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1. Introduction 

  

 1.1. Background and objectives 

 

Soils constitute the largest active terrestrial carbon (C) pool: an 

estimated total of 1500-2400 Pg or Gt C up to 1m (Scharlemann et al., 

2014; Batjes, 2016; Tifafi et al., 2017). Although soils contribute a 

major share of agricultural greenhouse gas (GHGs) emissions, due to 

their large size and long residence time, even small increments of net 

soil C storage represent a substantial C sink potential (Paustian et al., 

2016; Smith et al., 2020). It has been suggested that soil C 

sequestration through improved soil/land management practices could 

be a significant greenhouse gas removal strategy (Smith et al, 2008; 

Lal et al., 2018; Smith et al., 2020). However, the extent and rates of 

soil organic carbon (SOC) sequestration under different land use and 

management practices can vary greatly depending on soil 

characteristics, topography and climate (Smith et al., 2008; Lal et al., 

2018; Batjes et al., 2019). It is thus relevant to identify which regions, 

environments and agricultural systems present the greater potential for 

increasing SOC stocks, and to establish priorities for the 

implementation of public and private policies. 

Coupling SOC models to GIS (Geographic Information Systems) 

platforms allows modeling to move from site-specific SOC stocks 

simulations to spatial simulations (e.g. Smith et al. 2005; Milne et al., 

2007; Kamoni etal., 2007; Falloon et al., 2007; Gottschalk etal., 2013; 

Lugato etal., 2014), and thus to identify conditions with greater SOC 

sequestration potential. However, the use of GIS-based models may be 

restricted by the availability of quality local data, as well as technical 

and computational capacity (FAO, 2019a). In this sense, GSP-FAO has 

established the ‘Global assessment of soil organic carbon sequestration 

potential initiative’ (GSOCseq) (FAO, 2019b) which aims to build this 

capacity internationally. In the first stage, a ‘top-down’ empirical 

modeling approach was implemented to estimate SOC stock changes 

using IPCC default Tier 1 factors. A ‘bottom-up’ approach, driven by 

countries and including local expert knowledge was proposed as a 

second stage, based on harmonized and best available local data and 

the implementation of SOC process-oriented models. 
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Within the framework of the GSOCseq initiative, the objectives of 

these technical guidelines are to: 

– Outline technical specifications for mapping of SOC sequestration 

potential using harmonized procedures. 

– Giving a methodological recommendation for create a harmonized 

SOC sequestration potential (SOCseq) map. 

 

1.2. General framework for mapping carbon sequestration potential 

 

SOC sequestration estimates will focus on croplands and grazing 

lands for the current GSOCseq map version. As defined by IPCC 

(2006), croplands include: all annual and perennial crops (cereals, oils 

seeds, vegetables, root crops and forages); perennial crops (including 

trees and shrubs, orchards, vineyards), and their combination with 

herbaceous crops (e.g., agroforestry); arable land which is normally 

used for cultivation of annual crops, but which is temporarily used for 

forage crops or grazing as part of an annual crop-pasture rotation 

(mixed system), is to be included under croplands. Grazing lands 

include different land uses permanently dedicated to livestock 

production with a predominant herbaceous cover, including intensively 

managed permanent pastures and hay land, extensively managed 

grasslands and rangelands, savannahs, and shrublands. 

Since the proposed standardized methodology and the defined 

model are neither parameterized nor recommended for use on organic, 

sandy, saline, and waterlogged soils, soils with SOC stocks higher than 

200 t C ha*1, sand contents higher than 90% and/or electrical 

conductivity higher than 4 dS m*1 at 0-30 cm depth, paddy rice lands, 

peatlands and wetlands will be masked out from the global results in 

this map version. Excluded conditions and land uses can be included in 

future versions of the SOCseq map, as harmonized procedures for 

specific conditions are developed. 

 

1.2.1. SOC sequestration estimates 

In order to assess the SOC sequestration potential, SOC stocks in 0-

30 cm of mineral soils shall be projected over a 20-year period, under 

business-as-usual land use and management, and after adoption of 

Sustainable Soil Management (SSM) Practices in croplands and 
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grazing lands. A 20-year period is assumed to be the default period 

during which SOC stocks are approaching a new steady state, to be 

able to compare results among regions and countries, and with other 

estimation methods (e.g., IPCC, 2006 Tier 1-2; IPCC, 2019). 

Nevertheless, users can project SOC stocks over 20, 50 or 100 years or 

more, and determine the stocks and the period at which a new steady 

state is attained according to local conditions, and produce additional 

sequestration maps. 

SOC sequestration can be expressed in different ways, depending 

on the definition of SOC baseline stocks. These guidelines will refer to 

two types of SOC sequestration: an ‘absolute SOC sequestration’ 

(SOCseq abs), expressed as the change in SOC stocks over time 

relative to a base period (or reference period, tO); and a ‘relative SOC 

sequestration’ (SOCseq rel), expressed as the change in SOC stocks 

over time relative to the business-as-usual scenario (Fig. 1). Thus, the 

‘absolute’ attainable SOC sequestration can be determined for the 

business as usual and SSM practices, and can be either positive, neutral 

or negative: 

 
where SOCssm/bau t refers to the final SOC stocks after a 20-year period 

(year 2040, under the business as usual or SSM practices), and SOC to 

refers to the initial or base period SOC stocks (e.g. as in year 2020). 

The ‘relative’ attainable SOC sequestration is either neutral or positive, 

can be determined as: 

 
where SOCssMt refers to the final SOC stocks after a 20-year period of 

implementing SSM practices and SOCbau t refers to the final SOC 

stocks after a 20-year period under business as usual (BAU) practices. 

Mean annual SOC sequestration rates (t C ha-1 yr-1; absolute or 

relative) are to be determined by dividing SOC changes by 20 years. 

 

1.2.2. Business as usual and SSM scenarios 

The BAU scenario refers to the land use, land management, 

production practices or technologies that are currently being 

implemented (as in time = 0, or 2020) in croplands and grazing lands. 

BAU practices represent typical, prevailing practices in a specific agro-

ecological zone and productive system. SSM practices refer to 
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management practices that are expected to remove CO2 from the 

atmosphere and retain it as SOC, to enhance SOC accumulation, or to 

mitigate or reverse SOC losses compared to the BAU (Fig. 1.1). 

Although there is no universal soil management practice, basic principles 

are widely applicable, such as those identified in the Voluntary Guidelines 

for Sustainable Soil Management (VGSSM; FAO, 2017) for enhancing 

soil organic matter content: 

– increasing biomass production and residue returns to the soil; 

– using cover crops and/or vegetated fallows; 

– implementing a balanced and integrated soil fertility management 

scheme; 

– implementing crop rotations, combining legumes and pulses with 

high residue crops, or improving the crop-mix; 

– effectively using organic amendments, manure, or other carbon-

rich wastes (which are not currently applied to soils); 

– promoting agro-forestry and alley cropping; 

– managing crop residues and grazing to ensure optimum soil cover; 

among others. 

 

 
 

Fig. 1.1. Theoretical evolution in Soil Organic Carbon stock under a business as 

usual (BAU) scenario and after adoption of sustainable soil management practices: 

a) lands where SOC levels have reached equilibrium and where it is possible to 

increase levels under SSM; b) lands where SOC is increasing but can be further 

increased through SSM; c and d) lands where SOC is decreasing and where it is 

possible to mitigate (c) or reverse (d) this fall through SSM 
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A very wide range of management practices are currently being 

implemented and can potentially be introduced into the world's 

agricultural systems, depending on climatic, soil, socio-cultural and 

economic conditions. In turn, different SSM C-oriented practices are 

often combined, making it difficult to dissociate their effects on SOC 

dynamics. Thus, as a first step, and to harmonize the results on a global 

map, and because soil carbon turnover models are the most sensitive to 

carbon inputs, these guidelines propose to group SSM practices into 

three scenarios as a standard method, based on their expected relative 

effects on C inputs compared to BAU: Low, Medium and High 

increase in C inputs (referred as SSM1, SSM2, and SSM3 scenarios). 

National experts’ opinion and local data are essential in order to 

accurately estimate or validate the target areas and carbon input levels 

for the different SSM scenarios. 

 

 1.3. Soil organic Carbon modeling 

 

To obtain consistent results and to allow comparisons between 

countries and regions, the use of a standard ‘process-oriented’ SOC 

model is requested. Users are nevertheless encouraged to provide 

supplementary maps developed using alternative preferred SOC 

models.  

For this first SOCseq version, the Rothamsted soil organic carbon 

model (RothC; Coleman & Jenkinson, 1996) is proposed as the 

standard comparison model, because: 

– It has fewer data requirements due to the relative simplicity of 

obtaining input data compared to other process-oriented models 

– It has been applied using data from long-term experiments across 

several ecosystems, climate conditions, soils and land use classes; 

– It has been successfully applied at national, regional and global 

scales; e.g., Smith et al. (2005), Smith et al. (2007), Gottschalk et 

al. (2012), Wiesmeier et al. (2016), Farina et al. (2017), Mondini et 

al. (2018), Morais et al (2019); 

– It (or its modified/derived version) has been used to estimate 

carbon dioxide emissions and removals in different national GHG 

inventories as a Tier 3 approach; according to the latest review by 

Smith et al. (2020): Australia (as part of the FullCam model, Japan 
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(modified RothC), Switzerland, and UK (CARBINE, RothC). 

A spatially explicit version of the RothC model (e.g., Gottschalk et 

al., 2012; Mondini et al. 2018; Morais et al, 2019) is required to 

generate SocSeq maps. An open-source R version of the RothC model 

(embedded in the SoilR package) developed by Sierra et al. (2012) can 

be used for these purposes. 

 

1.3.1. RothC: general model description 

In the Roth-C model (Coleman and Jenkinson, 1996), SOC is split 

into four active compartments and a small amount of inert organic 

matter (IOM). The four active compartments are Decomposable Plant 

Material (DPM), Resistant Plant Material (RPM), Microbial Biomass 

(BIO) and Humified Organic Matter (HUM). The IOM compartment is 

resistant to decomposition. The structure of the model is shown in 

Fig. 1.2. Incoming plant carbon is split between DPM and RPM, 

depending on the DPM/RPM ratio of the particular incoming plant 

material. All incoming plant material passes through these two 

compartments only once. Both DPM and RPM decompose to form 

CO2, BIO and HUM. The proportion that goes to CO2 and to BIO + 

HUM is determined by the clay content of the soil. Each compartment 

decomposes by a first-order process with its own characteristic rate, 

which in turn is affected by the clay content of the soil, soil moisture, 

temperature, and soil cover. A more detailed description of the model 

and its processes can be found in Coleman and Jenkinson (1996), and 

Falloon and Smith (2009). 

 

1.3.2 General procedures 

Prior to the simulation of SOC stocks and sequestration under the 

different scenarios, model initialization is required to set the initial 

SOC condition (total SOC and partition of the different pools) at the 

start of the simulation period, and to adjust the C inputs estimates. 

