds to the ordinal number of the point, and the rest of the 

columns contain the values of the predictors for each of them. 

 

Step 2: Merge and Final Data Cleanup 

Now we need to combine the output data from the points (containing, 

most importantly, our target WRB variable) with a table of extracted 

values. We'll also follow a few important cleanup steps to prepare the 

data directly for the simulation. 

 
# 2. Combine original point data with extracted values 
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#    We use bind_cols() as it joins dataframes side-by-

side 

#    We also convert the sf object to a regular dataframe 

for modeling 

final_dataset <-bind_cols(st_drop_geometry(soil_points), 

extracted_covariates) 

 

# 3. Clean up the combined dataset 

final_dataset_clean <-final_dataset%>% 

  #select(-ID) %>% # Remove the redundant ID column from 

extract() 

  na.omit() %>%   # Remove rows with NA values (e.g., 

points outside the raster mask) 

  mutate( 

    # Convert the numeric geology code into a factor 

    # This is crucial for models to treat it as a 

categorical variable 

    geology = as.factor(geology) 

  ) 

 

# Let's inspect the final, clean dataset 

glimpse(final_dataset_clean) 

 

# And write the final_dataset_clean dataframe to a CSV 

file in the 'results' folder  

 

write_csv(final_dataset_clean, 

"results/final_modeling_dataset.csv") 

 

 
 

Analysis of the result: The glimpse() command shows us the ideal 

structure for modeling. We have a table where each row is a complete 

set of data. The first column (WRB) is our raw information, the second 

(SOC_t_ha) is the SOC stocks at a given point (we will model it in 

Section 3 as a continuum variable) and the next columns (elevation, 

slope, ..., geology) are predictors ready to use.  that there are no missing 

values (NA) in the data, and the categorical predictor geology has the 
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correct factor type. The coordinates of the points are also saved, which 

is important for visualization. 

This final object is final_dataset_clean the result of all our 

preparatory work and is saved to disk. We have  come a long way from 

scattered raw data to a single, coherent, and informative dataset. We are 

now fully prepared to move on to the next section and use this set to 

train, validate, and apply machine learning models to create our first 

predictive soil map. 
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Chapter 8. Modeling with decision trees and random forest 

 

8.1. Introduction to Machine Learning for Classification 

 

In the previous section, we successfully completed perhaps the most 

difficult stage of any digital soil mapping project – data preparation and 

integration. The result of our work is a single, "tidy" table of 

final_dataset_clean containing both a target variable (soil type) and a set 

of potential predictors (covariate) for each observation point. Now we 

are ready to move on to the most interesting part – building a predictive 

model. Machine Learning (ML). 

Machine learning is a branch of artificial intelligence that gives 

computers the ability to "learn" from data without being explicitly 

programmed for a specific task (Breiman, 2001; James et al., 2013). In 

the context of DSM, ML algorithms are the "engine" that analyzes our 

integrated data and identifies complex, often non-linear and non-human 

patterns linking environmental factors (CORPAN) to soil (S) properties. 

The task that we will solve in this part of the book belongs to the 

category of supervised learning. It is called "controlled" because we 

have the "right answers" for our training data – for each soil profile, we 

know its true soil type. We essentially act as a "teacher" who shows the 

algorithm examples (point data) and correct answers (class labels), and 

the algorithm's task is to learn the general rules so that we can then give 

the correct answers for new, never seen examples (i.e., for each pixel of 

our map). 

Within guided learning, there are two main types of tasks: 

 Regression: Prediction of a continuous, quantitative variable 

(e.g., organic carbon content, pH). We will discuss this topic in 

detail in Part III. 

Classification: Predicting a categorical variable or class. This is our 

current goal – we want to train the model to assign each pixel on the map 

one of the defined classes corresponding to soil types (e.g. Cambisol, 

Chernozem, Luvisol). 
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Fig. 2.10. Conceptual scheme of the classification problem. A feature vector 

(covariate value for one pixel) is applied to the model input. The model, which 

is a "black box" with learned rules, outputs a predicted class 

 

There are many classification algorithms, from simple (logistic 

regression) to very complex (neural networks). In this guide, we'll focus 

on two extremely popular, powerful, and, importantly, intuitive methods 

that have proven themselves in digital soil science: 

 Decision Trees: A simple, interpreted method that builds a set 

of hierarchical if-and-then rules that visually resemble a tree-

like structure. 

 Random Forest: A refinement of decision trees that uses the 

"wisdom of the crowd". This method builds not one, but 

hundreds of different decision trees on random subsamples of 

data, and makes the final prediction by "voting" between all the 

trees. This is one of the most reliable and accurate "ready-to-

use" classifiers. 

Before we move on to the practical implementation of these models, 

it is important to mention the key principle of validation outlined in 

subsection 6.3: for an objective assessment of accuracy, we must divide 

our final final_dataset_clean data set into training and test samples. The 

model will be built exclusively on the training sample, and we will test 

its performance on a test sample that simulates the operation of the 

model on completely new data. 
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8.2. Decision trees (rpart) 

 

The first classification algorithm we will look at is the Decision 

Tree. Its enormous popularity, especially in applied sciences, is due not 

so much to its extreme accuracy as to its incredible simplicity and 

interpretation. Unlike many "black boxes" in machine learning, the 

decision tree produces the result in the form of a set of simple, 

hierarchical "if-so" rules that are easy to understand and visualize. 

forecast, but also to understand why the model made such a choice, 

which is extremely valuable for a soil scientist. 

Imagine trying to determine the type of soil by asking successive 

questions about environmental factors. "Is this point at an altitude of 

more than 800 meters?". If yes, then it is probably "Podozol". If "no", 

then the next question is: "Is the mother breed a loess?". If yes, then it is 

probably "Chernozem". It is on this principle that the decision tree 

works. 

The algorithm that builds such a tree (the most famous of which is 

CART) works on the principle of recursive partitioning. 

 It starts with the entire set of training data (root node). 

Then it goes through all the predictors (height, slope, etc.) and all 

possible points of their division to find  the best division – the one that 

divides the data into two most "pure" groups. "Purity" means that one 

class of soil predominates in each of the newly formed groups. 

This division process is recursively repeated for each new subgroup, 

creating branches and new nodes. 

A tree stops growing when one of the stop criteria is met (e.g., a node 

becomes completely "clean", or there are too few observations left in it). 

Terminal nodes that are not further divided are called leaves and contain 

the final class forecast. 

 

Practical implementation with rpart 

In R, the classic package for building decision trees is rpart 

(Recursive Partitioning and Regression Trees, Therneau et al., 2022). 

We use it to build a model on our data. 

 

Step 1: Splitting the data into training and test samples 
First of all, we must divide our set of final_dataset_clean into two 
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parts. This is a critical step for an objective assessment of the model. We 

will use a modern approach from the rsample package (part of the 

tidymodels ecosystem). We will also remove from the dataset 

 
# --- Load Necessary Libraries --- 

 

# List of required packages 

packages <- c("rpart", "rpart.plot", "rsample", "dplyr") 

 

# Loop through the packages 

for (pkg in packages) { 

  # Check if the package is not already installed 

  if (!require(pkg, character.only = TRUE)) { 

    # If not installed, install it 

    install.packages(pkg) 

    # Load the package after installation 

    library(pkg, character.only = TRUE) 

  } 

} 

 

# Assume 'final_dataset_clean' is loaded from the 

previous chapter 

# Load your dataset from a CSV file 

final_dataset <- 

read_csv("results/final_modeling_dataset.csv") 

 

# Remove the 'SOC_t_ha' column 

final_dataset_clean <- final_dataset %>% 

select(-SOC_t_ha) 

 

# Convert the numeric WRB and geology after loading into 

a factor 

final_dataset_clean$WRB <- 

as.factor(final_dataset_clean$WRB) 

final_dataset_clean$geology <- 

as.factor(final_dataset_clean$geology) 

 

# Set a seed for reproducibility of the random split 

set.seed(123)  

 

# Create a split object that defines how to split the 

data (e.g., 75% for training) 

data_split <- initial_split(final_dataset_clean, prop = 

0.75, strata = WRB) 
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# Extract the training and testing sets from the split 

object 

train_data <- training(data_split) 

test_data  <- testing(data_split) 

 

# --- Prepare Data --- 

# It's still crucial to ensure the target variable is a 

factor for classification 

# and to remove any unique identifier columns like 

'profile_id' before training. 

train_data_clean <- train_data %>% 

    select(-ID) # Remove identifier column if it exists 

 

# We must apply the same cleaning to the test data before 

prediction! 

test_data_clean <- test_data %>% 

    select(-ID) 

 

train_data_clean 

 

test_data_clean 

 

# Check the dimensions 

dim(train_data_clean) 

[1] 4082    9 

 

dim(test_data_clean) 

[1] 1361    9 
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Note: The strata = WRB argument is very important. It ensures that 

the proportions of different soil types in the study and test samples are 

the same as in the original dataset, which is critical when working with 

unbalanced classrooms. 

 

Step 2: Model Training 
Now we can train the model to train_data. The main function rpart() 

uses formula syntax, where Target_variable ~ Predictor1 + Predictor2 + 

.... Period (.) is an abbreviation for "all other variables". 

 
# Train the decision tree model 

# We want to predict WRB using all other variables as 

predictors 

# We want to predict WRB using all other variables EXCEPT 

'geology'  

tree_model <- rpart(WRB ~ . - geology, data = 

train_data_clean, method = "class") 

 

After a rather long wait (classification is a resource-intensive 

process), we get the result. 

 

Step 3: Rendering and Analyzing the Tree 
The main advantage of this method is visualization. The rpart.plot 

package provides great tools for this. 

 
# Plot the resulting decision tree 

rpart.plot(tree_model, box.palette = "RdBu", shadow.col = 
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"gray", nn = TRUE) 

 
Fig. 2.11. Visualization of the decision tree for the classification of soil types. 

The tree shows a hierarchy of division rules, starting with the most important 

predictor in the root node 

 

 Graph analysis: This tree is a visual instruction manual for soil 

classification. 

 Root node (top): Shows the overall distribution of classes in the 

study sample. The first rule of separation of elevation < 221m. This 

means that height is the most important predictor that best divides 

soils into two groups. 

 Branches: Objects that satisfy the condition go along the left branch 

("yes"), the rest go along the right ("no"). 

 Nodes and leaves: Each node shows a predicted class for the objects 

that have fallen into it, and the distribution of classes as a percentage. 

For example, we can see a node where 68% of soils are "Cambisols". 

This is our rule: the combination of conditions leading to this node 

is characteristic of Cambisols. 

 

Although decision trees are a great tool for interpreting and understanding 

data, they have drawbacks: they can be unstable (small changes in the data 

can drastically change the structure of the tree) and prone to overlearning 

(creating too complex rules that work perfectly on training data, but do not 

generalize well on new ones). It was to solve these problems that the Random 

Forest method was created,  which we will consider in the next subsection. 
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8.3. RandomForest 

 

In the previous subsection, we saw how intuitive and interpretable 

decision trees are. However, we also noted their significant drawbacks: 

high variance (instability) and a tendency to overlearn. This means that 

a single tree built on our data is only one of many possible ways to 

describe dependencies, and it may be too "fitted" to the specific noises 

and features of our particular study sample. 

Random Forest is an ingenious solution to these problems. It is  a 

method of ensemble learning that is based on a simple but powerful 

idea of "crowd wisdom": a collective solution of a large number of 

diverse but relatively weak models (individual trees) will be much more 

accurate and reliable than the solution of a single, albeit complex, model 

(Breiman, 2001). Instead of carefully "growing" one perfect tree, we 

create an entire "forest" of hundreds or thousands of different trees, And 

then we force them to "vote" for the final forecast. 

The Random Forest algorithm achieves this "diversity" of trees using 

two key techniques: 

 Bagging: Each tree in the forest is not built on the entire training 

dataset, but on its random subsample with a return 

(bootstrap sample). This means that a new dataset of the same 

size as the original one is created for each tree, but some 

observations in it may be repeated several times, and some may 

not hit at all.  that each tree sees a slightly different "picture" of 

data. 

 Randomness of predictors: When plotting each node in each 

tree, the algorithm does not iterate through all available 

predictors to find the best division. Instead, it only considers a 

random subset of predictors (e.g., 3 out of 10). This forces 

trees to use different variables and prevents a situation where 

one very strong predictor (e.g., elevation) would dominate all 

trees, making them similar. 
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Fig. 2.12. Conceptual scheme of operation of the Random Forest for 

classification. It is shown how many bootstrap samples are created from the 

training data, each is built with its own tree, and the final forecast for the new 

observation is determined by voting 

 

Practical implementation with randomForest 

The classic package for working with this algorithm in R is 

randomForest. 

 

Step 1: Model Training 
We will use the same train_data and test_data as in the previous 

subsection. The syntax of the randomForest() function is very similar to 

that of rpart(). 

 
# --- Load Necessary Libraries --- 

# We will use 'ranger' for modeling and 'caret' for the 

confusion matrix. 

# This code will also install them if they are not 

already present. 

packages <- c("ranger", "dplyr", "caret", "rsample") 

for (pkg in packages) { 

  if (!require(pkg, character.only = TRUE)) { 

    install.packages(pkg) 

    library(pkg, character.only = TRUE) 
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  } 

} 

 

# We continue using the train_data from the previous 

split 

# Set a seed for reproducibility of the random process in 

the algorithm 

set.seed(123) 

 

# Train the Random Forest model 

# ntree: number of trees to grow 

# mtry: number of variables randomly sampled as 

candidates at each split 

rf_model <- ranger( 

    formula = WRB ~ .,  

    data = train_data_clean, 

    num.trees = 500, 

    importance = 'permutation' # A robust method for 

calculating variable importance 

) 

 

# Print the model summary 

print(rf_model) 

 

# --- Save the Trained Model --- 

 

# 1. Create the 'models' directory if it doesn't already 

exist. 

if (!dir.exists("models")) { 

  dir.create("models") 

} 

 

# 2. Save the ranger_model object to the specified file. 

#    The .rda format is a standard R data file format. 

save(rf_model, file = "models/rf_model.rda") 

 

print("Model has been successfully saved to 

models/rf_model.rda") 

 

# Create and view the Confusion Matrix --- 

 

# 1. Make predictions on the unseen test data. 

predictions <- predict(rf_model, data = test_data) 

 

# 2. Use the confusionMatrix() function from the 'caret' 

package. 
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#    We compare the model's predictions with the actual 

true values. 

conf_matrix <- confusionMatrix( 

  data = predictions$predictions,     # The predicted 

classes 

  reference = test_data$WRB     # The true classes 

) 

 

# 3. Print the detailed confusion matrix and all 

associated statistics. 

print(conf_matrix) 

 

 

Output analysis: Unlike rpart, print(rf_model) output does not show 

rules. Instead, it provides extremely useful information: 

 Forest type: Classification. 

 Number of trees: 500. 

 OOB estimate of error rate: 47,99%. OOB (Out-of-Bag) 

error is a built-in validation mechanism. For each tree, about a 

third of the output data does not make it into the bootstrap 

sample. An OOB error is an average error across all trees, 

calculated on data that was not used to build them. This is a 

reliable and objective indicator of model accuracy. 

 

 
 

 Confusion Matrix: Shows how the model has classified OOB 

data, allowing you to see which classes of soils are confused 

with each other. 
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Step 2: Assessing the importance of variables 

One of the most powerful advantages of the Random Forest is its 

ability to estimate the importance of predictors (variable 

importance). The algorithm calculates how much each covariate on 

average contributes to the accuracy of the model across the forest. This 

allows us to understand which SCORPAN factors are key to the 

distribution of soils in our area. 

 
# --- Get and plot Variable Importance from ranger model 

--- 

 

# 1. Extract the importance scores from the model object. 

#    The importance() function works, but we need to 

handle its output. 

importance_scores <- importance(rf_model) 

 

# 2. Convert the named vector of scores into a data frame 

for plotting with ggplot2. 

importance_df <- data.frame( 

  Variable = names(importance_scores), 

  Importance = importance_scores 

) %>% 

  # Arrange the variables by importance for a cleaner 

plot 

  arrange(Importance) %>% 

  mutate(Variable = factor(Variable, levels = Variable)) 

# This keeps the sorted order in the plot 

 

# 3. Create the variable importance plot using ggplot2. 

#    This is the modern equivalent of varImpPlot(). 

ggplot(importance_df, aes(x = Importance, y = Variable)) 

+ 
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  geom_col(fill = "steelblue") + 

  theme_bw() + 

  labs( 

    title = "Variable Importance for Soil 

Classification", 

    x = "Importance (Permutation)", 

    y = "Predictor" 

  ) 

 

 
Fig. 2.13. Graph of the importance of variables. A bar chart is shown where 

predictors are sorted by their contribution to model accuracy 

 

Graph analysis: This graph is key to interpreting the results. We can 

clearly see which predictors are "moving" in our model. For example, 

elevation, coordinates, tri and geology are the most important, which 

makes complete soil science sense. Instead, some of the indicators, such 

as aspect, can have a much smaller impact. This allows not only to build 

an accurate model, but also to get a scientific idea of the hierarchy of 

soil formation factors in the study area. 

The random forest is a significant step forward compared to a single 

decision tree, offering higher accuracy and stability while maintaining 
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the possibility of deep analysis through the evaluation of the importance 

of variables. 

In this section, we use the Random Forest for classification. It is 

worth noting that there is a powerful modification of it for regression 

problems, which not only predicts continuous values, but also allows us 

to estimate the uncertainty of these predictions. This method, known as 

Quantile Regression Forests, will be discussed in detail in Part III 

when we model the organic carbon content.  
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Chapter 9. Accuracy Assessment and Validation of 

Classification Models 

 

After building our first machine learning models, we may be tempted 

to jump straight to mapping. However, this step would be premature and 

scientifically unsound. Before we can trust the model's predictions, we 

must conduct careful and objective validation – the process of 

evaluating how well the model performs on new, never-before-seen data 

(Congalton, 1991) 

For validation, we will use a test sample (test_data), which we 

prudently postponed at the very beginning. Since the model has never 

"seen" this data during its training, it is a perfect simulator of a real-

world situation when the model encounters new data. 

 

9.1. Confusion Matrix 

 

The cornerstone of evaluating the accuracy of any classification 

model is the mismatch matrix, also known as the confusion matrix. 

This is a simple but extremely informative table that matches  the classes 

predicted by the model with the real (true) classes from the test 

sample. It allows us to see not only the total number of errors, but also, 

much more importantly, what kind of errors these are. 

Structure of the matrix of mismatches: 

 The strings usually represent true classes (data from our 

observations). 

 The columns represent the predicted classes (what the model 

"said"). 

 The diagonal elements (where true class = predicted class) 

show the number of correctly classified observations. 

 Extradiagonal elements show errors - cases when the model 

"confused" one class with another. 
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Fig. 2.14. Structure of the matrix of mismatches. 

 

Practical implementation and interpretation 

We create a matrix of inconsistencies for our Random Forest 

(rf_model) model, which we taught in the previous section. 

 

Step 1: Make predictions on the test sample 
First, we'll use the predict() function to get our model's predictions 

for test_data. 

 
# Create and view the Confusion Matrix --- 

 

# Make predictions on the unseen test data. 

predictions <- predict(rf_model, data = test_data_clean) 

 

Step 2: Creating and analyzing the matrix 
Now, having a true value vector (test_data$WRB) and a prediction 

vector, we can create a matrix. The confusionMatrix() function from the 

caret package (Kuhn, 2008) is ideal for this, since it automatically 

calculates not only the matrix itself, but also a whole set of key accuracy 

metrics. 
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# Create the confusion matrix and associated statistics 

# Use the confusionMatrix() function from the 'caret' 

package. 

#    We compare the model's predictions with the actual 

true values. 

conf_matrix <- confusionMatrix( 

data = predictions$predictions,     # The predicted 

classes 

reference = test_data_clean$WRB     # The true classes 

) 

 

# Print the detailed confusion matrix and all associated 

statistics. 

print(conf_matrix) 

 

Output analysis: The output of confusionMatrix() is very detailed. 

First, we see the table itself, and below it is a block with statistics. 

 Overall Accuracy: This is the simplest metric – the proportion of 

correctly classified observations. Although it is intuitive, it can be 

misleading when dealing with unbalanced data. 

 Kappa (Kappa Cohen Coefficient): This is a much more reliable 

metric than general accuracy. Kappa shows how much better 

classification results are than random guessing results (Cohen, 

1960). It takes into account the probability of random correct 

classification. Kappa values range from -1 to 1, where 1 is perfect 

consistency, 0 is random consistency, and negative values are worse 

than randomness. 

 < 0.2: Weak consistency 

 0.2 - 0.6: Moderate consistency 

 0.6 - 0.8: Substantial consistency 

 > 0.8: Near-perfect consistency 

 Statistics by Class: confusionMatrix() also calculates metrics for 

each class separately, which is extremely important. The most 

important of them are Sensitivity and Precision, which in soil 

science are often called Producer's Accuracy and User's 

Accuracy , respectively. 

The matrix of mismatches and the Kappa coefficient are fundamental 

tools for any classification task. They allow you to move from a simple 

statement "the model is 85% accurate" to a deep understanding of its 
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strengths and weaknesses: which classes it recognizes well, which ones 

it confuses, and how much its results are better than ordinary guessing. 

 

 

9.2. Overall Accuracy Metrics (Producer's Accuracy, User's 

Accuracy) 

 

The matrix of inconsistencies that we obtained in the previous 

subsection is a source for the calculation of a whole series of quantitative 

indicators that allow an objective and comprehensive assessment of the 

performance of our model (Congalton, 1991). The confusionMatrix() 

function from the caret package kindly calculates them for us, but for a 

deep understanding of the strengths and weaknesses of our map, we 

must be clear about what is behind each of these numbers. We consider 

the three most important groups of metrics. 

 
# --- Extract Specific Accuracy Metrics --- 

 

# 1. Extract Overall Accuracy from the confusion matrix 

object. 

#    It's stored in the 'overall' component. 

overall_accuracy <- conf_matrix$overall['Accuracy'] 

 

print("--- Overall Model Accuracy ---") 

print(paste("Overall Accuracy:", round(overall_accuracy, 

4))) 

[1] "Overall Accuracy: 0.5195" 

 

# 2. Extract Producer's and User's Accuracy. 

#    These are stored in the 'byClass' component of the 

object. 

accuracy_by_class <- as.data.frame(conf_matrix$byClass) 

 

# Let's select and rename the relevant columns for 

clarity. 

# 'Sensitivity' is Producer's Accuracy. 

# 'Pos Pred Value' is User's Accuracy. 

# NOTE: Column names with spaces must be enclosed in 

backticks (`). 

class_accuracies <- accuracy_by_class %>% 

  select(Sensitivity, `Pos Pred Value`) %>% 

  rename( 
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    Producer_Accuracy = Sensitivity, 

    User_Accuracy = `Pos Pred Value` 

  ) 

 

print("--- Accuracy Metrics by Class ---") 

print(class_accuracies) 

 

 
 

Overall Accuracy 

This is the simplest and most intuitive metric. It is calculated as the 

ratio of the number of all correctly classified samples (the sum of the 

diagonal elements of the matrix) to the total number of samples in the 

test sample. 

Overall Accuracy=Total Predictions*Number of Correct Predictions 

 

Interpretation: This metric answers a simple question: "What 

percentage of samples from the test sample did our model classify 

correctly?". While this metric is useful for the overall impression, it can 

be misleading, especially when dealing with unbalanced data. Imagine 

that 90% of our territory is occupied by Cambisols. A model that simply 

always predicts Cambisol will have an overall accuracy of 90%, 

although it is completely helpless in determining all other, less common, 

but perhaps more important types of soil. 

 

Producer's Accuracy 

This metric, also known in machine learning as Sensitivity or Recall, 

evaluates accuracy from the point of view of the "maker" of the map. It 
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is calculated for each class separately. 

Producer′s Accuracy (for Class A)=Total Number of True Class A 

Samples/Number of Samples Correctly Classified as Class A. 

 

Interpretation: This metric answers the question: "Of all the true 

samples of a certain type of soil that exist on the ground (in our test 

sample), what percentage was our map able to correctly identify?". This 

is an indicator of how well the map "finds" a particular class. Low 

accuracy of the manufacturer means that the model misses many 

samples of this class, mistakenly attributing them to others (omission 

errors)  matrices of inconsistencies (Congalton, 1991). 

 

User's Accuracy 

This metric, known as Precision in ML, evaluates the quality of a 

map from the point of view of the end "user". It is also calculated for 

each class. 

User′s Accuracy (for Class A)=Total number of samples assigned 

Class A by the model/Number of samples correctly classified as Class 

A. 

 

Interpretation: This metric answers the practical question: "If I go 

to a point that the map marks as a certain type of soil, what is the 

probability that there is actually that type of soil there?". This is an 

indicator of the reliability of the forecast on the map. Low user accuracy 

means that the map includes within the boundaries of a certain class 

many areas that actually belong to other classes (inclusion errors,  

commission errors). The calculation is carried out according to the 

lines of the matrix of discrepancies. 
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Fig. 2.15. Accuracy calculation scheme adopted from Zhong et al. (2023). 

 

Analysis: There is a trade-off between these two metrics. The model 

can have high producer accuracy for Chernozems (find almost all true 

Chernozems), but low user accuracy (while mistakenly attributing many 

other soils to Chernozems). 

That is why the accuracy analysis by classes provided by 

confusionMatrix() is much more informative than a single digit of total 

accuracy. It allows us to diagnose exactly which types of soils our model 

predicts well and which have problems, which allows us to return to the 

stage of selecting covariate or adjusting the model to improve the results. 

 

9.3. Kappa coefficient 

 

In the previous section, we took a closer look at Overall Accuracy, 

as well as manufacturer's and user's accuracy. We have  found that 

overall precision, while intuitive, can be misleading, especially when the 

classes in our data are unbalanced. A model can achieve high overall 

accuracy by simply "guessing" the most common class while ignoring 

all rare but important classes. We need a metric that can account for this 

effect and estimate how much the performance of our model is better 

than simple random guessing. 

This is exactly why Cohen's Kappa Coefficient, or simply Kappa, 

was developed. This is a statistical indicator that measures the degree 

of agreement between two estimators (in our case, between model 
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predictions and true data), while taking into account the probability that 

this consistency arose by chance. 

 

The concept of random consistency 

Imagine that you give two soil scientists who know nothing about the 

territory a set of samples and ask them to assign each sample one of the 

possible soil types at random. Even with a completely random selection, 

purely according to the law of probability, some of their classifications 

will match. This is  random consistency. Kappa answers the question: 

"How much is the consistency of our model with reality higher than this 

basic one,  random consistency?". 

The formula for calculating Kappa is as follows: 

 

 
where: 

 Accuracy is an observable consistency that is nothing more than our 

Overall Accuracy. 

 RAccuracy is a hypothetical probability of random consistency. It 

is calculated based on the row and column totals of our discrepancy 

matrix. 

 

 
Fig. 2.16. N x N grid used to interpret results of raters (Image: Kurtis Pykes) 

 

Interpretation of Kappa Meanings 

The Kappa value ranges from -1 to +1. 

 kappa=1: Perfect, complete consistency. 

 Kappa 0-1: Consistency is better than random. 

https://builtin.com/data-science/cohens-kappa
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 kappa=0: The consistency is exactly at the randomness level. The 

model does not have any predictive power. 

 kappa<=0: Consistency is worse than random (which is rare, but 

indicates serious problems with the model). 