In a first initialization step, RothC shall be run iteratively to 

equilibrium to calculate the size of the SOC pools and the annual plant 

carbon inputs using constant environmental conditions (Phase 1, 

Fig. 1.3), for each grid cell on the map. A first equilibrium run for a 

standard 10 000-year period should be performed, considering constant 

climatic conditions as the average of historic climate data from 1980 to 
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2000, clay contents, and land use as in year. The total annual plant C 

input can be initially assumed to be 1 t C ha-1 yr-1 and the proportions 

of plant material added to the soil for each month are set to describe 

the typical input pattern for each land use class (Smith etal., 2007; 

Mondini et al., 2017). 

 

 
Fig. 1.2. Structure, pools, and flows of carbon in the Roth-C model, including 

major factors controlling the fluxes (a = multiplier for effects of temperature, 

b = multiplier for effects of moisture, c = multiplier for effects of soil cover; 

DPM/RPM = Decomposable/resistant plant material ratio). Source: redrawn 

from Coleman and Jenkinson (1996) and Falloon and Smith (2009) 

 

After the first equilibrium run, the annual C input from plant 

residues needs to be optimized so that the results of the ‘long spin-up’ 

fit the estimates of total SOC stocks of 0—30 cm provided in the FAO-

ITPS GSOC map. C equilibrium inputs can be adjusted using the 
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following equation (Smith et al., 2005): 

 
where Ceq is the estimated annual C input at equilibrium, Ci is the initial 

annual C addition (the sum of the proportions of the C input in the first 

equilibrium is 1), SOCcsocm is the estimated soil C given in FAO-ITPS 

GSOC map, SOCsim is the simulated soil C after the first equilibrium run, 

and IOM is the C content of the inert organic matter fraction in the soil (all 

in t C ha-1). The size of the IOM fraction (t C ha-1) can be set according to 

the equation given by Falloon et al. (1998): 

 

 
Fig. 1.3. SOC stocks simulated in the different phases according to the 

proposed general modeling procedure 

 

A second long term (minimum 1000 years) equilibrium run shall be 

performed using the estimated Ceq, (under the same conditions as the first 

run), in order to obtain the size of the different SOC pools (t C ha-1) at year 

2000. Since FAO-ITPS GSOC map SOC was generated from 

individual SOC measurements taken over different decades (i.e., 1960s 

to 2000s), a temporal harmonization of SOC stocks can be performed 

as a second initialization step to minimize differences in current SOC 

stocks at year 0 (i.e., initial SOC stocks at year 2020): 

– SOC stocks from the GSOC map shall be considered to be the 

stocks twenty years prior to the simulation (t=-20 y; i.e. year 
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2000). 

– A 20-year ‘short spin-up’ run can be performed to adjust for major 

deviations among different measurement periods on the GSOC 

map (Fig. 1.3, Phase 2), using year-to-year climatic conditions for 

the period 2001-2020, clay contents, the stocks in the different 

SOC pools from the results of the ‘long spin-up’ run, and land use 

as in year 2020 (land use representative of the period 2001-2020; 

or yearly land use data shall be used when available). 

– Year-to-year C inputs over the period 2001-2020 should be 

adjusted considering year-to-year changes in estimated Net 

Primary Production (NPP). SOC stocks can either increase or 

decrease during this ‘short spin-up’ stage. 

This 'short spin-up’ period is intended to: reduce the effects of 

different time measurements in the GSOC map (over- or 

underestimation of current initial SOC stocks); minimize initialization 

effects (e.g. deviations in the estimation of initial pool sizes); and 

account for the effects of sub-regional, regional and global climatic 

and land use changes over the period 2001-2020 and their effects on 

NPP. If recent (2015-2020) national SOC monitoring campaigns have 

been undertaken to generate the latest version of the FAO-IPS GSOC 

map, the SOC stocks from the GSOC map can be considered as the 

current stocks (t=0 y; i.e. year 2020), and the ‘short spin-up’ phase is 

not required. 

After the equilibrium and ‘short spin-up’ runs, SOC sequestration 

due to SSM practices can be estimated in a forward run (Fig. 1.3, 

phase 3). SOC stocks can be simulated from 2020 (t=0) to 2040 

(t=+20) for the BAU and the three SSM scenarios, using average mean 

monthly climate variables (2001-2020), and C inputs, and land use as 

in year 2020. 

It should be noted that global climatic changes are to be expected 

over the next 20 years (climate change projections diverge 

significantly in the second half of the century, after year 2050; IPCC, 

2014; 2018). As it is not yet certain which climate projections will be 

used for future scenarios and prior agreement between countries is 

needed, and as significant divergences in climatic variables are 

expected from 2050 onwards, the use of monthly average climatic 

variables from 2001-2020 for the period 2020-2040 is set as the 
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standard for the forward run. However, the proposed methodology 

allows for the integration of climate change scenarios, especially for 

longer-term projections (i.e. + 2050) in future versions. 

The attainable absolute SOC sequestration is to be estimated as the 

difference between the corresponding SOC stocks from the forward 

modeling at year +20 (2040) for the different scenarios and the 

estimated baseline SOC stocks for year 0 (year 2020; refer to 

equation 1). The attainable relative SOC sequestration is to be 

determined as the difference between the corresponding SOC stocks 

modeled forward at year +20 (2040) for the SSM scenarios and the 

simulated SOC stocks at year +20 (2020) for the BAU scenario (refer 

to equation 2). 

The different modeling phases and their data requirements are 

summarized in Table 1.1. 

 
Table 1.1. Summary of the different modeling phases and data 

requirements 

Variables Phase 1  

Long spin up 

Equilibrium 

Phase 2  

Short spin up 

Phase 3  

Forward modeling 

Time span Minimum 500 years 

(using equilibrium runs 

procedure) 

20 years 20 years 

 
Infinite (Analytical 

solution procedure) 

  

Climatic 

inputs 

1980-2000 series 

monthly average: 

2001-2020 year to year 

monthly data: 

2001-2020 series 

monthly average:  
Rain, Temperature, 

Evaporation/ 

Rain, Temperature, 

Evaporation/ 

Rain, Temperature, 

Evaporation/  
Evapotranspiration Evapotranspiration Evapotranspiration 

Soil inputs Topsoil clay content Topsoil clay content Topsoil clay content 

Initial SOC 

stocks and 

pools 

Inert organic matter 

(IOM)  

Inert organic matter 

(IOM) 

Inert organic matter 

(IOM 

 
“= 0” for all other 

fractions (when using 

equilibrium runs) 

Other fractions equal to 

the  final SOC pools 

modeled in  phase 1 

Other fractions equal to 

the final SOC pools 

modeled in  phase 2 

Carbon inputs First run : 1tC.ha-1 NPP NPP year-to year 
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Adjusted C inputs (using 

equilibrium runs) 

year-to year adjusted C 

inputs 

adjusted C inputs for the 

BAU, Estimated from % 

increase vs. BAU for 

SSM scenarios 

Vegetation 

cover 

Monthly cover 

determined: by expert 

opinion, NDVI 2000-

2020 or preferred 

spectral index  

Monthly cover 

determined: by expert 

opinion, NDVI 2000-

2020 or preferred 

spectral index 

Monthly cover 

determined: by expert 

opinion, NDVI 2000-

2020 or preferred 

spectral index  

Land Use Representative land use 

of the 1980-2000 period 

(or layer for year 2000; 

or best available layer) 

Year to year Land use 

2000-2020 (or 

representative land use of 

the period; or best 

available layer) 

Last available land use 

layer (e.g. 2015, 2018; 

2020) (or best available 

layer) 

Modeled 

Scenarios 

BAU BAU BAU 

   
SSM Low    
SSM Medium    
SSM High 

Expected 

Results 

C inputs at equilibrium Total SOC and SOC 

pools at year t=0 (2020) 

Total SOC and SOC 

pools at year t=+20 

(2040) for the BAU, and 

SSMs scenarios  
Total          SOC and 

SOC pools at year t=-20 

(2000) 

 
Absolute and relative 

Total Sequestration (3 

SSMs)    
Absolute and relative 

Sequestration rates (3 

SSMs) 
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2. Data sets and inputs 

  

 The sample data set provided with these Methodical 

recommendations was compiled to model and map the potential soil 

organic carbon sequestration for the Khmilnyk district of Vinnytsia 

region, Ukraine (Fig. 2.1). It covers an area of 3701 km2 that is mainly 

dedicated to agriculture. The specialization of agricultural holdings in 

Khmilnyk district (shown by an arrow) is crop production (cereal 

winter crops), sugar beet, fodder crops, livestock. 

 These   used in combination with the provided sample data set 

and scripts can be used as a step-by-step guide, which covers data 

preparation and harmonization, modeling potential soil organic carbon 

sequestration, rasterizing the results, estimating the uncertainty and 

finally data sharing. 

 The sample data set and scripts can be found in the following 

repository: 

https://drive.google.com/file/d/1W35AJERw9PyHBsyCaBteKlcEmHt

ED98o/view?usp=share_link  

 
Fig. 2.1. Geographical location of the area of interest (AOI - Khmilnyk district 

of Vinnytsia region) within Ukraine; *Bing Map was used for the background 

https://drive.google.com/file/d/1W35AJERw9PyHBsyCaBteKlcEmHtED98o/view?usp=share_link
https://drive.google.com/file/d/1W35AJERw9PyHBsyCaBteKlcEmHtED98o/view?usp=share_link
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 2.1. Climate data sets 

 

Gridded climate data shall be obtained from: 

– National Sources or a preferred regional data source; 

– Global data sets, when national or regional gridded historical 

climate data sets are not available. 

The dataset provided by the Climate Research Unit (CRU), 

developed by the University of East Anglia, United Kingdom (Harris et 

al., 2014) at a resolution of 0.5 degrees (~50x50 km) was initially 

recommended to be used as the standard global data set if national or 

regional gridded data is not available, or if the available national data is 

at a coarser resolution. To overcome limitations linked to the coarse 

resolution of the CRU products, this version of Methodical 

recommendations has identified and recommends the TerraClimate 

dataset as an improved global alternative. Since the map production 

phase for the implementation of the GSOCseq was initiated prior to the 

identification of the TerraClimate data set, this version of the Methodical 

recommendations still presents both data sets (CRU and TerraClimate) 

as viable global options. 

The CRU 2019 dataset (CRU TS v. 4.03) covers the period 1901-

2018, including precipitation (pre), average/minimum and maximum air 

temperatures (tmp, tmn, tmx), cloud cover percentage (cld), diurnal 

temperature range (dtr), vapor pressure (vap), number of rainy days 

(wet), frost days (frs), and potential evapotranspiration (pet); (See Table 

2.1, data sets and download sources). 

TerraClimate is a data set of monthly climate and climatic water 

balance for global terrestrial surfaces from 1958-2019. It has a monthly 

temporal resolution, a ~4x4 km spatial resolution and was created by 

combining high-spatial resolution climatological normals from the 

WorldClim data set, with coarser spatial resolution, but time-varying 

data from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55) 

(Abatzoglou et al., 2018). 

The following variables and data sets are required to run the model: 

– Monthly average air temperature (°C), 

– Monthly precipitation (mm), 

– Monthly potential evapotranspiration (Penman-Monteith; mm), 
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Table 2.1. Summary of the input data requirements for the proposed 

modeling approach to generate SOCseq maps 
Data Variables Time series Units Type Resolution 

Climatic 

data 

Monthly air temperature 1980-2000; 2001-

2020 

°C Raster 50 x 50 km 

or finer   
(or until last year 

available) 

   

 
Monthly 

evapotranspiration/pan 

evaporation 

1980-2000; 2001-

2020 

mm Raster 50 x 50 km 

or finer 

  
(or until last year 

available) 

   

 
Monthly precipitation + 

irrigation 

1980-2000; 2001-

2020 

mm Raster 50 x 50 km 

or finer   
(or until last year 

available) 

   

Soil data Topsoil clay content (0-30 cm) •  % Raster 1 x 1 km 
 

Current Soil organic carbon 

stocks (0-30 cm) 

Latest version of 

national FAO-

GSOC map 

tC ha-

1 

Raster 1 x 1 km 

Land 

use/cover 

Predominant land use/cover, re-

classified into: 

Minimum: 2000 

and 2020 (or last 

year available) 

01-

mar 

Raster 1 x 1 km 

 
Minimum: 3 default classes 

required by model: agricultural 

crops, 

grassland/shrubland/savannas 

and forestry 

Optimum: annual 

land use 2000 to 

2020 

01-nov 
  

 
Optimum: 13 classes defined in 

the FAO Global Land Cover - 

SHARE (GLC-SHARE) 

    

 
Monthly vegetation cover. Minimum: average 

2000- 2020 (or last 

year available) 

Optimum: annual 

land use 2000 to 

2020 

0-1 Raster 1 x 1 km 

 
Obtained from national 

statistics/local expert 

knowledge; or derived from 

NDVI or spectral indexes (see 

section 3.3.4) 

    

 



17 

 

 

– data sets: 1981-1990 (series average); 1991-2000 (series average); 

2011-2010 (year to year); 2011-2018 (year to year). 

The same data sources must be used in all modeling phases. 

 

2.2. Soil data sets 

 

2.2.1. Initial total SOC stocks 

Initial total SOC stocks to 30cm depth (in t C ha-1) are to be derived from 

the GSOCmap (30 arc seconds; 1km x 1km resolution grid), latest revised 

version (FAO-ITPS, 2019). Countries wishing to include an updated or 

improved estimate of current SOC stocks, compared to the latest version of 

the GSOCmap, are encouraged to submit their updated national SOCmap to 

the GSP Secretariat and use it for modeling. Since the GSOCmap was 

generated from national measurements taken between the 1960s and the 

2000s, and no temporal corrections have been developed in many countries, 

GSOCmap values will represent SOC stocks for the year 2000. A short 

spin-up’ model run (20 years) with climate variables and management 

forcing for the period 2000-2020 shall be performed to reduce the effect of 

temporal deviations. Thus, the simulated SOC content at 2020 after the 

‘short spin-up’ run will represent the initial SOC stocks prior to 

implementation of SSM practices. If recent national SOC monitoring 

campaigns (2015-2020) have been undertaken to generate the latest version 

of the FAO-IPS GSOC map, the SOC stocks from the GSOCmap can be 

considered as the current stocks (t=0 y; i.e. year 2020), and the ‘short spin-

up' phase is not required. 

 

2.2.2. Initial C pools 

The initial C stocks in the different pools (in t C ha-1) considered in 

the RothC model (DPM, RPM, BIO, HUM and IOM, Fig. 1.2) shall be 

estimated following the ‘long spin-up’ and ‘short spin-up' procedure. 

 

2.2.3. Soil texture: clay content 

The average clay contents over 0-30 cm depth are to be obtained from 

gridded data (raster format) from: 

– national Sources (1 km x 1 km resolution); 

– global data sets, where national or regional data sets are not available. 
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The topsoil clay content (0-30 cm, % mass fraction; 1x1 Km resolution) 

from the Harmonized World Soil Database (HWSD) or SoilGrids 

developed by the- International Soil Reference and Information Centre 

(ISRIC) (see Table 2.1) shall be used as the standard global database if 

national or regional data is not available in the required format or resolution. 

Clay content can be averaged at finer resolutions to obtain 1 x 1 Km grids. 

However, countries are encouraged to produce their own texture and clay 

content maps to be used as inputs for the SOCseq map, following the digital 

soil mapping approaches described in the GSOCmap Cookbook (FAO, 

2018). Average clay contents over a 0-30 cm depth interval can be derived 

by taking a weighted average of the predictions over the depth interval using 

numerical integration (Hengl et al., 2017). 

 

2.3. Land cover data sets 

 

The gridded land cover data layers shall be obtained from: 
– national or regional sources; 

– global data sets, where national or regional land use or land cover data sets are 

not available. 

Since land cover may vary substantially between data sources and estimates of 

past and current land cover may have important deviations from real land cover and 

land use, users should estimate land use from the source that best reflects national 

and subnational conditions. Land cover data sets should cover the 2000-2020 (or 

approximate) period. The ESA (European Space Agency) land cover Global dataset 

(See Table 2.1), and its reclassification into FAO Global Land Cover - SHARE 

(GLC-SHARE; See Table 2.1) classes will be provided by the GSP Secretariat, if no 

national land use dataset is available. However, users should estimate land use from 

the source that best reflects national and subnational conditions. Other global and 

regional data sets are provided in Table 2.1. The land cover classes will affect the 

decomposability of the incoming plant material (DPM/RPM ratio). A spatialized R-

version of RothC is provided by the GSP Secretariat and runs considering the 13 

classes defined in the FAO Global Land Cover - SHARE (GLC-SHARE). A default 

DPM/RPM value is assigned to each class (Table 2.2). Thus, when using this 

spatialized R-version of RothC without modifying its scripts, the land use classes 

from the possible different data sets need to be re-classified into FAO Global Land 

Cover - SHARE (GLC-SHARE) land use classes. However, users can 

model alternative land use classes, and modify these default DPM/RPM 

values. If so, modifications in the R-version must be then introduced. 

Examples of land cover reclassification from the ESA land cover database 
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into the RothC land use categories are presented (Table 2.3). As a 

minimum, land use for the year 2000 and land use for the year 2020 (or last 

available year) at 1x1 km resolution shall be defined. The predominant land 

use category in each cell of the 1x1 km grid shall be selected if finer 

resolutions are available. 
 
Table 2.2. FAO Land cover classes, land cover number and default DPM/RPM ratios. An extra 

land use class (*Tree-crops) is shown as an example of the disaggregation of a land use class. 

FAO Land aggregated cover class Land Cover code number Default DPM RPM ratio 

Artificial surfaces 1 / 

Cropland 2 1.44 

Grassland 3 0.67 

Tree covered 4 0.25 

Shrub covered 5 0.67 

Herbaceous vegetation 6 0.67 

Mangroves 7 / 

Spare vegetation 8 0.67 

Bare soil 9 / 

Snow and Glaciers 10 / 

Water bodies 11 / 

Cropland-Tree crops* 12 1.44 

Paddy fields 13 1.44 

 
Table 2.3. Land cover aggregation schemes into RothC land use classes. Example from 

ESA 
ESA Land Cover Class ESA class 

Number 

RothC Land Use type 

Cropland rainfed 10 Agricultural crops/improved grassland 

Cropland rainfed herbaceous cover 11 Agricultural crops/improved grassland 

Mosaic Cropland > 50% 30 Agricultural crops/improved grassland 

Cropland - Tree/shrub cover 12 Forest/Deciduous/tropical woodland 

Cropland irrigated flooding 20 Waterlogged soils 

Grasslands 130 -9999 

Mosaic Natural vegetation 

herbaceous > 50% /cropland 

40 Unimproved grassland and scrub (including 

Savanna) 

Mosaic herbaceous cover 

>50%/trees-shrubs 

110 Agricultural crops/improved grassland 

Shrubland 120 Unimproved grassland and scrub/ Savanna 

Shrubland evergreen 121 Unimproved grassland and scrub/ Savanna 

Shrubland deciduous 122 Unimproved grassland and scrub/ Savanna 

Tree cover broadleaved deciduous 

open 15-40% 

62 Unimproved grassland and scrub/ Savanna 
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Tree cover needle leaved deciduous 

open 15-40% 

82 Unimproved grassland and scrub/ Savanna 

Tree cover broadleaved evergreen 

closed to open >15% 

50 Unimproved grassland and scrub/ Savanna 

Tree cover broadleaved deciduous 

closed to open >15% 

60 Forest/Deciduous/tropical woodland 

Tree cover broadleaved deciduous 

closed >40% 

61 Forest/Deciduous/tropical woodland 

Tree cover needle leaved evergreen 

closed to open >15% 

70 Forest/Deciduous/tropical woodland 

Tree cover needle leaved evergreen 

closed >40% 

71 Forest/Deciduous/tropical woodland 

Tree cover needle leaved evergreen 

open >40% 

72 Forest/Deciduous/tropical woodland 

Tree cover needle leaved deciduous 

closed to open >15% 

80 Forest/Deciduous/tropical woodland 

Tree cover needle leaved deciduous 

closed >40% 

81 Forest/Deciduous/tropical woodland 

Tree cover mixed leave type 90 Forest/Deciduous/tropical woodland 

Mosaic tree-shrub >50%/herbaceous 

cover 

100 Forest/Deciduous/tropical woodland 

Shrub or herbaceous flooded 

fresh/saline/brackish water 

180 Forest/Deciduous/tropical woodland 

Tree cover flooded fresh or brackish 

water 

160 Waterlogged 

Tree cover flooded saline water 170 -9999 

Urban areas 190 -9999 

Lichens and mosses 140 -9999 

Bare areas 200 Others - No data-9999 

Sparse vegetation tree-shrub-

herbaceous (<15%) 

150 Others - No data-9999 

Sparse tree (<15%) 151 Others - No data-9999 

Sparse Shrub (<15%) 152 Others - No data-9999 

Sparse herbaceous (<15%) 153 Others - No data-9999 

Consolidated bare areas 201 Others - No data-9999 

Unconsolidated bare areas 202 Others - No data-9999 

Permanent snow/ice 220 Others - No data-9999 

Water bodies 210 Others - No data-9999 

No data 0 Others - No data-9999 
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2.4. Monthly vegetation cover 

 

It is required to indicate the approximate annual distribution of monthly 

vegetation cover for the simulations in order to: 

– adjust the topsoil moisture deficit estimations (Fig. 1.2); 

– consider the effects of soil cover on SOC decomposition rates (Fig. 1.2). 

The annual distribution of vegetation cover can be derived from: 

– public statistics of national and/or administrative units considering the 

predominant agricultural systems in a temporal series (2000-2020); 

– derived from NDVI (normalized difference in vegetation index) values 

from historic satellite images (See data sets, Table 2.1). 

The occurrence of plant cover can be assumed to be constant in 

grasslands, shrublands and savannas and during specific months (e g. 1-6 

months for croplands) (e g. Smith et al., 2005; Smith et al., 2007). The 

following coefficients can be set for based on the specific land cover and/or 

land use: 

– Perennial tree-crops, forests and grasslands (c=0.6): 

– Months with predominantly bare soil and unvegetated fallows (c=1); 

– Annual crops (c=0.6). 