To interpret the strength of coherence, the scale of Landis and Koch 

(1977) is often used: 

 

Meaning of Kappa Interpretation 

< 0.00 Weak consistency 

0.00 – 0.20 Barely noticeable 

0.21 – 0.40 Satisfactory 

0.41 – 0.60 Moderate 

0.61 – 0.80 Significant 

0.81 – 1.00 Almost perfect 

 

Practical analysis 

Fortunately, we don't have to calculate Kappa manually. The 

confusionMatrix() function from the caret package does this for us. We 

go back to its output, which we got in subsection 9.1. 

 

 
 

For example, if we got Kappa : 0.43, it means that our model has 

moderate consistency with real data, which for a case study is a good 

result for a complex soil mapping task (although in real model tasks they 

try to achieve an indicator greater than 0.60-0.70). This is a much more 

significant indicator than, say, an overall accuracy of 52%,  because it 

confirms that high precision is not just an artifact of unbalanced classes. 

 

Why is Kappa so important? Consider an example with dominant 

Rendzic Leptosols. A model that always predicts " Rendzic Leptosols " 
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will have an Overall Accuracy = 0.9. However, when we calculate 

Kappa, the probability of randomly guessing "Rendzic Leptosols" will 

also be very high, around 0.81. As a result, the Kappa value will be close 

to zero, which will honestly show us that the model hasn't really learned 

anything. 

Thus, the Kapp coefficient is a must-have tool in the arsenal of a 

digital soil scientist. It provides a rigorous, objective and class 

imbalance-resistant assessment, which allows us to be sure that our 

model has indeed captured the real relationships between soils and 

environmental factors. 

 

9.4. Practical validation 

 

Quantitative metrics such as overall accuracy and Kapp's ratio 

provide us with an important, generalized assessment of the model's 

performance. They provide an answer to the question, "How well does 

the model perform overall?". However, for a deep understanding and, 

most importantly, to further improve our performance, we must dive 

deeper and answer the question, "Where and why is our model 

wrong?". This process of analyzing the nature of errors is practical 

validation. 

Practical validation is a bridge between statistics and soil science. It 

consists in returning to our matrix of inconsistencies and considering it 

not as a source of numbers, but as a diagnostic tool. We are interested  

in non-diagonal elements – those cells where the model confused one 

type of soil with another. 

 

Error analysis based on a matrix of mismatches 

We take another look at the output of the discrepancy matrix that we 

got: 
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Interpretation from the point of view of soil science: 

 Error: 14 true Сambisols were classified as Albic Luvisols. 

 Analysis: Why could the model confuse them? Both 

Сambisols and Albic Luvisols in Slovakia are often formed 

on similar parent rocks in the foothills. The key difference 

between Albic Luvisols is the presence of a well-defined 

illuvial (argic) clay accumulation horizon.  characteristic of 

Cambisols. 

 Possible solution: Add new covariates to the model that 

better reflect the stability of the landscape, such as a flux 

power index (SPI) or a geomorphological map. 

 Error: 7 true Chernozems were classified as Luvisoli. 

 Analysis: This is also an understandable error. Chernozems 

and Arenosols can occupy similar geographical zones on 

flat lowlands. Both types of soils can have a dark humus 

horizon. Probably, the model was not able to clearly 

distinguish them from the available set of climatic and relief 

predictors. 

 Possible solution: Add covariates that better reflect the 

parent rock (for example, climatic indicators that better 

reflect the continentality of the climate, favorable for steppe 

processes. 

 

Spatial analysis of errors 

In addition to analyzing the matrix itself, it is extremely useful to 

visualize the errors on the map. We can create a map of our test points, 

marking those that have been classified correctly and those where the 
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model has made a mistake. 

 
# --- Load Necessary Libraries --- 

# We will use 'ranger' for modeling, 'caret' for the 

confusion matrix, and 'sf' for spatial operations. 

# This code will also install them if they are not 

already present. 

packages <- c("ranger", "dplyr", "caret", "rsample", 

"ggplot2", "sf") 

for (pkg in packages) { 

  if (!require(pkg, character.only = TRUE)) { 

    install.packages(pkg) 

    library(pkg, character.only = TRUE) 

  } 

} 

 

# --- Spatial Visualization of Errors --- 

 

# 1. Create a dataframe with true and predicted results, 

keeping the ID from the original test set. 

results_df <- data.frame( 

  ID = test_data$ID, 

  WRB_true = test_data$WRB, 

  WRB_pred = predictions$predictions 

) 

 

# 2. Get the coordinates for each ID from the complete 

dataset. 

#    This avoids issues with joining to external spatial 

files. 

locations_df <- final_dataset_clean %>% 

  select(ID, x, y) %>% 

  distinct(ID, .keep_all = TRUE) 

 

# 3. Join results with locations and convert to a spatial 

'sf' object. 

results_sf <- left_join(results_df, locations_df, by = 

"ID") %>% 

  # Convert to sf object, specifying coordinate columns 

and the original CRS 

  st_as_sf(coords = c("x", "y"), crs = 

st_crs(slovakia_boundary)) %>% 

  mutate(is_correct = (WRB_true == WRB_pred)) 

 

# 4. Filter out any rows that have missing geometry after 

the join. 
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results_sf_clean <- results_sf %>% 

  filter(!st_is_empty(.)) 

 

# 5. Visualize the errors on a map with custom styling. 

#    We split the data to apply different aesthetics to 

correct and incorrect points. 

correct_points <- results_sf_clean %>% filter(is_correct 

== TRUE) 

incorrect_points <- results_sf_clean %>% 

filter(is_correct == FALSE) 

 

ggplot() + 

  # Add the country boundary as a background 

  geom_sf(data = slovakia_boundary, fill = "gray95") + 

  # Add the correctly predicted points (green with a grey 

border) 

  # We use shape = 21 which has both fill and color 

aesthetics. 

  geom_sf(data = correct_points, fill = "green", color = 

"grey40", shape = 21, size = 3) + 

  # Add the incorrectly predicted points (red and half 

the size) 

  geom_sf(data = incorrect_points, color = "red", size = 

1.5) + 

  theme_bw() + 

  labs( 

    title = "Spatial Distribution of Classification 

Errors", 

    subtitle = "Green: Correct Predictions, Red: 

Incorrect Predictions" 

  ) 
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Fig. 2.18. Map of the spatial distribution of errors 

 

Map analysis: Such a map can reveal spatial patterns in errors. Are 

the errors concentrated in specific geographic regions (e.g., mountain 

valleys or at the boundary of different geological formations)? If so, it 

may indicate that our model does not perform well under these specific 

conditions, and we lack predictors to describe these unique soil 

formation factors. 

Practical validation transforms the process of evaluating accuracy 

from a simple statement of fact ("the model is accurate at X%") into an 

iterative process of scientific research. It allows us not only to evaluate, 

but also to understand and, most importantly, purposefully improve our 

predictive soil map. 
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Chapter 10. Creation and interpretation of predictive maps 

of soil types 

 

We have come a long way: from data preparation and exploratory 

analysis to training and careful validation of our machine learning 

models. We have made sure that our Random Forest model has 

sufficient predictive power and its accuracy far exceeds random 

guessing. Now it is time for the final, most interesting stage – applying 

our trained model to the entire study area to create a predictive soil 

map. 

 

10.1. Spatial forecasting 

 

Spatial forecasting is the process of using a trained model to assign 

a predicted value (in our case, a soil class) to each individual pixel in 

our harmonized raster covariate stack. Essentially, we force the model 

to "look" at every pixel of our territory, analyze the values of altitude, 

slope, geology, and other predictors at that point, and, based on the rules 

it learned in the training sample,  make the most likely forecast for the 

type of soil. 

This process is the digital equivalent of a soil scientist-cartographer 

extrapolating his knowledge from a few point observations to the entire 

landscape. However, unlike humans, the model does so objectively, 

reproducibly and with extreme detail for millions of pixels. 

 

Practical implementation with terra 

Fortunately, modern tools such as the terra package make this 

potentially complex computing process extremely simple. terra has its 

own, highly optimized predict() function that "understands" how to 

work with raster objects and models trained with popular packages such 

as randomForest. 

The predict() function automatically performs the following steps: 

 Takes a learned model (rf_model). 

Takes a multilayer raster stack of covariate (final_stack_masked). 

For each pixel, it collects the values from all the layers into a vector. 

Feeds this vector to the input of the model. 

Receives the forecast and writes it to the corresponding pixel of the new, 
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original raster. 

 

The terra package efficiently manages memory by processing large 

rasters in chunks, which makes it possible to work even with very large 

areas that do not fit into the computer RAM. 

 
# --- Load Necessary Libraries --- 

# We will use 'ranger' for modeling, 'caret' for the 

confusion matrix, and 'sf' for spatial operations. 

# This code will also install them if they are not 

already present. 

packages <- c("ranger", "dplyr", "caret", "rsample", 

"ggplot2", "sf", "terra") 

for (pkg in packages) { 

  if (!require(pkg, character.only = TRUE)) { 

    install.packages(pkg) 

    library(pkg, character.only = TRUE) 

  } 

} 

 

# Assume 'final_dataset_clean', 'slovakia_boundary', and 

the original 'soil_points' sf object are loaded. 

# Assume 'rf_model' is trained and loaded. 

# Assume 'final_stack_masked' is loaded. 

 

# --- Add Coordinate Layers to the Raster Stack --- 

 

# 1. Create two new raster layers with the same 

dimensions/CRS as our stack. 

#    The 'init' function will populate them with 

coordinate values. 

x_coord_raster <- init(final_stack_masked, "x") 

y_coord_raster <- init(final_stack_masked, "y") 

 

# 2. Rename the new layers to 'x' and 'y' to match the 

model's expectations. 

names(x_coord_raster) <- "x" 

names(y_coord_raster) <- "y" 

 

# 3. Combine the original stack with the new coordinate 

layers. 

final_stack_with_coords <- c(final_stack_masked, 

x_coord_raster, y_coord_raster) 

 

# 4. Verify that the names now match the model's 
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predictors. 

print("Names in the final raster stack:") 

names(final_stack_with_coords) 

print("Names expected by the model:") 

print(rf_model$forest$independent.variable.names) 

 

# --- Spatial Prediction --- 

# Now we use the new stack that includes the coordinate 

layers. 

predicted_map <- predict(final_stack_with_coords, 

rf_model, filename = "results/predicted_soil_map.tif", 

overwrite = TRUE) 

 

print("Prediction complete. The map has been saved to 

results/predicted_soil_map.tif") 

 

Process Analysis: That's all! With a single command, we applied a 

complex model to millions of pixels. The result is a new, single-layer 

raster predicted_map object stored on disk. This is a categorical raster, 

where the value of each pixel is a numerical code corresponding to the 

predicted soil class (e.g. 1=Cambisol, 2=Chernozem, etc.). 

 

Rendering the final map 

Now we visualize the result. Terra has powerful built-in visualization 

tools that automatically create a legend for category stories. 

 
# --- Visualize Final Map (Masked) --- 

 

# 1. Ensure the boundary layer is loaded (assuming it's 

named slovakia_boundary) 

#    and has the same CRS as the predicted map. 

slovakia_boundary_proj <- st_transform(slovakia_boundary, 

crs = crs(predicted_map)) 

 

# 2. Mask the predicted map using the country boundary. 

#    This sets all pixels outside the polygon to NA. 

predicted_map_masked <- mask(predicted_map, 

slovakia_boundary_proj) 

 

# 3. Convert the final raster to a dataframe for ggplot2 

visualization. 

map_df <- as.data.frame(predicted_map_masked, xy = TRUE) 

# The layer name might be complex, so we rename it for 
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simplicity. 

colnames(map_df)[3] <- "soil_type" 

# Ensure it's treated as a categorical variable 

map_df$soil_type <- as.factor(map_df$soil_type) 

 

# 4. Create the final map using ggplot2 for better 

aesthetics. 

ggplot() + 

  # Add the raster layer 

  geom_raster(data = map_df, aes(x = x, y = y, fill = 

soil_type)) + 

  # Add the country boundary on top 

  geom_sf(data = slovakia_boundary_proj, fill = NA, color 

= "black", size = 0.5) + 

  # Use the Viridis color palette, which is popular in 

QGIS and colorblind-friendly 

  scale_fill_viridis_d(option = "D", name = "Soil Type 

(WRB)") + 

  theme_bw() + 

  labs( 

    title = "Predictive Map of Soil Types in Slovakia", 

    x = "Longitude", 

    y = "Latitude" 

  ) + 

  coord_sf(crs = crs(predicted_map)) 

 

Map analysis: On the final map, we can see the spatial patterns of 

soil distribution, which our model "studied". The detail of the map is 

limited only by the resolution of our initial covariates. As you can see, 

the predictive map predicted the distribution of the main soils of 

Slovakia very well. At the same time, we note that we used the minimum 

possible set of covariates, and when they are expanded, the accuracy of 

the forecast will be much higher. 

This stage is the triumph of the entire DSM workflow. It transforms 

an abstract statistical model into a concrete, spatially explicit and useful 

product, ready for further analysis, interpretation and use in sustainable 

land use, soil protection and agronomic planning tasks. 
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A) 

 
B) 

 
Fig. 2.19. Final predictive map of soil types (A). Each color on the map 

corresponds to the predicted dominant soil type for a given cell. For comparison, 

the original soil map (B) is given 

 

 

10.2. Map Interpretation 

 

Creating a beautiful, smoothed predictive map is the technical 

completion of the DSM workflow. However, the scientific work does 

not end there. The final and perhaps most important step is  the 

interpretation of the map. This is the process in which we go from 

"what" (what the map shows) to "why" (why the map shows exactly 
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these patterns). Interpretation is an intelligent synthesis where we 

combine the results of our statistical modeling with our fundamental 

knowledge of the field Soil Science, Geography and Ecology. 

A map is not an absolute truth, but a scientific hypothesis about the 

spatial distribution of soils, expressed in graphic form. Our task is to 

critically evaluate this hypothesis, understand its strengths and realize 

its limitations. 

 

Relationship of spatial patterns with SCORPAN factors 

The very first step of interpretation is to analyze spatial patterns on 

the map and correlate them with soil formation factors that we used as 

predictors. This is where the graph of the importance of variables, which 

we obtained at the stage of training the Random Forest model 

(subsection 8.3), comes in handy. 

 

1. Analyzing the dominant factors: We look at our map and remember 

which predictors were the most important. Suppose they were 

elevation (altitude) and geology (geology). Do we see this on 

the map? 

 Altitudinal gradient: We are likely to see a distinct 

zonality corresponding to the relief. For example, the 

warmest and driest southern lowlands (Danube Lowlands) 

are occupied by Chernozems and Fluvisemes.   Podzols 

and Leptosols (skeletal soils). This pattern is a classic 

example of vertical soil zoning and confirms that our model 

has successfully captured the relationship between soil and 

relief. 

 Parent rock influence: If we superimpose our map on the 

geologic one, we can see other patterns. For example, the 

ranges of the Rendzin (Rendzic Leptosols) on the map are 

likely to closely coincide with the outcrops of limestone 

rocks, which is their classic formation condition. 

 

2. Consideration of constraints and uncertainties: A scientifically 

competent interpretation always includes a discussion of 

limitations. 

 Scale and resolution: It is important to remember that our 
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map is a model, not a reality. The forecast for a pixel 

measuring 100x100 meters, is an average characteristic for 

this area. It does not reflect the micro-variability of the soil 

inside this pixel. 

 Model accuracy: We must return to our matrix of 

inconsistencies (Chapter 9). If we know that the model has 

often confused, for example, Cambisole and Luvisoli, then 

on the map in the transition zones between these two types 

of soils, we must interpret the boundary not as a clear line, 

but as an area with increased uncertainty. 

 "Digital soil bodies": Unlike traditional maps, where the 

cartographer draws clear polygonal contours, our map is 

continuous. The smoothing we applied makes the contours 

more realistic, but they are still the result of statistical 

processing rather than field delineation. 

 

Practical application 

The final stage of interpretation is the answer to the question: "How 

can this map be used?". Our predictive map can serve: 

 The basis for updating existing, more generalized soil maps. 

 Inputs for erosion models, hydrological modeling, or potential 

yield estimation. 

 A tool for planning sustainable land use, identifying lands in 

need of protection or optimizing agricultural practices. 

 Thus, interpretation is not just a description of a map, but an in-

depth analysis that combines statistical results with expert 

knowledge. It is this synthesis that turns our digital product into 

a true scientific tool, contributing to a better understanding and 

management of invaluable soil resources. 
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PART III. PREDICTIVE MODELING OF SOIL CHARACTERISTICS 

 

Chapter 11. Continuous Variable Modeling: Organic 

Carbon Content 

 

11.1. Differences between Modeling of Continuous and Categorical 

Variables 

 

In the second part of this tutorial, we have successfully gone all the 

way through digital mapping for the categorical variable – soil type. 

We have trained the model to assign a specific label or class to each 

pixel on the map ("Cambisol", "Chernozem", etc.). This task, known as 

classification, is fundamental for creating soil maps. However, for many 

practical tasks of agronomy, ecology and sustainable land use, we need 

to know not only the type of soil, but also the type of soil,  but also its 

quantitative characteristics. For example, what exactly is the organic 

carbon content, what is the cation exchange capacity, or what is the 

folding density? 

The answer to these questions is provided by another type of guided 

machine learning – regression. In this part of the book, we will focus 

on regression modeling, choosing one of the most important properties 

of soil – Soil Organic Carbon (SOC) – as our target variable. 

The transition from classification to regression changes not so much 

the overall DSM workflow as key aspects in the modeling and 

evaluation phases. We look at these fundamental differences. 

 

1. Nature of the target variable 

This is the most important difference that defines everything else. 

o Classification: The target variable is categorical (in R – 

factor). It has a limited set of discrete, disordered levels (for 

example, 8 types of soils). The model predicts belonging to 

one of these classes. 

o Regression: The target variable is continuous (in R – 

numeric). It can take any numerical value within a certain 

range (e.g. SOC content can be 1.2%, 3.45%, 5.8%, etc., or 

15, 50, 126 t/ha). The model predicts a specific numerical 

value. 
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o 2. Algorithms and their settings 

o While many algorithms, like Decision Trees and Random 

Forest, can solve both types of problems, their inner 

workings and settings are different. 

o Decision trees (rpart): For classification, we used method 

= "class". For regression, we will use method = "anova". 

The criterion for dividing nodes changes from "purity" of 

classes to minimizing the sum of squares of deviations from 

the mean in newly formed groups. 

o Random Forest (randomForest): The algorithm 

automatically determines the type of task by the type of 

target variable. For regression, the final prediction for the 

new observation is not made by "voting" the trees, but by 

averaging the  predictions from all the trees in the forest. 

 

3. Metrics to Evaluate Accuracy 

This is perhaps the most obvious difference. Metrics based on the 

comparison of discrete labels are completely unsuitable for evaluating 

the accuracy of numerical predictions. 

 Classification: We relied on  the Discrepancy Matrix, from 

which we obtained the Overall Accuracy, the 

Manufacturer/User Accuracy,  and, most importantly,  the 

Kappa Coefficient.  

 Regression: To assess the accuracy of regression models, a 

completely different set of metrics is used, based on the analysis 

of errors (residuals) - the difference between true and 

predicted values. The key metrics are: 

 Coefficient of determination (R2): Shows what 

proportion of variability (variability) of the target variable 

our model explains. Values from 0 to 1; the closer to 1, 

the better. 

 Root Mean Squared Error (RMSE): This is essentially 

the standard deviation of model errors. It is measured in 

the same units as the target variable (e.g., as a percentage 

of SOC), making it easy to interpret. 

 Biased (Bias or Mean Error): Shows whether the model 
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has a systematic tendency to overestimate or 

underestimate forecasts. The ideal value is 0. 

 

  

 
Fig. 3.1. Comparison of a classic SOC map of Ukraine (above) and a map based 

on regression models of the soil characteristics (down). 
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Thus, while the general logic of SCORPAN and the DSM workflow 

remain the same, the transition to continuous variable modeling requires 

a change in the tooling in the training phases and, especially, model 

validation. In the following subsections, we will apply these new 

approaches to create a detailed map of organic carbon content. 

 

11.2. Focus on Soil Organic Carbon (SOC) 

 

Moving on to regression modeling, we chose Soil Organic Carbon 

(SOC) as our target variable. This choice is not accidental. SOC is 

perhaps one of the most important and most studied properties of soil, 

and there are several fundamental reasons for this. Understanding its 

role will help us better interpret the results of our simulations and realize 

the practical significance of the maps created. 

 

Why is SOC so important? 

The organic carbon content is an integral indicator located at the 

intersection of key environmental, agronomic and climatic processes. 

 Soil Health and Fertility Indicator: Soil organic matter, of 

which carbon is the main constituent, is the foundation for most 

fertility processes. It improves soil structure by increasing soil 

aggregation and erosion resistance; increases the ability to retain 

moisture, which is critical in climate change; is a source of 

nutrients for plants (nitrogen, phosphorus, sulfur); and supports 

the biodiversity of soil microorganisms. SOC maps are 

indispensable for accurate agriculture and sustainable 

management of agroecosystems. 

A key component of the global carbon cycle: Soils are the largest 

terrestrial reservoir of carbon on the planet, containing several times 

more carbon than the entire atmosphere and biomass combined. Even 

small changes in soil carbon stocks can have a significant impact on the 

concentration of greenhouse gases in the atmosphere. Therefore, 

accurate maps of the spatial distribution of SOCs are critical for 

modeling global climate change,  assessing the potential of soils to 

sequester (sequester) carbon and developing national strategies to 

mitigate the effects of climate change. 
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SOC Data Features 

As a continuous variable, SOC content data have certain statistical 

properties that we must consider before modeling. One of the most 

characteristic features of many soil properties, and SOC in particular, is 

the positive-asymmetric (right-handed) distribution. 

This means that most of the values are relatively low, but a small 

number of very high values ("long right tail") are present in the data. 

Such high values are often observed, for example, in peat soils 

(histosols) or in the powerful humus horizons of the Chernozems. 

We visualize a typical SOC distribution using a histogram. 

 
# --- Load Necessary Libraries --- 

# This script will install packages if they are not 

already present. 

packages <- c("sf", "dplyr", "ggplot2") 

for (pkg in packages) { 

  if (!require(pkg, character.only = TRUE)) { 

    install.packages(pkg) 

    library(pkg, character.only = TRUE) 

  } 

} 

 

# --- Chapter 11: Modeling SOC --- 

# --- Section 11.3: Data Transformation --- 

 

# 1. Load the soil point data 

# We assume the data is in the 'gis_data' subfolder. 

soil_points <- 

st_read("gis_data/slovakia_soil_points_3857.gpkg") 

 

# 2. Prepare the data for transformation and modeling 

# We will use SOC_t_ha as our target variable. 

modeling_data <- soil_points %>% 

  select(SOC_t_ha) %>%      # Select only the target 

variable 

  as.data.frame() %>%       # Convert sf object to a 

regular dataframe 

  select(-geom)             # Remove the empty geometry 

column 

 

# Plot 1: Histogram of original SOC stock data 

p_original <- ggplot(modeling_data_transformed, aes(x = 

SOC_t_ha)) + 
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  geom_histogram(bins = 30, fill = "darkolivegreen", 

color = "black") + 

  theme_bw() + 

  labs(title = "Before Transformation", x = "SOC Stock, 

t/ha", y = "Frequency") 

 

 

 
Fig. 3.2. A histogram illustrating a typical positive-asymmetric distribution of 

SOC content. A large number of low values and a long "tail" with few high 

values are visible 

 

Graph analysis: This asymmetry can create problems for some 

statistical models that work better with data that have a normal 

(symmetrical) distribution. In addition, the presence of extremely high 

values can disproportionately affect the model's learning process. 

Because of this feature, standard practice before modeling SOCs (and 

many other ground properties) is to transform the data in order to make 

their distribution more symmetrical. The most common and efficient 

method for this is logarithmic transformation. We will discuss this 

step in detail in the next subsection, as it is key to building a reliable 

regression model. 
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11.3. Preparing Data for SOC Modeling (Logarithmic 

Transformation) 

 

In the previous subsection, we found that organic carbon content 

(SOC) and many other soil properties often have a positive-asymmetric 

distribution. This means that most values are relatively low, but there 

are a small number of extremely high values, which creates a "long right 

tail" on the histogram. Such asymmetry can negatively affect the 

performance of regression models, especially linear ones, which often 

make assumptions about the normality of the error distribution.  Even 

for more flexible models like Random Forest, strong asymmetries and 

the presence of outliers can make the learning process difficult. 

To solve this problem, standard practice is data transformation – 

applying a mathematical function to our target variable in order to make 

its distribution more symmetric, similar to normal (bell-shaped). For 

positive-asymmetric data, the most common and most effective method 

is logarithmic transformation. 

 

How Does a Logarithmic Transformation Work? 

The natural logarithm (log() in R) has the property of "compressing" 

large values and "stretching" small ones. When we apply it to our 

asymmetric distribution, it effectively "pulls in" the long right tail, 

making the overall distribution much more symmetrical. 

Important note: the logarithm is not defined for zero and negative 

values. Since the SOC content cannot be negative, the main problem is 

zeros. If there are zero SOC values in our data, the standard approach is 

to add a small constant before logarithm, such as log(soc_percent + 1). 

 

Practical implementation and visualization of the effect 

We apply the logarithmic transformation to our SOC data and 

visually evaluate its effect by comparing the histograms before and after 

the transformation. We'll use the mutate() function with dplyr to create 

a new column with transformed values. 

 
# 3. Apply the Logarithmic Transformation 

# Create a new column with log-transformed SOC stock 

values. 



148 

modeling_data_transformed <- modeling_data %>% 

  mutate(log_soc = log(SOC_t_ha)) 

 

# --- 4. Visualize the effect of the transformation --- 

 

# Plot 2: Histogram of log-transformed SOC stock data 

p_transformed <- ggplot(modeling_data_transformed, aes(x 

= log_soc)) + 

  geom_histogram(bins = 30, fill = "skyblue", color = 

"black") + 

  theme_bw() + 

  labs(title = "After Log Transformation", x = "log(SOC 

Stock)", y = "Frequency") 

  

# Combine the two plots side-by-side using the patchwork 

package 

p_original + p_transformed 

 
Fig. 3.3. Comparison of the distribution of SOC contents before (left) and after 

(right) logarithmic transformation. You can clearly see how the asymmetrical 

distribution turns into a symmetrical, bell-shaped one 

 

Graph analysis: The result is obvious. The left histogram shows a 

strongly asymmetric distribution of the original data. The right 

histogram, showing the distribution of logarithmic values, is much more 

symmetric and resembles a normal distribution. It is on these 

transformed data (log_soc) that we will train our regression model. 

 

The need for reverse transformation 

This is a critical point that should not be overlooked. Our model will 

learn to predict the logarithm of the SOC. Therefore, its predictions 
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(for both the test sample and the final map) will be on a logarithmic 

scale. These values do not have a direct physical interpretation. 

To get the predictions in original, understandable units (SOC 

percentages), we must perform an inverse transformation. The inverse 

function to the natural logarithm is the exponent (exp() in R) 

 
SOC_predicted=exp(log(SOC_predicted)) 

 

We will apply this operation in the final stage, after receiving the 

predictions from the model, to create a map on which the values can be 

easily interpreted. 

 

11.4. Exploratory Data Analysis 

 

Once we have prepared and transformed our target variable, we 

should not immediately move on to building a complex model. An 

important intermediate step is Exploratory Data Analysis (EDA). The 

purpose of the EDA is to investigate the relationships between our target 

variable (now log_soc) and our predictors. 

 Are there any statistically significant relationships 

between our covariates and SOC content at all? 

 Which of the predictors look the most promising? 

 What is the nature of these relationships (linear, non-

linear)? 

The answers to these questions give us a deep understanding of the 

data, confirm the validity of the choice of our predictors according to the 

SCORPAN model, and help in the further interpretation of the 

simulation results. For EDA, we will use simple but powerful visual and 

statistical methods. 