Considering a temporal series (2000-2020), the proportion of images 

with NDVI values greater than a specified threshold, indicating active 

vegetation growth, can be estimated (e g. NDVI > 0.6). The monthly 

probability of being vegetated (P veg) can be estimated for each cell grid and 

each month of the year (1-12), as: 

 

(2.1) 

NDVI is proposed as an alternative for estimating vegetation cover when 

no vegetation cover data or local knowledge is available. The proposed 

threshold may vary according to local conditions. Global monthly vegetation 

cover data sets estimated by NDVI (2000-2020) will be provided by the GSP 

Secretariat. 

However, NDVI may be a biased indicator in areas with low vegetation 

cover (e g. drylands, shrublands), or high nubosity. In these cases, countries 

are encouraged to use other locally validated spectral indices to accurately 

estimate monthly vegetation cover (e g. Multi Sensor Vegetation Index; 

Moradizadeh and Saradjian, 2016). 



22 

 

2.5. Monthly carbon inputs 

 

2.5.1. C inputs under BAU practices 

 

Carbon inputs for the BAU scenarios shall be estimated using the 

approach proposed by Smith et al. (2005: 2006: 2007) and Gottschalk 

et al. (2012). Total plant C inputs to the soil, which include plant litter, 

root exudates and fine root turnover, are rarely known. To overcome 

this problem, RothC shall be run in equilibrium mode’ to calculate the 

initial plant carbon inputs to the soil (or ‘equilibrium Carbon inputs’, 

Ceq), which led to the initial SOC stocks (GSOCmap), under historic 

forcing conditions. The Ceq thus represents the historical average of 

annual carbon input of the BAU scenario up to the year 2000. For 

further details on the equilibrium run and initialization to estimate Ceq, 

refer to section 3.2 (General modeling procedures). Once these initial 

carbon inputs have been established (from the year 2000 onwards), 

year-to-year changes can be adjusted in accordance with changes in Net 

Primary Production (NPP), as changes in C inputs to the soil are 

assumed to be associated with changes in NPP (Smith et al., 2005). 

Thus, annual C inputs for the BAU scenario can be adjusted as: 

 (2.2) 

where BAUct is the annual carbon input of a specific year t. Ct-1 is the 

annual carbon input of the previous year: NPPt is the net primary 

production of year t. and NPP — t is the NPP of the previous year (in 

tC ha-1). Thus, the average NPP over the initialization period shall be 

associated with Ceq and the annual C inputs for the BAU scenario can 

be adjusted as: 

 (2.3) 

where BAUct 2001 is the annual carbon input for the first year of the 

‘short spin-up’ phase: Ceq is the estimated annual C input at equilibrium 

derived through the ‘long spin-up’ process: NPP1980-2000 is the 

estimated average net primary production over the initialization period 

(1980-2000); and NPP2001 is the estimated annual net primary 

production for the first year of the ‘short spin-up’ phase. The annual C 

inputs for the BAU scenario can be then adjusted following equation 

2.5, according to changes in the NPP. The estimation of NPP using the 
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MIAMI model (Lieth, 1975) is defined as the standard method in this 

document. It requires little input and is easily applicable worldwide, 

can be used to estimate NPP under future climatic conditions, and can 

act as a baseline for different NPP data sets or projections (e g. 

Gottschalk et al., 2012). NPP estimated with the MIAMI model is 

computed with the following equations: 

 

(2.4) 

(2.5) 

(2.6) 

where NPP is the climatic net primary production in dry matter (DM; g 

m-2 yr-1), NPPt is the temperature dependency term of NPP, where T is 

the annual mean temperature (°C) and NPPp is the moisture 

dependency term of NPP, where P is the mean annual sum of 

precipitation (mm). NPP is limited by either temperature or 

precipitation. MIAMI model NPP can be expressed in t C ha-1 yr-1 as: 

(2.7) 

The annual NPPMIAMI shall be estimated for each grid cell from 

the climatic data sets described in section 6.1 for the different 

simulation periods (1981-1990; 1991-2000; 2001-2010; 2011-2020; 

2021-2040). The NPPMIAMI is used to estimate BAU carbon inputs 

under current and projected climatic conditions. The change in NPP is 

used as a surrogate for estimating the change in C input and assumes 

that a similar proportion remains in the field (e g. Smith et al., 2005; 

Gottschalk et al., 2012). In a first instance, countries should focus on C 

inputs in agricultural lands in 2020, the use of which has not changed 

since the year 2000. Changes in land use and management over the 

period 2000-2020 and associated changes in C inputs can nevertheless 

be taken into account, if trends in biomass removal are known, in order 

to adjust C inputs (e g. Schulze et al., 2010; Plutzar et al., 2016; 

Neumann and Smith, 2018). Thus, the annual changes in C inputs by 

equations 5 and 6 can be adjusted using annual land cover data. For 

example, by assuming and approving an NPP of 12, 28 and 47% for 

forests, grasslands and croplands (Schulze et al., 2010), the annual NPP 

of a specific year (NPPt) can be adjusted using these coefficients 
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(equations 2.7 to 2.11), and the annual C inputs can then be estimated 

by equations 2.2 and 2.3: 

 

(2.9) 

(2.10) 

(2.11) 

 

2.5.2 C inputs under SSM practices 

SSM practices shall be grouped into three scenarios as a standard 

method, based on their expected relative effects on C inputs compared 

to BAU: Low, Medium and High C inputs. The SSM practices 

considered in this approach are practices that affect C inputs to the soil, 

as changes in C inputs have been identified as one of the factors to 

which models are most sensitive when projecting changes in SOC 

stocks (FAO, 2019). As with estimates of BAU C inputs, total plant C 

inputs to the soil, including plant litter, root exudates and fine root 

turnover, are rarely known. Thus, C inputs of SSM scenarios will 

represent a % increase from BAU C inputs: 

(2.12) 

As a standard, the expected effects (% increase in C inputs) of 3 

scenarios have been conservatively set at: 

– Low: 5 % increase in C inputs 

– Medium: 10% increase C inputs 

– High: 20 % increase in C inputs 

These percentages (based on Smith, 2004; Wiesmeier et al., 2016) shall 

be used to produce the mandatory maps for the global product. An additional 

‘High increase’ scenario, considering a 30% increase in C inputs, can be 

modeled, to compare results with recent ‘top-down’ modeling approaches (e 

g. CIRCASA). The use of default percentages in C input increase can be 

applied globally without complex configuration. However, countries should 

carefully check whether these scenarios are reasonable and under what type 

of management practices they are achievable. Countries are encouraged to 

produce and provide additional maps, taking into account their own 

estimates of the effects of different selected practices or land use changes, 

based on expert knowledge and local capacities. These effects can be 
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determined on the basis of expert opinion and available information at the 

country level. A metaanalysis should be conducted based on the latest 

available local and regional studies to estimate how agricultural practices 

affect average annual C inputs (and the % increase in C input compared to 

BAU practices). These practices may include, for example, the use of cover 

crops, rotation with high residue yielding crops or perennials, residue 

retention, grazing management, plant nutrition, species introduction, manure 

or organic amendment application, among others. If no data is directly 

provided in the compiled studies, carbon inputs and % increase in C inputs 

relative to BAU practices shall be estimated considering the framework 

proposed by Bolinder et al. (2007). The annual C inputs required to model 

the effects of SSM practices under 3 scenarios (Low, Medium, High) for 

each modeling unit (i.e. grid cells) shall be estimated from the annual BAU 

C inputs: 

 (2.13) 

where SSMct represents the estimated annual C inputs for a specific 

scenario (i=Low, Medium, High) for year t. BAUct represents the 

estimated annual C inputs for the BAU scenario for year t (determined 

from C inputs at equilibrium, as explained at the beginning of this 

section), and %ΔCSSMi — BAU is the representative % increase in C 

inputs for a specific scenario (i=Low, Medium, High). 

 

2.6. Residue decomposability: decomposable to resistant 

plant material ratio (DPM/RPM) 

 

Default values for the DPM/RPM ratio (decomposability of 

incoming plant material) can be used (eg. 1.44 for crops and improved 

grasslands: 0.67 for unimproved grasslands and shrublands, and 0.25 

for forests, woodlands and tree crops: Falloon and Smith, 2009). 

Table 2.2 (Land cover data sets) show default DPM/RPM for FAO land 

use classes. These default values can be modified according to region-

specific data and local knowledge. 

 

2.7. Required data sets and global data sources 

 

The required data sets described in this chapter are summarized in 

Table 2.1. The proposed regional and global data sources to obtain the 
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required input data when no quality national or regional data is 

available are described in Table 2.4. 
Table 2.4. Global and regional data sources to generate national SOCseq maps 

Type Source Address Resolution 

Climatic 
monthly data 

CRU – Climate Research 
Unit , University of East 
Anglia 

https://crudata.uea.ac.uk/cru/data/hr
g/cru_ts_4.03/cruts.1905011326.v4
.03/ 

4 km x 4 km 

 
TerraClimate https://developers.google.com/earth

-
engine/datasets/catalog/IDAHO_E
PSCOR_TERRACLIMATE 

51 km x 50 km 

SOC stocks 0-
30 cm 

GSOCmap - FAO-ITPS http://54.229.242.119/GSOCmap/ 1 x 1 km 

Soil Texture Harmonized World Soil 
Database v1.2 

http://www.fao.org/soils-portal/ 1 km (30 arc 
seconds by 30 
arc seconds) 

Soil Texture OpenGeoHub Foundation 
- OpenLandMap 

https://doi.org/10.5281/zenodo.147
6854 

250m 

Soil texture, 
including 
uncertainties 

 
http://soilgrids.isric.org 250 m 

 
Soil Grids -ISRIC 

  

NDVI- 
Historic 
images (2001-
2020) every 16 
days 

MODIS - MOD13A2 
datasets 

https://lpdaac.usgs.gov/products/m
od13a2v006/ 

1 x 1km 

Land Cover MODIS https://modis.gsfc.nasa.gov/data/dat
aprod/mod12.php 

500 x 500m 

 
Land Cover Dynamics 
MCD12Q2 

 
1 x 1 km 

Land Cover European Space Agency 
(ESA) Climate Change 
Initiative (CCI)- 
Copernicus Climate 
Change Service (C3S) 

https://www.esa-landcover-cci.org/ 300 x 300m 

Land Cover – 
Land Use 

FAO. Global Land Cover 
SHARE 

http://www.fao.org/land-
water/land/land-governance/land-
resources-planning-
toolbox/category/details/en/c/10363
55/ 

~1 x 1km 

Land Cover USGS Global Land 
Survey 

https://lta.cr.usgs.gov/GLS 30 x 30m 

Land Cover CORINE land cover 
(Europe only) 

https://land.copernicus.eu/pan-
european/corine-land-cover 

 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/cruts.1905011326.v4.03/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/cruts.1905011326.v4.03/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.03/cruts.1905011326.v4.03/
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
http://54.229.242.119/GSOCmap/
http://www.fao.org/soils-portal/
https://doi.org/10.5281/zenodo.1476854
https://doi.org/10.5281/zenodo.1476854
http://soilgrids.isric.org/
https://lpdaac.usgs.gov/products/mod13a2v006/
https://lpdaac.usgs.gov/products/mod13a2v006/
https://modis.gsfc.nasa.gov/data/dataprod/mod12.php
https://modis.gsfc.nasa.gov/data/dataprod/mod12.php
https://www.esa-landcover-cci.org/
http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
https://lta.cr.usgs.gov/GLS
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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3. Software environment and briefly overview of scripting process 

  

A spatially explicit version of the RothC model (eg. Gottschalk et al., 

2012; Mondini et al. 2017; Morais et al.; 2019) is required to generate 

national SOC sequestration maps. A spatialized version of the model was 

developed by the GSP Secretariat using an open-source R-environment, 

based on the SoilR package developed by Sierra et al. (2012). Users can use 

these and other alternative local adaptations of a spatialized RothC model by 

following the general procedures and input data described in previous 

chapters to obtain consistent results. This Chapter summarizes the steps 

required to set-up the software environment (R, RStudio, QGIS) to prepare 

the input data and run the spatialized R-version of the RothC model through 

scripts provided by the GSP. Additional supplementary scripts for QGIS 

and Google Earth Engine (GEE) are also provided. Users are required to 

download the following open-source software: 

– R-language and environment for statistical computing and graphics 

(latest stable version, https://cran.r-project.org/bin/windows/) 

– RStudio (latest stable version, https://posit.co/downloads/) 

– QGIS (latest stable version, 

https://qgis.org/en/site/forusers/download.html) 

In order to use Google Earth Engine users must register an account. The 

instructions in this Chapter will guide users through installing and manually 

configuring the software to be used for Microsoft Windows desktop 

platform. 

 

3.1. Install R and R-Studio for Windows 

 

1. To install R, go to cran.r-project.org 

2. 2. Depending on your operating system, click Download R for (for us – 

Microsoft Windows version). R comes in both 32-bit and 64-bit 

versions. Which should you use? In most cases, it won’t matter. Both 

versions use 32-bit integers, which means they compute numbers to the 

same numerical precision. The difference occurs in the way each version 

manages memory. 64-bit R uses 64-bit memory pointers, and 32-bit R 

uses 32-bit memory pointers. This means 64-bit R has a larger memory 

space to use (and search through). As a rule of thumb, 32-bit builds of R 

are faster than 64-bit builds, though not always. On the other hand, 64-
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bit builds can handle larger files and data sets with fewer memory 

management problems. In either version, the maximum allowable vector 

size tops out at around 2 billion elements. If your operating system 

doesn’t support 64-bit programs, or your RAM is less than 4 GB, 32-bit 

R is for you. The Windows and Mac installers will automatically install 

both versions if your system supports 64-bit R. 

 
3. Click on install R for the first time: 

 
4. Click Download R for Windows. Open the downloaded file R-

4.2.2-win.exe: 

 
5. Select the language you would like to use during the installation. 

Then click OK: 
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6. Click Next: 

 
7. Select where you would like R to be installed. It will default to 

your Program Files on your C Drive. Click Next: 
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8. (Optional) If your computer is a 64-bit, you can choose the 64-bit 

User Installation. Then click Next. 

 
9. Then specify if you want to customized your startup or just use the 

defaults. Then click Next. 

 
10. Click Finish:  
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11. Next, download RStudio. Go to https://posit.co/downloads/ 

 

 
12. Click DOWNLOAD RSTUDIO DESKTOP FOR WINDOWS. 

 

 
13. The RStudio installation wizard will pop-up. Click Next and go 

through the installation steps: 

 

 

https://posit.co/downloads/
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14. Congratulations! You have now installed R and RStudio: 

 
 

3.1.1. Getting started with R 

One of the main benefits of using R is that this programming language 

relies on a wide and active community of developers and end-users. Several 

manuals, including the one found on ORAN below, guiding material, 

tutorials and web pages dedicated to debugging errors, such as 

stackoverflow (listed below) can be found online: 

– R manuals: http://cran.r-project.org/manuals.html 

– Contributed documentation: http://cran.r-project.org/other-docs.html 

– Quick-R: http://www.statmethods.net/index.html 

– Stackoverflow R community: 

https://stackoverflow.eom/questions/tagged/r 

 

3.1.2. Some useful R-packages for the SOCseq maps 

As mentioned previously, the main advantage of R is its extensibility. 

The scope of the possible implementations of R can be greatly increased 

with the vast collection of packages that extend its basic functionalities. 
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Packages are the equivalent of add-ons that developers can freely write and 

make available through the open-source platform that constitutes R. 

R has a large and growing number of spatial data packages. We 

recommend taking a quick browse on R’s official website to see the spatial 

packages available: http://cran.r-project.org/web/views/Spatial.html. Some 

of these packages that will be useful to generate the national SOCseq maps 

include: 

– raster. Reading, writing, manipulating, analyzing and modeling of 

gridded spatial data. The package implements basic and high-level 

functions, processing of very large files is supported. 

– rgdal: Provides bindings to the ‘Geospatial’ Data Abstraction Library 

(‘GDAL’) (>= 1.11.4) and access to projection/transformation 

operations from the ‘PROJ’ library. Use is made of classes defined in 

the ‘sp’ package. Raster and vector map data can be imported into R, 

and raster and vector ‘sp’ objects exported. 

– ncdf4. Provides a high-level R interface to data files written using 

unidata’s netCDF library (version 4 or earlier), which are binary data 

files that are portable across platforms and include metadata 

information in addition to the data sets. Using this package, netCDF 

files (either version 4 or classic” version 3) can be opened and datasets 

read in easily. 

– SoilR. This package contains functions for modeling Soil Organic 

Matter decomposition in terrestrial ecosystems. See https://cran.r-

project.org/web/packages/SoilR/SoilR.pdf. 

– abind: Combine multidimensional arrays into a single array. This is a 

generalization of cbind’ and ‘rbind’. Works with vectors, matrices, and 

higher-dimensional arrays. Also provides functions adrop’, asub’, and 

‘afill’ for manipulating, extracting and replacing data in arrays. 

– soilassessment. Soil assessment builds information for improved 

decision in soil management. It analyzes soil conditions with regard to 

agriculture crop suitability requirements (such as those given by FAO 

http://www.fao.org/land-water/databases-and-software/crop-

information/en/ soil fertility classes, soil erosion models and soil 

salinity classification. Suitability requirements are for crops 

grouped into cereal crops, nuts, legumes, fruits, vegetables, industrial 

crops, and root crops. 
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3.1.3. Installation of R-Packages used in this technical manual 

The authors of this Technical Manual used a number of different R 

packages (summarized in Table 3.1). All required packages can be installed 

using the following code and the install.packages() function when starting a 

new SOC sequestration mapping project: 

Install.packages("name_of_the_package") 

Alternatively, the code for the installation of the needed packages is 

included at the beginning of each script. 
Table 3.1 Required R-packages for the national SOC sequestration potential maps 

using an R-environment 

Protocol application area R package Reference 

Import and export raster data raster Hijmans et col. (2020) 

Import and export raster data ncdf4 David Pierce (2019) 

Import and export vector data rgdal Bivand et col (2019) 

Harmonization raster Hijmans et col. (2020) 

Harmonization rgdal Bivand et col (2019) 

RothC model SoilR Sierra and Mueller 

(2014) 

Data manipulation abind Plate (2016) 

RothC model, NPP MIAMI model soilassessment Omuto (2020) 

 

3.1.4. Considerations when using R 

It is important to note the following points when using R: 

– R is a case-sensitive scripting software. More than 90% of its 

commands are scripted in a text-editor and executed by running the 

line/script. 

– Hash (#) denotes the beginning of a comment and is not executed by 

the software. Consequently, it can be used to insert comments in a line. 

All comments after hash (#) are colored green (like green traffic light) 

implying “pass” without execution. 

– With the default editor theme errors and warnings are given in red, 

while functions and numbers are given in blue and commands and 

variables are given in black. 

– When using RStudio text-editor, four panes are available in which the 

top left pane is the text editing window, top right pane is for the data 

environment, bottom right pane is for display and help, and the bottom 

left is the console for executing the scripts. 

– Implemented scripts and reports (warning or errors) are shown in the 
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console panel. 

– Some commands may run for some time and patience is recommended 

to enable the software to progress to completion. During such time, a 

red icon will be shown at the top left corner of the console panel. 

– The execution of a line or script can be stopped if necessary by clicking 

on the “STOP” button from the tools bar. 

 

3.2. Install QGIS on Windows 

To install QGIS on Windows follow the below steps: 

Step 1: Visit the official website using the URL 

https://www.qgis.org/en/site/ in any web browser.  

 
Step 2: Click on the Download Now button. 

 
Step 3: Next web screen open now click on QGIS standalone Installer 

version 3.22 to start downloading. 
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Step 4: Now check for the executable file in the downloads folder in 

your system and open it. 

 
Step 5: Now the installation process is started click on the Next button. 

 
Step 6: The next screen will be of License Agreement; click on I accept 

the terms then click on Next button. 
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Step 7: The next window will be of installing location, so choose the 

drive which will have sufficient memory space for installation. Then click 

on the Next button. 

 
Step 8: Now click on the Install button to start the setup to install.  
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Step 9: It will prompt confirmation to make changes to your system. 

Click on Yes. 

Step 10: After this installation process will start and it might take 8-12 

minutes depending on your computer speed and specification to complete 

the installation. 

 
Step 11:  After the installation process is complete, click on the Finish 

button. 

 
At this point, QGIS is successfully installed on the system and a folder 

will make on the desktop screen.  

 
Now double click on the folder and you show many files but you choose 
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QGIS Desktop 3.22.14. 

 
 

Now see the interface of the software. 

 
 

Congratulations! At this point, you have successfully installed 

QGIS on your Windows system. 

 

3.3. Running the scripts: overview 

 

3.3.1. Summary of steps and scripts 

The generation of national SOC sequestration potential maps using 

the spatially explicit R-version of the RothC model shall be divided in 

three stages (Figure 8.1.): 

– Preparation and Harmonization of data (consists of eleven R 
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scripts, one QGIS model script, and one Google Earth Engine 

script); 

– Running the model in three phases (three R scripts); 

– Transformation of vector data to raster data (map generation, one 

R script)/ 

 
Fig. 3.1. Workflow for generating the national SOCseq layers 

 

3.3.2. Stage 1: Preparation of data 

Running the model over an area will require several spatial layers 

of information (climate, clay content, land use, vegetation cover, NPP 

layers) and defining target points where the model will be run. So 

before running the model, we will “harmonize” the different spatial 

layers, in order to have the same extent, same pixel size and same 

Coordinate Reference System (CRS). On the other hand, each 

modeling phase (spin up, short spin-up/warm up, forward runs) will 

require a different selection of layers for the different time series. So 

we will create ‘stacks’ of the different layers for the single modeling 
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phases. Land cover classes need to be re-classified into land use types 

that the model will recognize. We will reclassify land cover classes 

(like the ones provided by ESA; European Space Agency) to match the 

FAO land cover classes. At this stage, we will also create other input 

layers (like NPP and vegetation cover layers) which are necessary to 

run the model. Finally, we will create target points over the land use 

classes of interest (agricultural lands). These target points will become 

the modeling units (where the model is to be run). 

So, the first step (Fig. 3.1) is aimed at: 

– preparing, organizing and harmonizing all the required input data 

layers to run the model in the different phases; 

– creating supplementary input data layers; 

– creating target points for land use classes of interests/ 

Eleven R scripts, one QGIS script and one Google earth engine 

script are provided to complete these tasks (Table 3.1). 