 

Correlation analysis for continuous predictors 

The first step is to estimate the linear relationship between our 

target variable and all continuous predictors. The Pearson 

correlation coefficient (r) measures the strength and direction of the 

linear relationship between two variables. It ranges from -1 (perfect 

negative relationship) to +1 (perfect positive relationship), where 0 

means no linear relationship. 
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We calculate and visualize the correlation matrix for our data. 

 
# 4. Load the raster stack of environmental covariates 

covariate_stack <- 

rast("gis_data/all_slovakia_terrain_derivatives.tif") 

 

# 5. Create and add coordinate layers to the stack 

# This is necessary if the model was trained with x and y 

as predictors. 

x_coord_raster <- init(covariate_stack, "x") 

y_coord_raster <- init(covariate_stack, "y") 

names(x_coord_raster) <- "x" 

names(y_coord_raster) <- "y" 

full_stack <- c(covariate_stack, x_coord_raster, 

y_coord_raster) 

 

# 6. Extract covariate values for each point 

# Ensure CRS match before extraction 

soil_points_proj <- st_transform(soil_points, crs = 

crs(full_stack)) 

extracted_data <- extract(full_stack, soil_points_proj) 

 

# 7. Prepare the final dataset for exploratory analysis 

# We combine the transformed SOC data with the extracted 

predictor values. 

exploratory_dataset <- modeling_data_transformed %>% 

  bind_cols(extracted_data) %>% 

  mutate(geology = as.factor(geology)) %>% # Ensure 

geology is a factor 

  na.omit() # Remove any rows with missing values 

 

# 8. Prepare a numeric-only dataset for the correlation 

matrix 

numeric_dataset <- exploratory_dataset %>% 

  select_if(is.numeric) %>% 

  select(-ID, -SOC_t_ha) # Remove ID and original SOC 

column 

 

# 9. Calculate the correlation matrix 

cor_matrix <- cor(numeric_dataset) 

 

# 10. Visualize the correlation matrix for numeric 

variables 

corrplot(cor_matrix, method = "circle", type = "upper", 

order = "hclust", 
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         tl.col = "black", tl.srt = 45) 

 

 
Fig. 3.4. A correlogram that visualizes the correlation matrix. The size and color 

of the circles show the strength and direction of correlation between the variables 

 

Graph analysis: We are most interested in the first row (or column) 

corresponding to log_soc. We can see, for example, a strong positive 

correlation with elevation (large blue circle) and tri. This makes 

complete soil science sense: mountainous areas (higher altitude) are 

usually colder and wetter, which slows down the decomposition of 

organic matter. 

 

Analysis of relationships with categorical predictors 

Correlation does not work for categorical variables such as geology. 

To assess their relationship to log_soc, it is best to use box plots, which 

allow you to visually compare the SOC distribution for each category of 

the parent rock. 

 
# 11. Create an optimized box plot for the 'geology' 

variable with many categories 

# We will reorder the geology factor based on the median 

log_soc value. 

# This makes the plot much more interpretable. 
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ggplot(exploratory_dataset, aes(x = reorder(geology, 

log_soc, FUN = median), y = log_soc)) + 

  geom_boxplot(fill = "purple", alpha = 0.7) + 

  theme_bw() + 

  labs( 

    title = "Distribution of log(SOC) by Parent 

Material", 

    subtitle = "Categories are ordered by median SOC 

value", 

    x = "Parent Material (Geology)", 

    y = "log(SOC Stock)" 

  ) + 

  # Remove x-axis text labels as they would be unreadable 

  theme(axis.text.x = element_blank(), 

        axis.ticks.x = element_blank()) 

 

 

 
Fig. 3.5. Box diagrams comparing the log(SOC) distribution for different 

geological classes 

 

Graph analysis: This graph can clearly show that the median values 

and variability of SOC differ significantly between types of parent 
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rocks. For example, on loess rocks that are rich in nutrients, the SOC 

content may be systematically higher than on poor sandstones. This 

confirms that geology is an important predictor. 

Exploratory analysis is an indispensable stage that allows you to "get 

acquainted" with the data. It confirms that there are logical, earth-

science-interpretable relationships between our predictors and the target 

variable. This gives us confidence that our approach is sound and we can 

proceed to build a regression model with the expectation of obtaining 

meaningful results. 
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Chapter 12. Regression Models: Random Forest and Cubist 

 

12.1. Random forest for regression 

 

In Part II, we successfully applied the Random Forest algorithm to 

classify soil types. We saw how an ensemble of hundreds of decision 

trees, each of which "votes" for a specific class, allows us to achieve 

high accuracy and stability of the forecast. Now we adapt this same 

powerful approach to solve  the regression problem  – predicting a 

continuous quantitative variable, namely our logarithmic organic carbon 

(log_soc) content. 

The conceptual basis of the algorithm remains the same: we also 

build a "forest" of a large number of trees on bootstrap data samples, 

using a random subset of predictors at each step. However, key aspects 

of its inner workings and the way in which the final forecast is obtained 

change dramatically. 

 

Key Differences of Regression Random Forest 

 Criterion for splitting nodes: If in classification trees the 

algorithm looked for a division that maximizes the "purity" of 

classes in child nodes (for example, by the Gini index), then in 

regression trees it looks for a division that minimizes  the 

variability (variance) of the target variable. In other words, it 

tries to divide the data so that in each of the newly formed 

groups, the SOC values are as similar to each other as possible. 

Prediction: Instead of "voting" for the most popular class, the final 

prediction for a new observation in the regression Random Forest is 

obtained by averaging the predictions from all the individual trees in 

the forest. Each tree gives its own numerical prediction, and the end 

result is their arithmetic mean. 

 

Practical implementation and analysis of the model 

Fortunately, the randomForest package is versatile. The 

randomForest() function automatically detects the type of task 

(classification or regression) by the type of your target variable. Since 

log_soc is numeric, the function will automatically switch to regression 

mode. 
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Step 1: Data Preparation and Model Training 
We will use the same approach to breaking down data into training 

and test samples as before. 

 
# --- Chapter 12: Regression Modeling --- 

 

# 1. Split data into training (75%) and testing (25%) 

sets 

# We use the full exploratory dataset for this 

set.seed(456)  

data_split <- initial_split(exploratory_dataset, prop = 

0.75) 

train_data <- training(data_split) 

test_data  <- testing(data_split) 

 

# 2. Train the Random Forest regression model using 

ranger 

# ranger automatically detects the regression task from 

the numeric target variable. 

set.seed(456) 

rf_model_reg <- ranger( 

  formula = log_soc ~ . - SOC_t_ha - ID, # Predict 

log_soc using all other variables except the original SOC 

and ID 

  data = train_data, 

  num.trees = 500, 

  importance = "permutation" 

) 

 

# 3. Print the model summary 

# It will show the R-squared value based on OOB data. 

print(rf_model_reg) 

 

 
 

Output Analysis: The print() output for the regression model 
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provides a different set of metrics: 

 Type of forest: regression. 

 Mean of squared residuals (MSE): The mean square of errors 

calculated on OOB data. This is an indicator of the average 

value of the model error. The smaller it is, the better. 

 % Var explained: The percentage of variation explained. It is 

analogous to the coefficient of determination (R2) for OOB 

data. It shows what proportion of variability in SOC content in 

the data our model was able to explain using predictors. A 

value of 39% means that the model explains 39% of the 

variability of the SOC, which is not the highest result, but 

given the minimal set of predictors is quite good. 

 

Estimating the importance of variables 

As in classification, we can estimate which predictors contribute the 

most to the accuracy of the regression model. The metrics of importance 

here are also different: 

 %IncMSE: Percentage increase in standard error (MSE). Shows 

how many percent the average model error will increase if you 

"shuffle" the value of a given predictor, destroying its relationship 

with the target variable. This is the most important and reliable 

indicator. 

 IncNodePurity: Increase in the "purity" of nodes, measured by 

decreasing the sum of the squares of the remainders. 

 
# 4. Get and plot Variable Importance 

# Extract the importance scores from the model object 

importance_scores <- importance(rf_model_reg) 

 

# Convert the named vector of scores into a data frame 

for plotting with ggplot2 

importance_df <- data.frame( 

  Variable = names(importance_scores), 

  Importance = importance_scores 

) %>% 

  # Arrange the variables by importance for a cleaner 

plot 

  arrange(Importance) %>% 

  mutate(Variable = factor(Variable, levels = Variable)) 

# This keeps the sorted order in the plot 
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# Create the variable importance plot using ggplot2 

ggplot(importance_df, aes(x = Importance, y = Variable)) 

+ 

  geom_col(fill = "darkred") + 

  theme_bw() + 

  labs( 

    title = "Variable Importance for SOC Regression", 

    x = "Importance (Permutation)", 

    y = "Predictor" 

  ) 

 

 
Fig. 3.6. Graph of the importance of variables for a regression model. 

Predictors are sorted by their effect on model accuracy 

 

Graph analysis: This graph allows us to draw conclusions about the 

key factors that control the distribution of organic carbon in our area. 

For example, we may find that elevation, tri (Terrain Ruggedness Index) 

and slope are much more important than, say, the aspect (slope 

exposure). 

The Random Regression Forest is an extremely powerful and flexible 
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tool. It does not make rigid assumptions about the linearity of 

relationships, can work with a large number of predictors, and is 

resistant to outliers. This makes it one of the best "ready-to-use" 

algorithms for predictive mapping of continuous soil properties. 

 

12.2. The Cubist model 

 

The random forest is an extremely powerful and versatile tool for 

regression. However, its main drawback is often considered to be low 

interpretation. We can find out which predictors are important, but the 

model itself remains a "black box" – we cannot easily understand how 

exactly it turns the predictor values into the final prediction.  This can 

be a significant limitation. 

Fortunately, there are alternative approaches that combine high 

accuracy with excellent interpretation. One of the most famous and 

efficient such algorithms is Cubist (Kuhn & Quinlan, 2025). This 

algorithm, developed by Ross Quinlen (author of the famous C4.5 

decision trees), is a unique hybrid that combines rule-based models and 

linear regression. 

 

How does Cubist work? 

Cubist is a complex but intuitive algorithm that works in two main 

stages: 

 Creating Rules: In the first step, Cubist works like a decision 

tree. It recursively divides the predictor space to create a set of 

comprehensive and mutually exclusive rules. Each rule is 

essentially a combination of if-and-then conditions that defines 

a specific subset of data. For example, one rule might look like 

this: IF elevation <= 550m AND geology = "Les". 

Building linear models: This is a key difference from conventional 

trees. For each subset of the data defined by the rule, Cubist does not 

just calculate the mean, but builds a separate multiple linear 

regression model. That is, each rule has its own unique equation that 

relates the target variable to predictors. This allows the model to capture 

local linear dependencies, which may be different in different parts of 

the landscape. 

The final prediction for a new observation is made by determining 
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which rule it falls under and then applying the corresponding linear 

equation. 

 

 
Fig. 3.7. Conceptual diagram of the Cubist model. It shows how the predictor 

space is divided into several regions (rules), and each region builds its own linear 

regression model (from Jacey Heuer, 2019) 

 

Practical implementation with the Cubist package 

We build a Cubist model based on our data. The Cubist package has 

a slightly different syntax than randomForest: it requires the predictors 

and the target variable to be passed as separate objects. 

 
# Load the Cubist library 

# Cubist package on CRAN: https://cran.r-

project.org/web/packages/Cubist/index.html 

install.packages("Cubist") 

 

library(Cubist) 

library(dplyr) 

 

# We use the same train_data and test_data from the RF 

example 

 

# Cubist requires predictors (x) and the target (y) to be 

separate 

# Let's prepare the training data 

train_predictors <- train_data %>% select(-log_soc) 

train_target <- train_data$log_soc 

 

# Train the Cubist model 

# 'committees' is an important hyperparameter, similar to 

boosting. 

https://opendatascience.com/cubist-models-in-r-balancing-interpretability-and-predictive-power/
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# It creates multiple models and averages their 

predictions, improving accuracy. 

cubist_model <- cubist(x = train_predictors, y = 

train_target, committees = 5) 

 

# Print the model summary to see the rules and 

performance 

summary(cubist_model) 

 

 
Output Analysis: The output summary() is extremely informative 

and is the main advantage of Cubist. 

 Performance Score: At the beginning, a mean and relative 

error score calculated using internal cross-validation is output. 

 Importance of Variables: Cubist shows how often each 

variable has been used in rule conditions and in linear models. 

This provides a deep understanding of the role of each predictor. 
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 Rules: The most interesting part. Cubist prints each rule and its 

corresponding linear model. 

 

 Example of a rule interpretation: Suppose the output for one 

of the rules looks like this: 

This output indicates that”: "For areas located at an altitude of up to 

221.88 meters on loess or alluvial sediments (334 such cases in our 

data), the content of log_soc can be predicted using the equation "3.96 

– 0.002*elevation ...". 

Cubist is a great alternative to the Random Forest, especially when 

the interpretation of the model is as much a priority as its accuracy. In 

the next section, we will perform a formal validation of both models on 

a test sample in order to objectively compare their predictive power. 
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Chapter 13. Validation of regression models and uncertainty 

analysis 

 

Having built two powerful regression models – the Random Forest 

and the Cubist – we, as in the case of classification, must carry out their 

objective and comprehensive validation. Our goal is not just to choose 

the "best" model, but also to deeply understand how accurate its 

predictions are, what kind of mistakes it makes, and whether it has 

systematic tendencies to over- or underestimate. To do this, we will use 

a set of specialized metrics designed specifically to evaluate continuous 

forecasts. 

 

13.1. Key metrics for regression (R², RMSE, Bias) 

 

As we have already noted, metrics from the classification, such as 

the matrix of mismatches and the Kapp coefficient, are completely 

unsuitable for regression. Instead of analyzing whether the class is 

correctly guessed, we analyze errors (residuals) – the difference 

between the true, observed value (y) and the predicted value (ŷ). 

residuals = y − ŷ 

Analyzing the distribution of these errors in the test sample is the 

basis for calculating all key regression metrics. 