 
Table 3.1. Summary of the scripts for the complete modelling process 

Type of Layer Script Objective 

SOC layer R- Script number 0 Cut the SOC layer by the area of 

interest polygon 

Climate layers R- Script number 1 R- 

Script number 2 R- 

Script number 3 

Rearrangement of climate layers 

(CRU layers from .ncd to .tif) 

NPP layers R- Script number 5 Creation of NPP layers 

Vegetation Cover (VC) GEE Script number 

(Google Earth Engine) 

R- Script number 7 

Creation of VC layers 

Clay layers R-Script number 8 Obtaining clay contents 0-30 cm 

from different depths (ISRIC) 

Land Use layer R-Script number 9 Re-classification into FAO land 

cover classes 

STACK for SPIN UP R-Script number 10 Stack input data layers for the 

spin up phase 

STACK for WARM UP R-Script number 11 Stack input data layers for the 

warm up phase 

STACK for FORWARD R-Script number 12 Stack input data layers for the 

forward phase 

Target points QGis model script Creation of target points 

SPIN UP R- Script number 13 Run long spin up phase 

WARM UP R- Script number 14 Run warm up phase 

FORWARD R- Script number 15 Run forward phase 
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POINTS TO RASTER R- Script number 16 Rasterize points 

3.3.3. Stage 2: Running the model 

Once the input data layers are prepared and stacked, we will run the 

spatialized RothC model at each target point using three specific 

scripts (Table 3.1): 

1. Long spin up phase: the equilibrium carbon inputs (carbon inputs 

in tha-1 y-1 required to reach SOC stocks in year 2000) and the 

initial stocks of the different SOC pools are calculated; 

2. Short spin up or Warm Up phase: SOC stocks are adjusted for the 

2000-2020 period; 

3. “Forward” phase: SOC stocks are projected (2020 to 2040) under a 

“business as usual” scenario (no changes in carbon inputs), “low” 

scenario (5% increase in carbon inputs), “medium” scenario (10% 

increase in carbon inputs), and “high” scenario (20% increase in 

carbon inputs). 

 

3.3.4. Stage 3: generation of the map 

After the “forward” modeling phase, in the final step we will 

calculate the average absolute and relative SOC sequestration rates 

over a 20-years period for each scenario and for each target point. The 

vector target points will be then rasterized and saved to geotiff format 

to obtain the final product, using a specific R script. All the provided 

scripts are summarized in Table 3.1. 
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4. Developing the map of carbons sequestration by the different 

scenarios of land management 

  

4.1. Stage 1: preparation of input data 

This stage is aimed at: 

– preparing, organizing and harmonizing all the required input data layers 

to run the model in the different phases; 

– creating supplementary input data layers; 

– creating target points for land use classes of interests. 

During this stage we will need to arrange and prepare climate datasets for 

the different modelling phases, generate NPP estimates for each phase, 

generate vegetation cover data, prepare clay content data layers, and 

harmonize and stack all layers for each modelling phase. Finally, we will have 

to create target points to run the model. This stage requires the most effort and 

is the most time consuming of the entire process. Eleven R scripts, one QGIS 

script and one Google earth engine script are provided to complete these tasks. 

 

Pay attention: since these methodological recommendations are mostly a 

simplified version and are largely based on the work: "FAO. 2020. GSOCseq 

Global Soil Organic Carbon Sequestration Potential Map Technical Manual. 

G. Peralta, L. Di Paolo, C. Omuto, K. Viatkin, I. Luotto, Y. Yigini, 1st Edition, 

Rome" https://fao-gsp.github.io/GSOCseq/index.html, then most of the 

necessary data for the territory of Ukraine we are already prepared for use by 

Ukrainian users. For more detailed information, please refer to the mentioned 

source. 

By default, the AOI "District_Khmilnyk.shp" will be used. If desired, you 

can choose AOI from the following files: 
"c:\TRAINING_MATERIALS\INPUTS\AOI_2021_UA_official\2021_UA_rajon_.shp" 

(administrative districts)  

"c:\TRAINING_MATERIALS\INPUTS\AOI_2021_UA_official\2021_UA_terhromady.shp" 

(territorial communities)  

"c:\TRAINING_MATERIALS\INPUTS\AOI_2021_UA_official\2021_UA_oblast.shp" 

(regions).  

In this case, you should change the AOI file names in the proposed scripts. 

All the necessary scripts are located in the corresponding folders along the 

path "c:\TRAINING_MATERIALS". 

All source data for modeling are located in the corresponding folders 

along the path "c:\TRAINING_MATERIALS\INPUTS\". 

https://fao-gsp.github.io/GSOCseq/index.html
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4.1.1. Preparation of SOC layer 

As a default option, users are invited to use the GSOCmap to 

retrieve their SOC data for their area of interest (AOI). This can be 

achieved easily, by clipping the GSOCmap to the extent of a shapefile 

making up the borders of the chosen study area or country. All data 

sources can be found in Table 6.3 of Chapter 6. 

 

Script Number 0. “SOC_MAP_AOI.R” 

Aim: Preparation of the Soil Organic Carbon SOC layer. 

First, open the script SOC_MAP_AOI.R in RStudio: 

 
For RUN script: press “Ctrl+A” (select all script text) and Press 

“Ctrl+Enter”. All will work automatically. This procedure will need to 

be done for each script, unless otherwise specified. 

 

4.1.2. Preparation of climate Layers 

The climate variables needed for the three modeling phases are: 

1. Monthly rainfall (mm/month): 

2. Monthly Evapotranspiration (mm/month): 

3. Average monthly mean air temperature (average °C/month). 

We will need to arrange these climatic variables into three datasets: 

– 1980-2000 (monthly average values for the complete series) 
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– 2001-2020 (year to year monthly values) 

– 2001-2020 (monthly average values for the complete series) 

Gridded climate data shall be obtained from either National Sources 

or regional or global datasets when national gridded historical climate 

datasets are not available. The recommended global data source of 

these layers are: 
– The Climate Research Unit (http://www.cru.uea.ac.uk/) 

– TerraClimate (readily available from the Google Earth Engine catalogue: 

https://developers.google.com/earth-

engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE#citations) 

For countries wanting to use the TerraClimate or the CRU data set, 

several scripts to obtain and to reformat the climate spatial layers to run the 

three modelling phases, will be presented. Users can prepare the necessary 

input climate data sets using other data sources. However, these scripts may 

still be helpful to guide the preparation process of other data sets, and as a 

guide of the required outputs that will be needed as inputs for the different 

modeling phases. Due to the coarse resolution of the CRU data set, small 

and/or coastal countries may encounter issues with the data set. 

It is important to note that the CRU layers do not cover countries in their 

entirety. To overcome this, this revised version of the Technical Manual 

provides two options: 

For countries wanting to use the TerraClimate or the CRU data set, 

several scripts to obtain and to reformat the climate spatial layers to run the 

three modelling phases, will be presented. Users can prepare the necessary 

input climate data sets using other data sources. However, these scripts may 

still be helpful to guide the preparation process of other data sets, and as a 

guide of the required outputs that will be needed as inputs for the different 

modeling phases. Due to the coarse resolution of the CRU data set, small 

and/or coastal countries may encounter issues with the data set. 

It is important to note that the CRU layers do not cover countries in their 

entirety. To overcome this, this revised version of the Technical Manual 

provides two options: 

1. Perform the whole procedure with higher resolution climate layers 

again for every point. We have provided scripts to download and 

prepare TerraClimate climatic layers. 

2. Re-running the model only for those points that fall outside of the CRU 

layer using the provided scripts that include a line of code that fills NA 

values with the average of all surrounding pixel values. 
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For both cases a detailed step by step guideline is provided in: FAO. 

2020. GSOCseq Global Soil Organic Carbon Sequestration Potential Map 

Technical Manual. G. Peralta,L. Di Paolo, C. Omuto, K. Viatkin, I. Luotto, 

Y. Yigini, 1st Edition, Rome. 

The preparation of the climate data depending on whether a user selects 

the CRU (Option A) or TerraClimate (option B) data set is presented in the 

flowchart below. To make use of the TerraClimate dataset, users need to 

first download the data for the time periods 1980-2000 and 2001-2018 

using two scripts for Google Earth Egine (GEE) and subsequently 

prepare the target climatic variables using two R scripts. 

 
Script order to follow depending on wether CRU or TerraClimate data 

sets are selected 

 

Option A: Preparation of the CRU climatic variables 

Script Number 1. “CRU_variables_SPIN_UP.R” 

For each modelling phase we will need a different selection of climate 

layers. For phase 1 (“Long Spin up"), we will need to stack 12 spatial layers 
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(the output file will be a multiband raster layer) for each climate variable 

mentioned above (temperature, precipitation and evapotranspiration). The 

time series for this initial phase goes from 1981 to 2000. The script number 

1 (1_CRU_variables_SPIN_UP.R) will transform the downloaded CRU 

files to geotiff raster files and obtain monthly averages (temperature, 

precipitation, evapotranspiration) for the 1981-2000 series, ready to be used 

in the spin up modelling phase. 

We have already prepared these files, so you do NOT need to run this 

script: 1_CRU_variables_SPIN_UP.R 

 

Script Number 2: “2_CRU_variables_WARM_UP.R” 

The purpose of the “Warm up” phase is to adjust the initial SOC stock 

and initial pools for the “forward” phase. Once the input climate layers have 

been harmonized, the model will run for each year from 2001 to 2018/20, 

using the monthly climate data of each year of the series (for 216/240 values 

for each month of the time series). The script number 2 is prepared to 

arrange the necessary CRU climate files for this phase. We will need to 

generate one raster stack of 216/240 spatial layers for each climate variable 

mentioned above (216 spatial layers if we use just 18 years period instead of 

a 20 year period; from 2001 to 2018, depending on the available climate 

data). Each stack will have one layer for each month from 2001 to 

2018/2020. For phase number 3, the “Forward” phase, we will need 

monthly averages of the time series 2001-2018/20. We will use the same 

arrangement as used in phase number one (one stack of 12 bands for each 

variable) but instead of using the averages of the 1981-2000 period we will 

use the climatic data of the 2001-2018/20 period. We will assume that there 

is no climate change in the next 20 years. Thus, script number 2 will also 

prepare the climate files for the “forward phase”. 

We have already prepared these files, so you do NOT need to run this 

script: 2_CRU_variables_WARM_UP.R 

 
Script Number 3: “3_CRU_variables_for_NPP_MIAMI_MEAN_81-00.R” 

Preparation of CRU files to estimate NPP 1981-2000. This script convert 

the CRU monthly climate data 1981-2000 into annual data to estimate 

annual NPP 1981-2000.  

“3_CRU_variables_for_NPP_MIAMI_MEAN_81-00.R” will process 

the CRU files from the 1981-2000 series to generate the climate inputs files 
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required to estimate NPP by the MIAMI model. In this case, we have also 

already prepared these files, and therefore you do NOT need to run this 

script. 