 

Coefficient of determination (R2) 

The coefficient of determination, or R-squared, is one of the most 

popular metrics. It shows what fraction (proportion) of the total 

variability (variance) of the target variable our model was able to 

explain using predictors. 

R2 ranges from 0 to 1 (or 0% to 100%). 

 R2=1: Ideal model that explains 100% data variability. 

 R2=0: A completely useless model that explains 0% 

variability (its predictions are no better than just an 

average of all data). 

 

Interpretation: If we obtained R2=0.82, this means that 82% of the 

variability in the SOC content in our test sample is due to the SCORPAN 

factors included in our model. The remaining 18% is "unexplained" 
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variability due to noise in the data or factors that we did not take into 

account. 

 

Root Mean Squared Error (RMSE) 

If R2 is a relative measure of model quality, then RMSE is an 

absolute measure of the magnitude of error. It is essentially the 

standard deviation of model errors, and most importantly, it is measured 

in the same units as our target variable. 

 

RMSE = √[ Σ(Pi – Oi)
2 / n ] 

 

Interpretation: If our target variable is log_soc, then the RMSE will 

be measured in units of log(%). If we got RMSE = 0.3, it means that, on 

average, the predictions of our model deviate from the true values by 

±0.3 units of log(%).  usually, the best. 

 
Fig. 3.8. Illustration of errors (residuals) for a regression model. A scatter plot 

with a regression line is shown. Vertical segments from points to a line are 

errors, and RMSE is a generalized measure of their average value 

 

Biases (Bias or Mean Error, ME) 

This metric shows whether the model has systematic error. It is 

calculated as the simple arithmetic mean of all errors. 

 
Interpretation: 

 Bias > 0: The model systematically underestimates 

forecasts (true values are on average greater than predicted). 

 Bias < 0: The model systematically overestimates forecasts. 
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 Bias ≈ 0: The model is unbiased, that is, its errors are 

random and cancel each other out on average. This is a 

perfect result. 

 

Practical calculation and comparison of models 

We now apply these metrics to compare our rf_model_reg and 

cubist_model models on the test sample. 

 
# --- Chapter 13: Model Validation --- 

 

# 1. Make predictions on the test data for both models 

# For ranger, we need to access the '$predictions' 

element and use the 'data' argument 

rf_preds <- predict(rf_model_reg, data = 

test_data)$predictions 

# For Cubist, we need to provide only the predictor 

columns 

cubist_preds <- predict(cubist_model, newdata = test_data 

%>% select(-log_soc, -SOC_t_ha, -ID)) 

 

# 2. Create a results dataframe to hold true values and 

predictions 

results_df <- tibble( 

  true_log_soc = test_data$log_soc, 

  rf_pred = rf_preds, 

  cubist_pred = cubist_preds 

) 

 

# 3. Calculate metrics for the Random Forest model 

rf_metrics <- results_df %>% 

  metrics(truth = true_log_soc, estimate = rf_pred) 

print("--- Random Forest Validation Metrics ---") 

print(rf_metrics) 

 

# 4. Calculate metrics for the Cubist model 

cubist_metrics <- results_df %>% 

  metrics(truth = true_log_soc, estimate = cubist_pred) 

print("--- Cubist Validation Metrics ---") 

print(cubist_metrics) 
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Output Analysis: The yardstick package automatically calculates a 

set of standard metrics, including rmse, rsq(R2), and mae (Mean 

Absolute Error, similar to RMSE, but less sensitive to emissions). We 

can easily compare tables for both models. For example, we can see that 

Cubist has a slightly higher RMSE, suggesting lower accuracy, while 

Random Forest has a single R2.  Quantitative analysis allows us to make 

an informed choice in favor of one or another model for the final spatial 

forecasting. 

 

13.2. Visual diagnostics 

 

Quantitative metrics such as R2 and RMSE provide us with 

important but very concise information about model performance. They 

summarize millions of details about errors into a single number. To truly 

understand how and where our model goes wrong, we need to go beyond 

these generalizations and resort to visual diagnostics. Graphical error 

analysis is an indispensable tool that allows you to identify systematic 

problems, such as bias or heteroscedasticity (unevenness of errors), 

which may not be noticeable when analyzing numerical metrics alone. 

The most informative and common visual diagnostic tool for 

regression models is  the scatter plot "Observed vs. Predicted" 

values. 

 

Chart "Observed vs. Predicted" 

This graph is built very simply: 
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 On the X axis, true, observed values from the test sample 

(true_log_soc) are deposited. 

 Along the Y axis, the values predicted by the model for the 

same points (rf_pred, cubist_pred) are postponed. 

 

Interpretation of the graph: 

 Perfect model: If our model were perfect, all the points on this 

graph would lie exactly on the 1:1 line (the line where y = x). 

This line represents perfect consistency. 

 Real model: In reality, the points will always be scattered 

around this line. The degree of scattering visually shows us the 

magnitude of the errors (the denser the points are grouped 

around the line, the smaller the RMSE). 

 Systematic deviations: The most important thing is to look for 

systematic patterns in the deviations. For example, if for high 

SOC values the points are systematically below the 1:1 line, it 

means that the model underestimates for soils with high 

organic content. 

 

We plot this graph for our Random Forest model. 

 
# 5. Visual Diagnostics: Observed vs. Predicted Plots 

# Create the plot for the Random Forest model 

p_rf <- ggplot(results_df, aes(x = true_log_soc, y = 

rf_pred)) + 

  geom_point(alpha = 0.6, color = "darkblue") + 

  geom_abline(slope = 1, intercept = 0, color = "red", 

linetype = "dashed", size = 1) + 

  geom_smooth(method = "lm", se = FALSE, color = "black") 

+ 

  theme_bw() + 

  labs( 

    title = "Observed vs. Predicted (Random Forest)", 

    subtitle = "Red line is the ideal 1:1 prediction", 

    x = "Observed log(SOC)", 

    y = "Predicted log(SOC)" 

  ) + 

  coord_equal() 

 

# Create the plot for the Cubist model 

p_cubist <- ggplot(results_df, aes(x = true_log_soc, y = 
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cubist_pred)) + 

  geom_point(alpha = 0.6, color = "darkgreen") + 

  geom_abline(slope = 1, intercept = 0, color = "red", 

linetype = "dashed", size = 1) + 

  geom_smooth(method = "lm", se = FALSE, color = "black") 

+ 

  theme_bw() + 

  labs( 

    title = "Observed vs. Predicted (Cubist)", 

    subtitle = "Red line is the ideal 1:1 prediction", 

    x = "Observed log(SOC)", 

    y = "Predicted log(SOC)" 

  ) + 

  coord_equal() 

 

# Display plots side-by-side for comparison 

p_rf + p_cubist 

 

 
Fig. 3.9. Scatter plot "Observed vs. Predicted" for the regression model. The dots 

show individual predictions, the red dotted line shows perfect consistency 

 

Graph analysis: This graph provides much more information than 

just the number R2. We can visually evaluate: 

 Overall accuracy: How tightly the points fit the 1:1 line. 

Bias: If a trend line (black solid) systematically passes above or below 

the red line, this indicates an overall bias. 

Nonlinear errors: If the points form a curved rather than straight cloud, 

this may indicate that the model does not pick up relationships well in 

extreme ranges of values. For example, a model may work well for 

average SOC values, but systematically err for very low or very high 

values. 
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Such visual analysis is a mandatory addition to quantitative metrics. 

It allows us not only to state accuracy, but to deeply understand the 

behavior of our model, identify its weaknesses and, if necessary, return 

to the stage of feature engineering or model selection to improve the 

results. 

 

13.3. Quantification of forecast uncertainty (quantile regression 

forests) 

 

So far, when evaluating our regression models, we have focused on 

the accuracy of the point forecast – the single "best" value that the 

model produces for each observation. Metrics like RMSE tell us how 

wrong this point prediction is, on average. However, in the real world, 

in order to make informed decisions, we often need to know not only the 

most likely value, but also how confident we are in that prediction. 

This is the concept of uncertainty. 

 

Imagine two situations: 

 The model predicts a SOC content of 3.5%, and we are 90% 

sure that the true value lies in the range of [3.4%, 3.6%]. This is 

a very reliable forecast. 

The model predicts the same 3.5%, but the 90% confidence interval is 

[1.5%, 5.5%]. This is a very unreliable forecast, although the point value 

is the same. 

The standard Random Forest, by averaging tree predictions, loses 

information about the spread of these predictions and cannot provide us 

with this confidence interval. Fortunately, there is a powerful 

modification of it designed specifically for this purpose – Quantile 

Regression Forests (QRF). 

 

How does QRF work? 

The idea of QRF is ingeniously simple. Instead of simply averaging 

predictions from 500 trees in a forest, QRF stores all 500 predictions 

for each new observation. Thus, for each point, we get not a single 

number, but a whole empirical distribution of probable values. 

With this distribution, we can calculate any quantile. A quantile is a 

value below which a certain percentage of data lies. 
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 0.05 quantile (5th percentile): a value below which is 5% of the 

predictions from all trees. 

 0.5 Quantile (50th percentile): This is the median, which is a 

more emission-tolerant alternative to the mean. 

 0.95 quantile (95th percentile): a value below which 95% of 

predictions are located. 

By calculating the lower (e.g., 0.05) and upper (e.g., 0.95) quantiles, 

we get a 90% Prediction Interval. This is our quantification of 

uncertainty. 

 

Practical implementation with ranger 

To build the QRF, we will use a modern, fast ranger package, which 

is an efficient implementation of the Random Forest and supports 

quantile regression. 

 
# --- Chapter 13.3: Quantifying Uncertainty with QRF --- 

 

# 1. Train a Quantile Regression Forest model 

# The key is to set the argument quantreg = TRUE 

set.seed(456) 

qrf_model <- ranger( 

  formula = log_soc ~ . - SOC_t_ha - ID,  

  data = train_data, 

  num.trees = 500, 

  quantreg = TRUE, 

  importance = "permutation" 

) 

 

# 2. Make predictions on the test set to get the 

quantiles 

# We specify which quantiles we are interested in (5th, 

50th/median, 95th) 

qrf_preds <- predict(qrf_model, data = test_data, type = 

"quantiles", quantiles = c(0.05, 0.5, 0.95)) 

 

# 3. The result is a matrix, let's convert it to a 

dataframe 

qrf_results_df <- as.data.frame(qrf_preds$predictions) 

colnames(qrf_results_df) <- c("q05", "q50_median", "q95") 

 

# 4. Combine with true values for plotting 

final_qrf_results <- bind_cols( 
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  true_log_soc = test_data$log_soc, 

  qrf_results_df 

) 

 

Visualization of uncertainty 

Now, having for each point not only a forecast (median), but also the 

limits of the confidence interval, we can create a much more informative 

diagnostic graph. 

 
# 5. Visualize the QRF predictions with uncertainty 

intervals 

ggplot(final_qrf_results, aes(x = true_log_soc, y = 

q50_median)) + 

  # Add the 90% prediction interval as a shaded ribbon 

  geom_ribbon(aes(ymin = q05, ymax = q95), fill = 

"skyblue", alpha = 0.5) + 

  # Add the median prediction points 

  geom_point(alpha = 0.6, color = "darkblue") + 

  # Add the ideal 1:1 line 

  geom_abline(slope = 1, intercept = 0, color = "red", 

linetype = "dashed") + 

  theme_bw() + 

  labs( 

    title = "QRF Validation with 90% Prediction 

Interval", 

    x = "Observed log(SOC)", 

    y = "Predicted log(SOC) (Median)" 

  ) + 

  coord_equal() 

 

Graph analysis: This graph is extremely informative. We see not 

only how close the median forecast is to the ideal line, but also  the 

width of the predictive interval.  We gain a deep understanding of its 

limitations. 
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Fig. 3.10. Chart "Observed vs. Predicted" for QRF. The dots show the median 

forecast and the blue bar shows the width of 90% of the predictive interval, 

visualizing the uncertainty 

 

The ability to quantify uncertainty is one of the greatest advantages 

of the modern DSM. It allows us to create not just one "best forecast" 

map, but a whole set of maps: a map of the median forecast, a map of 

the lower and upper limits of the confidence interval, and, most 

importantly, a map of the width of the predictive interval, which 

directly shows in which parts of our territory the forecasts are the most 

reliable, and where additional field research is needed. 
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Chapter 14. Construction of final maps and their practical 

application 

 

14.1. Creating final maps (forecast, interval boundaries, 

uncertainty) 

 

We have successfully trained and thoroughly validated our 

regression models, choosing Quantile Regression Forests (QRF) as a 

powerful tool that allows not only to make point predictions, but also to 

quantify their uncertainty. Now it's time to apply this learned model to 

our entire study area, turning abstract statistical dependencies into a set 

of concrete, spatially explicit, and extremely useful maps. 

Unlike the classification, where we created a single map of predicted 

classes, QRF allows us to generate a whole package of cartographic 

products: 

 Median prediction map: Our "best guess" for the SOC content 

in each pixel. 

Predictive interval boundary maps: Maps of the lower (e.g., 5th 

percentile) and upper (e.g., 95th percentile) boundaries that delineate the 

range of probable values. 

Uncertainty Map: A map that directly visualizes the width of the 

predictive interval, showing where our predictions are most reliable and 

where they are least certain. 

 

Practical implementation of spatial forecasting 

The spatial prediction process for regression is similar to what we did 

for classification. We'll be using the predict() function from the terra 

package, which integrates nicely with models trained with ranger. 