 
Script Number 4. “4_MIAMI_MODEL_NPP_MIAMI_MEAN_81-00.R” 

To adjust yearly C inputs during the warm up phase according to annual 

NPP values, we will need to estimate an average annual NPP 1981-2000, 

that will be used as the starting point to adjust C inputs during the “warm 

up” phase. Script number 4 uses the climate raster outputs from script 

number 3 and estimates an annual NPP mean 1981-2000 value.  

RUN script “4_MIAMI_MODEL_NPP_MIAMI_MEAN_81-00.R”. 

All will work automatically. 

 

As we wrote above, there is Option B for Preparation of the 

TerraClimate climatic variables. If desired, you can read more about it in 

the manual: FAO. 2020. GSOCseq Global Soil Organic Carbon 

Sequestration Potential Map Technical Manual. G. Peralta,L. Di Paolo, C. 

Omuto, K. Viatkin, I. Luotto, Y. Yigini, 1st Edition, Rome. 

 

Script Number 6. “6_Vegetation_Cover_GEE_copy_to_code_ 

Editor_v2.txt” – vegetation cover from Google Earth Engine. 

Script number 6 is a Google Earth Engine script. It is aimed at estimating 

an average vegetation cover status for each month of the year. Therefore: 

the script should be run twelve times, modifying the month number each 

time. It estimates, within a specified time series, the probability for each 

pixel to present NDVI values greater than a specified threshold, over which 

the soil is vegetated (for example NDVI > 0.6). The result will vary between 

0 and 1. Users may modify the time series and NDVI threshold as desired 

and according to local knowledge. In this case, we have also already 

prepared these files, and therefore you do NOT need to run this script. If 

desired, you can read more about it in the manual: FAO. 2020. GSOCseq 

Global Soil Organic Carbon Sequestration Potential Map Technical 

Manual. G. Peralta,L. Di Paolo, C. Omuto, K. Viatkin, I. Luotto, Y. Yigini, 

1st Edition, Rome. 
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Script Number 7. “7_Veg_Cov_stack.R” 

The script number 7 is an R script that uses the monthly vegetation cover 

layers (0-1 values) created with the GEE script number 6 to create a raster 

stack. It also linearly rescales the values from “0 to 1” (proportion of 

vegetated pixels in a time series) to “1 to 0.6” (being 1 = bare soil and 0.6 = 

full vegetated pixel). This transformation will allow us to use the calculated 

values as modifying factors of the decomposition rates in the RothC model. 

Because we have already downloaded the monthly vegetation cover 

layers for you for the entire territory of Ukraine, we will generate a stack of 

those layers. We will first open script “7_Veg_Cov_stack.R” and the 

required packages. Then, RUN script. All will work automatically. 

 

Script Number 8. “8_Script_CLAY_from_ISRIC.R” 

ISRIC clay layers represent the clay content (0-2 micrometer; in g/100g; 

w%) at four standard depths (Sl1=0-1cm; Sl2=1-5; Sl3=5-15cm; Sl4=15-30 

cm) at a 250m resolution. The objective of this script is to aggregate the 

different layers into one layer by estimating the weighted average of the four 

depths. 

We have already combined the data by layers for the entire territory of 

Ukraine, so when you run this script, it will only cut the data according to 

the AOI outlines. 

 

4.1.3. Preparing the land use layer 

The land use layer is one of the most important layers in the process, as it 

defines the target areas and production systems to be modeled. The land use 

layer will be needed: 

– to account for major land use changes during the 2000-2020 period; 

– to obtain the DPM/RPM ratios required in the RothC model; 

– to define the modeling units/target points where the model is to be run 

(agricultural lands in 2020). 

Each modeling phase will require specific land use layers. For the spin 

up’ phase, users should use a representative land use layer for the period 

1980-2000 (e g. land use layer as in year 2000), or best available land use 

layer. For the ‘warm-up’ phase, users can use year to year land use layers 

(2000 to 2020), or a representative land use layer for the period, depending 

on the available information. The ‘warm-up’ land use layer accounts for 

year-to-year changes in the land use during the period (for example a pixel 
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that changes from forest to cropland). The script will need a stack of land 

use layers, one layer for each year of the warm up phase. If the user does not 

want to model changes in the land use layer over the warm up phase, or 

information is not available, the same land use layer for each year can be 

used over the warm-up phase.  

For the ‘forward’ phase, the latest best available land use layer should be 

used. As a minimum, the last available land use data at 1x1 km resolution 

shall be defined. The predominant land use category in each cell of the 1x1 

km grid shall be selected if finer resolutions are available. The land use 

classes can be derived from land cover classes from different national, 

regional or global datasets which best correlate with national land use. The 

land use layers are used in the three modelling phases to generate a 

decomposition rate DR layer (generated through scripts 10, 11, and 12), that 

represents the above mentioned DPM/RPM ratios for the different land use 

classes. In scripts 10, 11 and 12, default DPM/RPM values are assigned to 

each FAO Global Land Cover (GLC-SHARE) class (See Table 2.2 and 

scripts 10, 11 and 12). For more information on this classification refer to 

FAO (2014) and to the FAO Land and Water site:  

http://www.fao.org/land-water/land/land-governance/land-resources-

planning-toolbox/category/details/en/c/1036355/  

Thus, land cover classes obtained from different datasets (e g. European 

Space Agency - ESA) need to be re-classified into FAO land cover classes 

in a Geotiff format if the scripts 10, 11 and 12 are to be run with the default 

land classes and DPM/RPM ratios provided with the training material. In 

this section, we provide a script to transform ESA land use cover classes to 

FAO land use classes (script 9), which can be used as a model to convert 

and use classes from other datasets. Users can however modify the 

DPM/RPM default values (See Table 2.2) based on local knowledge and 

available information, create additional land use classes or disaggregate the 

FAO land use classes, and assign DPM/RPM ratios to those new classes by 

modifying the provided scripts. Users are encouraged to leverage available 

local knowledge and data to produce the most accurate SOCseq maps 

possible. With this in mind: if more detailed land use maps, i.e. containing 

information about the types of cropping systems present, and local data on 

the DPM/RPM for the specific land use types are easily accessible, the 

provided script should be edited accordingly. 

Finally, the land use layer is also needed to define the target points where 

http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
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the three phases of the protocol will be run. In next section we provide a 

QGIS model to generate the target points from the land use layer. Defining 

the target points out of the land use layer will allow us to run the model just 

in the pixels with the land use classes of interest. 

Depending on whether yearly land use layers are available for the 

forward phase, technical manual (FAO. 2020. GSOCseq Global Soil 

Organic Carbon Sequestration Potential Map Technical Manual. G. 

Peralta,L. Di Paolo, C. Omuto, K. Viatkin, I. Luotto, Y. Yigini, 1st Edition, 

Rome) contains alternative scripts both for the data preparation phase 

(Scripts 9_Land_Use_ESA_to_FAO_classes_LUsim.R and 

11_WARM_UP_STACK_V5_LUsim.R) and the modelling phase (Script 

14_ROTH_C_WARM_UP_UNC_v3_LUsim.R). Next figure illustrates the 

script sequence to be followed depending on whether yearly land use 

change layers are available for the warm up phase: 

 
 

Script Number 9. “9_Land_Use_ESA_to_FAO_classes.R”: No land 

use change 

Script number 9 transforms the ESA (European Space Agency 2015; 

300 m resolution; ESA CCI Land cover website) land cover classes to the 

FAO land use classes. This script can be modified to be used with any other 

land use dataset.  
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RUN script “9_Land_Use_ESA_to_FAO_classes.R”. All will work 

automatically. An alternative way, when we conduct Land use change 

simulation, is not considered in these methodological recommendations. 

 

4.1.4. Harmonization of soil, climate and vegetation layers 

Once all soil, climate, vegetation and land use layers are created, they 

need to be harmonized in order to run the model. The harmonization of 

layers consists of three steps. First, if the model is to be run for an entire 

country/region/district, layers need to be harmonized to the extents of the 

AOI boundaries (AOI polygon layer extents). Second, a resampling process 

is required in order to match the spatial resolution to the master layer (SOC 

FAO layer). Finally, a masking process is required to cut the layer with the 

vector polygon boundaries. After the harmonization of all layers, we will 

generate a raster stack of all layers needed to run the model. The 

harmonization/stacking process will be performed three times (scripts 10, 

11, 12), one for each modelling phase. 

 

Script Number 10. “10_SPIN_UP_STACK_V3.R” 

Script number 10 is intended to harmonize all layers needed to complete 

phase 1 (long spin-up) of the spatial RothC model. The result of this script is 

a simple raster stack which contains all the data to perform the spin-up 

phase. To generate the stack, we will need the SOC FAO layer (master 

layer), the clay layer (from script number 8), the three climate stacks (from 

script number 1), the land use layer (from script number 9), and the 

vegetation cover stack (from script number 7). The script creates a DR layer 

(DPM/RPM ratio). Here the DR layer is derived from the Land use layer, 

assigning default DPM/RPM ratios to each FAO land cover class. Users can 

modify these ratios according to local expertise and available local 

information. 

RUN script. All will work automatically. 

 
Script Number 11. “11_WARM_UP_STACK_V5.R” No Land use change! 

Script number 11 is intended to harmonize all layers required to run the 

phase 2 (WARM UP) of the spatial RothC model. The result of this script is 

a simple raster stack which contains most of the layers needed for the warm-

up phase. To generate the stack, we will need the latest version of SOC 

FAO layer (master layer), the clay layer (from script number 8), land use 
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layers (from script number 9), a land use stack (one land use layer per year), 

a vegetation cover stack (from script number 7) and the NPP stack (from 

script number 4). The climate layers and the NPP mean are additional layers 

that will be needed in the WARM UP phase but will not be part of this stack 

because of the final size of the output file. 

RUN script. All will work automatically. 

 

Script Number 12. “12_FOWARD_STACK.R” 

Script number 12 harmonizes all layers needed to run phase 3 (forward) 

of the spatial Roth C model. The result of the script is a simple raster stack 

which contains the layers needed to perform the forward phase. To generate 

the stack, we will need the SOC FAO layer (master layer), the clay layer 

(from script number 8), the three climate stacks required for the forward 

phase (from script number 2), the land use layer or the forward phase (from 

script number 9), and the vegetation cover stack (from script number 7). 

RUN script. All will work automatically. 

 

4.1.5. Defining target points to run the model 

At this point we have three raster stacks for the different modelling 

phases. We need to create the points where those simulations will be 

run in order to accelerate the modelling process. These points will be 

the center of the pixels of the master layer (GSOCmap layer, script 

number 7). Later, we will convert the points containing the modelling 

output values back to a raster layer format. 

 

QGIS Procedure number 1 (model) 

We will need the land use data of each pixel (we already corregistered 

the land use layer with the master layer at script number 7). Then we will 

use the land use layer of the country to generate the points. For this, we can 

use a QGIS model to create target points.  

For these purposes we must open the QGIS, then go to the processing 

toolbox and click on the “open existing model” button. We will have to 

search for the model in the provided folder, called “4_Points_country”. We 

will have to load the model called “Qgis_Procedure_number_1.model3”. 

Once this is done, we can run the model from the processing toolbox. 
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We will click the Empty_Points button and a window will pop up. We 

will select the Land use layer created in script number 10 (already 

resampled to match the extent and pixel size of the GSOCmap), set the path 

and the name of the output file, and click on the Execute button. 