 
# --- Chapter 14: Spatial Prediction (Memory-Safe 

Version) --- 

 

# 1. Prepare the full raster stack for prediction 

# First, load the boundary to mask the predictors 

slovakia_boundary <- 

st_read("gis_data/slovakia_boundary.gpkg") 

slovakia_boundary_proj <- st_transform(slovakia_boundary, 

crs = crs(full_stack)) 
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# Mask the predictor stack to only include pixels within 

the boundary 

final_stack_masked <- mask(full_stack, 

slovakia_boundary_proj) 

 

# Ensure the names match the model predictors 

predictor_names <- 

qrf_model$forest$independent.variable.names 

final_stack_for_pred <- 

final_stack_masked[[predictor_names]] 

 

# 2. Spatially predict by processing the raster in chunks 

(tiles) 

# Create a grid of 8 tiles (4 rows, 2 columns) covering 

the raster extent 

tiles <- st_make_grid(st_bbox(final_stack_for_pred), n = 

c(4, 2)) 

tile_files <- character() # To store the paths of the 

predicted tiles 

 

# 3. Loop through each chunk, predict, and save to a 

temporary file 

for (i in 1:length(tiles)) { 

  print(paste("Processing chunk", i, "of", 

length(tiles))) 

   

  # Crop the raster stack to the chunk's extent 

  chunk_raster <- crop(final_stack_for_pred, tiles[i], 

snap = "out") 

   

  # Define a temporary filename for the predicted chunk 

  temp_filename <- file.path("results", 

paste0("temp_tile_", i, ".tif")) 

   

  # Spatially predict on the smaller chunk 

  q_values <- c(0.05, 0.5, 0.95) 

  predict( 

    chunk_raster,  

    qrf_model,  

    fun = function(model, ...) predict(model, ..., type = 

"quantiles", quantiles = q_values)$predictions, 

    filename = temp_filename, 

    overwrite = TRUE, 

    wopt = list(memfrac = 0.7, datatype = "FLT4S") 

  ) 
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  # Store the path to the created tile file 

  tile_files[i] <- temp_filename 

} 

 

# 4. Merge all the predicted tiles back into a single 

raster 

# Create a SpatRasterCollection from the list of file 

paths 

tile_collection <- sprc(tile_files) 

 

# Merge the collection into one final map 

predicted_quantiles_map <- merge(tile_collection, 

filename = "results/predicted_soc_quantiles.tif", 

overwrite = TRUE) 

 

# 5. Clean up temporary tile files 

file.remove(tile_files) 

 

# 6. Rename the layers of the resulting multi-layer 

raster for clarity 

names(predicted_quantiles_map) <- c("soc_q05", 

"soc_q50_median", "soc_q95") 

 

print("Spatial prediction of quantiles is complete.") 

 

Process analysis: We have received a new, three-layer raster file. 

Each layer corresponds to one of the calculated quantiles. Now we can 

easily manipulate these layers. It is worth warning that this step is quite 

long and demanding on the RAM and processor of the computer. 

Therefore, it is written taking into account these features. 

 

Uncertainty map calculation and visualization 

The most direct measure of uncertainty is the width of the 90% 

predictive interval (PI), which is calculated as the difference between 

the 95th and 5th percentiles. 

 
# --- Chapter 14.1: Create Final Maps --- 

 

# 1. Calculate the Prediction Interval Width (PIW) 

# This is the difference between the 95th and 5th 

percentile predictions. 

piw_map <- predicted_quantiles_map$soc_q95 - 

predicted_quantiles_map$soc_q05 
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names(piw_map) <- "prediction_interval_width" 

 

# 2. Extract the median prediction map 

median_prediction_map <- 

predicted_quantiles_map$soc_q50_median 

 

# 3. Mask both maps to the country boundary for clean 

visualization 

# Ensure boundary is in the correct projection 

slovakia_boundary_proj <- st_transform(slovakia_boundary, 

crs = crs(median_prediction_map)) 

median_map_masked <- mask(median_prediction_map, 

slovakia_boundary_proj) 

piw_map_masked <- mask(piw_map, slovakia_boundary_proj) 

 

# 4. Save the final, interpretable maps 

# Save the median prediction map 

writeRaster(median_map_masked, 

"results/soc_log_median_prediction.tif", overwrite = 

TRUE) 

 

# Save the uncertainty map 

writeRaster(piw_map_masked, 

"results/soclog_uncertainty_map.tif", overwrite = TRUE) 

 

# 5. Plot the two key maps separately with better color 

schemes 

# Define color palettes 

prediction_palette <- brewer.pal(9, "YlGnBu") 

uncertainty_palette <- brewer.pal(9, "YlOrRd") 

 

# Plot the median prediction map 

plot(median_map_masked,  

     main = "Median Prediction of log(SOC)",  

     col = prediction_palette) 

plot(st_geometry(slovakia_boundary_proj), add = TRUE, 

border = "black") 

 

# Plot the uncertainty map 

plot(piw_map_masked,  

     main = "90% Prediction Interval Width",  

     col = uncertainty_palette) 

plot(st_geometry(slovakia_boundary_proj), add = TRUE, 

border = "black") 
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Fig. 3.11. Key results of regression modeling. Above is a map of the median 

forecast log(SOC). Below is an uncertainty map (the width of the predictive 

interval), where lighter colors indicate higher confidence, and darker colors 

indicate higher uncertainty 

 

Map analysis: 

 The median forecast map shows the expected spatial 

patterns: higher log(SOC) values in mountainous and forest 

areas and lower values for arable land in lowlands. 

 The uncertainty map provides unique additional 

information. We can see that the uncertainty is not the same 

across the territory. It can be higher, for example, in high-
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altitude areas or in areas with rare combinations of parent 

rocks and terrain, where we had little training data. This map 

is an invaluable tool for planning future field studies: to 

improve the model, new samples should be taken precisely in 

the areas with the highest uncertainty. 

At this stage, we have received a powerful set of maps reflecting not 

only our knowledge of the distribution of SOCs, but also the limits of 

this knowledge. However, before using them, we must perform the last, 

critical step – reverse transformation – to return the values to their 

original, interpreted units. 

 

14.2. Reverse Conversion 

 

At the moment, we have a complete set of spatial predictions: a map 

of the median value, maps of the boundaries of the predictive interval 

and an uncertainty map. However, there is one last but extremely 

important problem: all of these maps are on a logarithmic scale.  

whether he is an agronomist, an environmentalist or a politician. 

To make our results useful and understandable, we must perform a 

back-transformation – returning all our predictions from the 

logarithmic scale to the original units of measurement (t/ha). This step 

is an integral part of any simulation using data transformation. 

 

Mathematical basis 

The inverse of the mathematical operation to the natural logarithm 

(log()) is the exponent (exp()). By applying the exp() function to our 

logarithmic predictions, we return them to the original scale. 

 
SOC_original=exp(log(SOC_predicted)) 

 

Practical implementation with terra 

Due to the power of map algebra in the terra package, applying this 

feature to our raster layers is extremely simple. We can apply the exp() 

function directly to our entire multi-layered SpatRaster object. 

 
# --- Chapter 14.2: Back-transformation --- 

 

# 1. Apply the exponential function to all layers of the 
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raster stack 

# This converts the log-transformed predictions back to 

the original scale (t/ha) 

backtransformed_soc_maps <- exp(predicted_quantiles_map) 

 

Process analysis: We now have a new three-layer raster, where the 

pixel values represent: 

 soc_q05: lower bound of 90% of the predictive interval 

for SOC, %. 

 soc_q50_median: median SOC projection, %. 

 soc_q95: upper limit of 90% of the predictive interval 

for SOC, %. 

 

Recalculation and analysis of uncertainty in the original scale 

An important point: we cannot simply exponentiate our old 

uncertainty map (piw_map). Due to the nonlinearity of the logarithmic 

function, the width of the predictive interval must be recalculated based 

on the already transformed limits. 

 
# 2. Recalculate the Prediction Interval Width on the 

original scale 

piw_map_original_scale <- 

backtransformed_soc_maps$soc_q95 - 

backtransformed_soc_maps$soc_q05 

names(piw_map_original_scale) <- "uncertainty_soc_t_ha" 

 

# 3. Extract the final median prediction map 

final_median_map <- 

backtransformed_soc_maps$soc_q50_median 

names(final_median_map) <- "Median_SOC_t_ha" 

 

# 4. Mask the final maps to the country boundary for 

clean visualization 

final_median_map_masked <- mask(final_median_map, 

slovakia_boundary_proj) 

piw_map_original_scale_masked <- 

mask(piw_map_original_scale, slovakia_boundary_proj) 

 

# 5. Save the final, interpretable maps 

# Save the median prediction map 

writeRaster(final_median_map_masked, 

"results/soc_median_prediction.tif", overwrite = TRUE) 
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# Save the uncertainty map 

writeRaster(piw_map_original_scale_masked, 

"results/soc_uncertainty_map.tif", overwrite = TRUE) 

 

# 6. Plot the final, interpretable maps 

# Define color palettes 

prediction_palette <- brewer.pal(9, "YlGn") 

uncertainty_palette <- brewer.pal(9, "YlOrRd") 

 

# Plot the median prediction map 

plot(final_median_map_masked,  

     main = "Median Prediction of SOC Stock (t/ha)",  

     col = prediction_palette) 

plot(st_geometry(slovakia_boundary_proj), add = TRUE, 

border = "black") 

 

# Plot the uncertainty map 

plot(piw_map_original_scale_masked,  

     main = "90% Prediction Interval Width (t/ha)",  

     col = uncertainty_palette) 

plot(st_geometry(slovakia_boundary_proj), add = TRUE, 

border = "black") 

 

Map analysis: After the reverse conversion, we can make an 

important observation. If on the uncertainty map on the logarithmic 

scale the error spread was more or less the same (homoscedastic), then 

on the map on the original scale, the uncertainty is likely to be 

heteroscedastic. This means that the absolute error of the forecast (in 

t/ha) is significantly higher in areas with high stocks  organic carbon. 

For example, for soil with a forecast SOC of 50 t/ha, the uncertainty may 

be ±15 t/ha, while for soil with a forecast of 150 t/ha, it may reach ±40 

t/ha. This is logical and is an important characteristic of the model. Our 

uncertainty map now clearly shows not only where  we are less certain, 

but also that the magnitude of this uncertainty depends on the predicted 

value itself. 

By completing this final step, we have obtained a complete, 

scientifically based and ready-to-use set of cartographic materials that 

honestly reflects not only our knowledge of the spatial distribution of 

organic carbon, but also the limits of this confidence. 
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Fig. 3.12. Final cards in original units. On the left is a map of the median forecast 

of SOC content in t/ha for the 0-30 cm layer. On the right is an absolute 

uncertainty map showing the width of the predictive interval in t/ha 

 

 

14.3. Practical application (estimation of carbon stocks, policy 

justification, inputs for models) 

 

By creating detailed, quantified and spatially explicit maps of the 

organic carbon content and associated uncertainty, we have completed 

the technical part of our work. However, the true value of digital soil 

mapping is revealed when these maps become a tool for solving real-
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world problems. Our maps are not just static images, but dynamic data 

sets that can serve as the basis for a wide range of application tasks. We 

consider three key areas of their practical application. 

 

1. Organic Carbon Stocks Estimation (SOC Stocks) 

Our maps show  SOC stocks in tonnes per hectare Which is very 

good for many tasks, especially for national reporting under climate 

agreements or for assessing carbon sequestration potential. 

 

2. Rationale for policy and sustainable governance 

SOC maps and their uncertainties are a powerful tool for decision-

making at the national and regional levels. 

 Identification of "hot spots": Maps allow you to identify areas 

with a critically low content of organic matter that require priority 

restoration measures (e.g. introduction of green manure, non-dump 

cultivation). 

 Land-use planning: Based on maps, recommendations for optimal 

land use can be developed, e.g. removing land from intensive 

cultivation on steep slopes with a low SOC content that are 

vulnerable to erosion and converting them to alkalinization. 

 Monitoring and reporting: Re-mapping at regular intervals 

allows you to track the dynamics of carbon content and evaluate the 

effectiveness of implemented agro-environmental policies. At the 

same time, the uncertainty map helps to properly plan the network 

of monitoring sites. 

 

3. Inputs for other models 

Very often, DSM products are not the end goal, but only an 

intermediate but critical input layer for other, more complex models: 

 Yield patterns: The organic matter content is one of the key 

factors determining the potential yield of crops. 

 Hydrological models: SOC affects the moisture-holding 

capacity of the soil, which is an important parameter for models 

that predict runoff, infiltration and flood risks. 

 Erosion models (e.g., USLE/RUSLE, SIMWE etc): Organic 

matter improves soil structure, making it more resistant to water 

and wind erosion. The SOC map is an important component for 
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calculating the soil erosion resistance factor. 

Thus, after completing this guide, we didn't just learn how to create 

maps. We have mastered the workflow that allows us to generate 

fundamental spatial information, which is the basis for many further 

scientific research and practical solutions in the field of natural resource 

management. 

 

  



184 

Conclusions 

 

Digital Soil Mapping (DSM) has become a central tool for 

understanding and managing one of the Earth’s most critical resources 

– soil. Throughout this textbook, we have presented both the conceptual 

foundations and the practical workflows necessary to apply predictive 

modelling in soil science. By combining classical soil survey principles 

with modern geospatial data, open-source software, and machine 

learning methods, DSM bridges the gap between traditional cartography 

and data-driven environmental science. 

The practical exercises demonstrated how real-world soil data can be 

harmonized, integrated with covariates, and transformed into predictive 

models. Using R and its extensive ecosystem of packages, students and 

researchers are equipped to move from raw data to reproducible outputs: 

maps of soil properties, indicators of model uncertainty, and validation 

metrics that support objective decision-making. The case studies for 

Slovakia illustrate not only the potential of local models, but also the 

broader transferability of these methods to other regions, provided that 

environmental covariates and sampling strategies are carefully adapted. 

A recurring theme across the chapters has been the importance of 

rigor and transparency. Reproducibility through scripting, careful 

harmonization of spatial data, and explicit communication of model 

uncertainty are not optional details, but essential practices that make 

DSM products credible and useful. At the same time, we emphasized the 

limitations inherent in any modelling approach: restricted sampling 

coverage, scale mismatches, and the challenges of non-stationary soil–

landscape relationships. These boundaries do not diminish the value of 

DSM but remind us that soil maps are always generalisations, to be 

interpreted with caution and context. 

Future Directions 

Looking ahead, DSM is poised to benefit from several transformative 

technological shifts: 
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 Artificial Intelligence (AI) and Deep Learning. New AI 

architectures, including convolutional and transformer-based 

neural networks, have shown promise in extracting soil–landscape 

patterns directly from high-dimensional data such as hyperspectral 

imagery or time-series satellite observations. These methods can 

complement traditional regression and ensemble approaches by 

capturing more complex, non-linear dependencies. 

 Remote Sensing Data Explosion. The availability of high-

resolution global datasets from satellites (e.g., Sentinel, Landsat, 

PlanetScope) and UAV platforms will dramatically expand the pool 

of covariates available for soil modelling. Near-real-time 

monitoring of vegetation, moisture, and land-use change can 

improve the temporal alignment of covariates with soil sampling 

campaigns, reducing bias and enabling dynamic soil property 

mapping. 

 Cloud Computing and Big Data Frameworks. Platforms such as 

Google Earth Engine, Google Cloud, TensorFlow, Amazon Web 

Services, OpenEO, and high-performance R/Python libraries allow 

the analysis of massive raster archives without the constraints of 

local hardware. This will make national and continental DSM 

products more feasible and reproducible. 

 Integration with Process-Based Models. Hybrid approaches that 

combine machine learning with mechanistic soil models (e.g., 

water and carbon cycling simulations) are expected to yield more 

robust predictions, especially under changing climate conditions. 

These advances will not eliminate the need for careful sampling design, 

uncertainty quantification, or context-specific interpretation, but they 

will broaden the scope and scalability of DSM applications. 

It is our hope that this textbook will serve as both a practical manual 

and a starting point for deeper exploration. By engaging with the 

methods presented here, readers are encouraged not only to reproduce 

the examples, but also to adapt them creatively to their own landscapes, 

questions, and datasets. In doing so, they will contribute to a growing 

community of practice that uses data science to better understand and 

steward the soils on which all terrestrial life depends. 
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APPENDIX A: List of recommended R packages 

 

Throughout this tutorial, we have used a number of R packages, each 

of which plays a key role in the digital soil mapping workflow. This app 

provides a generalized list of these packages with a brief description of 

their primary purpose. Installing these packages at the beginning of your 

project will provide you with all the tools you need. 

 

Data Manipulation and Visualization 

 

dplyr – Provides an intuitive grammar of data transformation through 

verbs such as select, filter, mutate, group_by, and summarise, enabling 

efficient manipulation of tabular data (Wickham et al., 2025a). 

tidyverse – A meta-package that bundles key packages for modern data 

science, including dplyr, ggplot2, and readr, offering a coherent and 

consistent workflow (Wickham et al., 2025b). 

ggplot2 – Implements the Grammar of Graphics, allowing for both 

exploratory data visualization and high-quality publication graphics 

(Wickham, 2016). 

readr – Provides fast and efficient functions for importing and exporting 

delimited text files such as CSV (Wickham et al., 2023). 

readxl / writexl – Support reading and writing of Microsoft Excel files 

(.xls, .xlsx), making integration with common spreadsheet formats 

straightforward (Wickham & Bryan, 2023; Ooms, 2023). 

corrplot – Specialized in visualizing correlation matrices in the form of 

correlograms, offering a clear way to explore relationships among 

variables (Wei & Simko, 2021). 

patchwork – Adds a simple grammar for combining multiple ggplot2 

plots into coherent multi-panel figures (Pedersen, 2023). 

RColorBrewer – Supplies high-quality, perceptually robust colour 

palettes curated for thematic cartography and visualization (Neuwirth, 

2022). 

 

Working with spatial data 
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sf (Simple Features) – Provides a standardized and modern approach 

to working with vector spatial data (points, lines, polygons), fully 

compatible with tidyverse workflows (Pebesma, 2018). 

terra – A fast and efficient package for working with raster data, 

supporting chunk-based processing and large-area analysis that may 

exceed available RAM (Hijmans, 2025). 

 

Modeling and validation 

 

rsample – Part of the tidymodels ecosystem, offering flexible 

resampling infrastructure for partitioning data into training and test sets, 

with stratification support (Kuhn & Wickham, 2020). 

rpart – Implements classical recursive partitioning for building decision 

trees in classification and regression tasks (Therneau & Atkinson, 2019). 

rpart.plot – Enhances the visualization of trees built with rpart, 

improving interpretability (Milborrow, 2022). 

randomForest – A well-established implementation of the Random 

Forest algorithm for classification and regression (Liaw & Wiener, 

2002). 

ranger – A modern, fast C++ implementation of Random Forests, also 

supporting Quantile Regression Forests for uncertainty estimation 

(Wright & Ziegler, 2017). 

Cubist – Builds rule-based regression models that combine accuracy 

with interpretability, extending beyond decision trees (Kuhn & Quinlan, 

2025). 

caret – Provides a unified framework for machine-learning workflows, 

here used primarily to build confusion matrices and compute associated 

accuracy metrics (Kuhn, 2008). 

yardstick – Part of tidymodels, offering consistent functions for 

computing performance metrics in classification and regression (Kuhn 

& Vaughan, 2023). 
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APPENDIX B: Data sources for the example of Slovakia 

 

During the practical part of this manual (Parts II and III), we used a 

geospatial data set for the territory of Slovakia. Although some of this 

data has been modified or simplified for educational purposes, it is based 

on real, publicly available sources. This appendix provides an overview 

and links to primary sources that can be used for similar research. This 

set of materials (source files and results) can be downloaded from 

the following permanent links: 

 

Cherlinka, V., Gallay, M., & Dmytruk, Y. (2025). Predictive Modeling 

of Soil Types and Their Characteristics - supplementary data [Data set]. 

in Predictive Modeling of Soil Types and Their Characteristics (1st ed., 

198 p). Zenodo. https://doi.org/10.5281/zenodo.16926392    

 

Administrative boundaries 

The vector layer with the borders of Slovakia was obtained from the 

GADM (Database of Global Administrative Areas) database. It is a 

high-quality, publicly available resource that provides administrative 

boundaries for all countries of the world at several levels of detail. 

Source: GADM (https://gadm.org/) 

Format: GeoPackage, Shapefile, R Spatial objects (.rds) 

https://geodata.ucdavis.edu/gadm/gadm4.1/shp/gadm41_SVK_shp.zip 

https://geodata.ucdavis.edu/gadm/gadm4.1/gpkg/gadm41_SVK.gpkg  

Level of detail: Level 0 (national border) has been used for this guide. 

 

Point soil data 

A set of point data on soil types and organic carbon content used in 

the manual will be generated from two different sources, by randomized 

sampling from original vector or raster maps, in particular soil organic 

carbon reserves were obtained from data from the GSOCmap project. 

This dataset was created with the initial purpose of demonstrating the 

workflow and, we believe, has fully fulfilled its task. Despite this, the 

following sources can be used for more detailed research:  

LUCAS Soil Database: A Eurostat project that provides harmonized 

data on topsoil properties for thousands of points across the 

European Union. It is one of the most important sources for large-

https://doi.org/10.5281/zenodo.16926392
https://gadm.org/
https://geodata.ucdavis.edu/gadm/gadm4.1/shp/gadm41_SVK_shp.zip
https://geodata.ucdavis.edu/gadm/gadm4.1/gpkg/gadm41_SVK.gpkg
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scale digital mapping. 

Source: European Soil Data Centre (ESDAC) 

(https://esdac.jrc.ec.europa.eu/) 

National Soil Services: More detailed data can usually be obtained from 

national soil or geological institutes. For Slovakia, such a body is 

the National Agricultural and Food Center (NPPC) - Research 

Institute for Soil Science and Soil Protection. 

 

Digital Elevation Model (DEM) 

The DMR3.5  digital elevation model was used as the basis for all 

morphometric covariates (height, slope, exposure, etc.). The digital 

relief model DMR3.5 was created for the purpose of creating layers for 

the cartographic representation of the elevation in accordance with 

ZBGIS data. DMR3.5 is based on the original DMR3 model 

supplemented with recalculated areas of flat parts of lowlands, basins 

and valleys of large rivers. Before the creation of DMR3.5, 3D 

geodatabase ZBGIS collected by the photogrammetric method was 

selected as the input data source. The output format is ESRI GRID with 

a resolution of 10 m/pixel, 25 m/pixel, 50 m/pixel and 100 m/pixel.. 

Source: DMR3.5 https://rpi.gov.sk/en/metadata/0e6e1625-5c59-4ea4-

a483-dc459fbff20b  

Resolution: 10 m/pixel, 25 m/pixel, 50 m/pixel and 100 m/pixel.  

 

Geological map 

The rasterized geological map used as a predictor of the parent rock 

is based on data normally provided by national geological surveys. For 

Slovakia, such a source is  the Dioniz Štúr State Geological Institute 

(Štátny geologický ústav Dionýza Štúra, ŠGÚDŠ). 
Source: ŠGÚDŠ (https://www.geology.sk/) 

Note: For use in DSM, vector geologic maps require pre-processing, 

including rasterization and bringing to a single classification system 

suitable for modeling. 

  

https://esdac.jrc.ec.europa.eu/
https://rpi.gov.sk/en/metadata/0e6e1625-5c59-4ea4-a483-dc459fbff20b
https://rpi.gov.sk/en/metadata/0e6e1625-5c59-4ea4-a483-dc459fbff20b
https://www.geology.sk/
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APPENDIX C: Glossary of Terms 

 

Bagging (Bootstrap Aggregating) – An ensemble machine learning 

method that creates multiple training subsamples from the original 

dataset by random selection with replacement. A separate model is 

trained on each subsample, and the final prediction is obtained by 

averaging (regression) or voting (classification). 

Bootstrap – Resampling with replacement from a dataset, forming the 

basis for Bagging and other ensemble methods. 

Classification – A type of supervised machine learning task where the 

goal is to predict a categorical outcome (class). For example, predicting 

soil type. 

Confusion Matrix – A contingency table used to assess classification 

accuracy by comparing predicted and true classes. It forms the basis for 

most accuracy metrics (e.g., overall accuracy, Kappa, precision, recall). 

Coordinate Reference System (CRS) – A coordinate system that 

defines how two-dimensional map coordinates correspond to real-world 

locations on the Earth’s surface. 

Covariate (Predictor, Independent Variable) – In DSM, a spatial layer 

(typically raster) representing a factor of soil formation (e.g., elevation, 

slope, land cover) used as an explanatory variable in models. 

Cross-validation (CV) – A resampling method where data are 

repeatedly split into training and validation folds to provide robust 

accuracy estimates. 

Data Frame – A basic R structure for storing tabular data, where rows 

represent observations and columns may contain variables of different 

data types. 

Data “tidy” (Tidy Data) – A concept of data organization where each 

row corresponds to an observation, each column to a variable, and each 

table to one type of observational unit. It underpins the tidyverse 

philosophy. 

Decision Tree – A machine learning algorithm that models data using a 

hierarchical structure of decision rules (“if–then” statements) 

resembling a branching tree. 
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Ensemble Learning – A family of machine learning methods that 

combine multiple base models to improve predictive accuracy and 

stability (e.g., Bagging, Random Forests, Boosting). 

Extraction – The process of retrieving values from raster layers at the 

locations of vector objects (usually points), a key step in linking 

covariates with soil observations in DSM. 

Extent – The spatial coverage of a geospatial dataset, defined by its 

minimum and maximum X and Y coordinates. 

Harmonization – The process of aligning all raster layers (covariates) 

to a common spatial grid with the same coordinate system, extent, and 

resolution. Essential before spatial modelling. 

Kappa Coefficient (κ) – A statistical measure of classification accuracy 

that adjusts for agreement occurring by chance. It is particularly useful 

for imbalanced datasets. 

Machine Learning (ML) – A branch of artificial intelligence that 

develops algorithms capable of learning patterns from data and making 

predictions without explicit programming. 

Overfitting – A situation where a model becomes overly complex and 

fits noise or random patterns in the training data, reducing its ability to 

generalize to new data. 

Package (in R) – A standardized collection of functions, datasets, and 

documentation designed to extend R with specialized functionality. 

Pipeline Operator (%>%) – An operator from the magrittr package that 

passes the output of one function directly into the input of the next, 

enabling readable and concise workflows. 

R² (Coefficient of Determination) – A regression metric that indicates 

the proportion of variance in the dependent variable explained by the 

model. 

Raster – A spatial data model that represents geographic phenomena as 

a regular grid of cells (pixels), each holding a value (e.g., elevation, 

temperature). 

Regression – A type of supervised machine learning task where the goal 

is to predict a continuous numerical variable, such as soil organic carbon 

content. 
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RMSE (Root Mean Squared Error) – A regression accuracy metric 

that measures the average squared difference between predicted and 

observed values, expressed in the units of the target variable. 

Random Forest – A widely used ensemble learning algorithm for 

classification and regression. It builds multiple decision trees using 

random subsets of data and predictors, then combines their results by 

majority vote (classification) or averaging (regression). 

SCORPAN – A mnemonic acronym representing soil formation factors 

extended for DSM: Soil, Climate, Organisms, Relief, Parent material, 

Age, and spatial Position. 

sf (Simple Features) – An R package implementing the OGC Simple 

Features standard for vector spatial data (points, lines, polygons). It 

integrates well with tidyverse workflows. 

terra – An R package for efficient and large-scale raster data analysis, 

supporting spatial modelling and operations that exceed available RAM 

by using chunk-based processing. 

Tidyverse – A collection of R packages (including dplyr, ggplot2, readr) 

that share a consistent grammar, design philosophy, and data structures 

for modern data science. 

Training / Test Split  – The practice of dividing data into a training set 

(for building a model) and a test set (for evaluating model performance 

on unseen data). 

Uncertainty – A measure of confidence in model predictions. In 

regression, often expressed as prediction intervals; in classification, as 

class probabilities. 

Validation – The process of objectively evaluating a model’s accuracy 

and reliability, usually performed on test data not used for training. 

Vector – A basic R data structure consisting of an ordered sequence of 

elements of the same type (numeric, character, or logical). 
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