 
This process will create vector points. Each point will be created in the 

centroid of each pixel of the land use layer. This vector will contain no 

fields. The scripts to run the model for each phase (SPIN_UP, WARM_UP, 
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forward) will attach all the necessary data from the stacks (scripts number 

10, 11 and 12) to each point.  
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Export points to:  
C:\ TRAINING_MATERIALS\INPUTS\TARGET_POINTS\target_points.shp 

 

 
 

 

 
 



57 

 

4.2. Stage 2: running the model 

 

Once all input layers are prepared, harmonized and stacked, we will run 

the three modeling phases (spin up, warm up and forward phase). At this 

stage, we will run the model three times, once for each phase using three 

different scripts (scripts 13A -equilibrium run or 13 B-analytical solution 

(this option is not considered in these methodological recommendations), 14 

and 15), which use the same RothC function. For each script we will need 

the previously created raster stacks and target points. Each script will 

generate output vector points (containing the modeling results, i.e., SOC 

stocks of the different carbon pools of the RothC model). The output vector 

of each phase will be used as an input of the next modeling phase. Finally, 

after running the final modeling phase, the forward phase, we will obtain an 

output vector containing the SOC data for each projected scenario. This 

output vector will be used as input for the final script (script 16) to generate 

the raster files to build the sequestration potential maps. 

 

4.2.1. Initialization – Spin up phase 

To estimate initial carbon pools and equilibrium carbon inputs, we will 

be used first alternative. Users can run the initialization phase using the 

equilibrium procedure, implemented in Script 13A (e.g. Smith et al. 2005; 

2006; 2007; Gottschalk et al., 2012). A minimum of 500 years is suggested 

to reach equilibrium with reduced computational time. However, it must be 

noted that spin up runs for 500 years may not necessarily end up in 

equilibrium SOC stocks, depending on soil, climate and land use conditions. 

Increasing the duration (1000-2000 years) will reduce deviations with the 

cost of additional computation time.  

 
Script Number 13A. “13_ROTH_C_SPIN_UP_UNC_v2.R” (equilibrium runs) 

Script number 13A implements the first modeling phase (spin up) 

using the original equilibrium run approach. In this script we will load 

the stack generated in script number 10 and the target points (QGIS 

model number 1). We will obtain an output vector containing our 

target points. This script runs the RothC model for a minimum of 500 

years to calculate the equilibrium carbon inputs (the carbon inputs 

needed to reach the 2001 SOC stocks) and the SOC stocks for the 

different pools. It first runs using a standard C input of 1 tC ha-1 yr-1, 
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and then equilibrium inputs are estimated from the obtained results and 

GSOCmap stocks. In this script we will use pedotransfer functions to 

estimate the SOC stocks of the different pools from the total SOC 

stock (Weihermüller et al., 2013) to accelerate the spin up process. All 

that information will be saved to the output vector (shapefile file). The 

SPIN UP Phase will allow us to calculate two outputs that will be 

saved to a point vector layer called “C_INPUT_EQ.shp”: equilibrium 

carbon inputs (Ceq) and the carbon stocks of the different soil C pools 

to run the second phase (WARM UP phase). 

RUN the script. All will work automatically. 

 

4.2.2. Warm up phase 
Script Number 14A. “14_ROTH_C_WARM_UP_UNC_v3.R” No Land use change 

Script number 14 implements the second modeling phase (“Warm 

up” phase). In this script we will load the stack of different layers 

generated in script number 11 and the target points. We also will load 

the output vector of the phase 1 (spin up), the climate layers from 

script number 2, the NPP layer from script number 5, and the land use 

layer stack from script number 9. This script runs the Roth C model for 

18 years (2000-2018) with the possibility to be modified to 20 years if 

data is available (2000-2020). The final outputs are SOC stocks of the 

five C pools of the RothC model (DPM, RPM, BIO, HUM and IOM), 

and the total SOC stock. This information will be saved to a shapefile 

vector. This script runs the spatial RothC model for the warm-up 

period (from 2001 to 2018). We will provide the script the target points 

(empty vector layer from Qgis procedure number 1), the Stack layer 

(from script number 11), the three NPP layers (from script number 5) 

and the three climate layers generated in script number 2. The output 

vector layer from script number 13 (Spin up phase) will also be 

needed. 

RUN the script. All will work automatically. 

 
Forward phase: Script Number 15. “15_ROTH_C_FOWARD_UNC_v3.R” 

Script number 15 implements the third modeling phase (“forward” 

phase). We will need to load the stack of layers  generated in script 

number 12 and the target points. We will also need to load the output vector 

of the phase 2 (“warm up”) as an input. This script will run the Roth C 
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model for 20 years, projecting SOC stocks for the 2020-2040 period under 

different management scenarios (“BAU” scenario and the three SSM 

scenarios: low, medium and high input carbon). C inputs will vary 

according to the SSM scenarios. Standard default values of 5-10-20% 

increase in C inputs is defined for the three SSM scenarios (low, medium, 

high, respectively). Users can modify these inputs based on local expertise 

and available information, and generate alternative maps using this data. 

The final outputs will be the final SOC stocks after 20 years for the different 

scenarios. This information will be saved to a shapefile. 

The ‘Forward’ modeling phase requires (as in the previous phases) the 

target points (generated from the QGIS procedure number 1), the stack of 

layers (from script number 12), and the output vector from the previous 

phase (warm up). The ‘euler’ method can give some out-of-range results in 

some points, under specific combinations of climatic, soil and NPP 

variables. To avoid including those points in the maps we will remove any 

“out of range” value. Then, we will run the rest of the script, set the working 

directory, calculate the uncertainties and set the name of the output vector 

layer.  

 

4.3. Stage 3: Map generation 

 

Once the model is run through the three proposed phases, we have all the 

information required for generating the maps. We need to transform the 

output vector to raster layers. We will obtain the SOC stocks after 20 years 

of SSM practices for the three scenarios (low, medium and high carbon 

inputs increments), and SOC stocks under the business-as-usual scenario 

(no carbon input increment). We will estimate four absolute carbon 

sequestration rates (considering the 2018 or 2020 SOC as a baseline), and 

three relative carbon sequestration rates (considering the SOC stocks under 

the business as usual as the baseline). 

 

Script Number 16: “Points_to_Raster.R” 

We will use script number 16 to transform the output vector from script 

number 15 to raster layers. The inputs for this script are the output vector 

from script 15, the FAO SOC layer and the country boundary polygon. The 

outputs of the script number 16 are the SOC stocks for the future scenarios 

(20 years): BAU, low, medium and high carbon inputs, three relative 
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sequestration rates (SOC stock SSM scenario - BAU scenario)/20 , and four 

absolute sequestration rates: (SOC stock SSM or BAU scenario - SOC 

stocks 2018/20)/20.  

Next, script will be transforming the vector points from the FORWARD 

phase of the model to raster files using the “rasterize” function. After this, 

script will calculate the absolute differences and the absolute rates (SSM - 

SOC 2018). Next, we will calculate the relative differences and rates (SSM - 

SOC BAU). Now, we will rasterize the values of the uncertainties of SOC 

BAU, SOC 2018 and one SSM (one for the three scenarios). This last step 

will transform this points to  raster file, one for each required map 

Now we will calculate the uncertainties for the absolute and relative 

rates. 

 

4.4. Uncertainty and validation 

 

Ideally, model prediction uncertainty provided in the SOCseq map 

should include all sources of uncertainty that affect predictions, including 

model structural uncertainty, model parameters’ and input data 

uncertainties. As a minimum, uncertainty should include input data 

uncertainties (e.g. Morais et al., 2019). There are different methods to 

estimate uncertainties in the results. Monte Carlo methods, that draw 

random values from the probability distribution functions for inputs and 

parameters, are an efficient way to estimate the whole uncertainty of the 

modeled estimation (Ogle et al., 2010; FAO, 2019b; Morais et al., 2019). In 

Monte Carlo simulation methods, parameter values of the model and input 

data (e.g. mean temperature, clay content, carbon inputs) shall be randomly 

chosen from hypothetical normal distributions with mean equal to the 

parameter value and the measured standard error around that mean. Once all 

the different parameter values for the model are generated from the 

hypothetical distributions, a model run shall be made. This process is to be 

repeated 100 or more times to produce a mean model prediction with a 95 

percent confidence interval. The Monte Carlo simulation would generate an 

expected value of SOC stocks for the different scenarios and a 95 percent 

confidence interval. Uncertainty (U) shall be expressed as a percentage: half 

of the 95% confidence interval divided by the mean (Ogle et al., 2010). 

Thus, uncertainty can be estimated for each simulated scenario. 

Uncertainties already generated in the SOCmap can be used to obtain the 
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min and max SOC FAO values. Uncertainties in C inputs and thus Ci max 

and min can be estimated from available data (e.g. meta-analysis). Temp 

max and Temp and PPmax and PPmin can be estimated from the average 

monthly values and confidence intervals of the climatic series to be 

modeled. Uncertainties in clay contents can be directly obtained from SOIL 

GRIDS (https://soilgrids.org/) if the ISRIC database is to be used for the 

clay content layers. If no estimate of clay variation is available for the used 

database, Clay max and clay min can be determined from clay content 

variation within the 1km x 1km grid cells (i.e. considering the values from 

250 m x 250m resolution grids). If no estimate is available for these 

parameters, a maximum and minimum value can be estimated for these 

parameters, using general uncertainty coefficients, as those reported from 

global modelling exercises by Gottschalk et al. (2007) and Hastings et al. 

(2010). Average uncertainties for these parameters are summarized in 

Table 4.1. 

 

Table 4.1 General uncertainties of main parameters affecting SOC 

dynamics. Derived from Gottschalk et al. (2007) and Hastings et al. (2010) 
Parameter Uncertainty 

in the input 

Minimum value Maximum value 

Temperature ±2 % Monthly Temp * 0.98 Monthly Temp * 1.02 

Precipitation ±5% Monthly PP * 0.95 Monthly PP * 1.05 

Clay content ± 10% Clay * 0.90 Clay * 1.10 

FAO SOC ± 20 % SOC FAO *0.8 SOC FAO *1.2 

C input increase in 

SSM scenario 

± 15% C eq * (SSM1 % increase 

- 15%) 

C eq * (SSM % increase 

+ 15%) 

 

The model should be validated for the conditions in which it will be 

applied when possible. The use of models for prediction involves a series of 

problems for validation, as data required to quantify the accuracy of the 

estimates do not yet exist. Nonetheless, predictive models can be validated 

if they explain past events (ex-post validation). If local results from different 

SSM practices on SOC stocks are available (a meta-analysis of local SSM 

practices can be conducted), and the collected activity data allow to perform 

simulations with these records, model-produced estimates shall be 

compared with the observed results. The RMSE shall be used to compare 

the divergence between model estimates and field observations. 
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Conclusion 

 

So, this methodical recommendation provides technical specifications 

and guidance for the generation of Soil Organic Carbon Sequestration 

Potential (SOCseq) maps at 1 km resolution for agricultural lands, based on 

a ‘bottom-up’. SOC stocks 0-30 cm of mineral soils shall be projected over 

a 20-year period after adoption of Sustainable Soil Management (SSM) 

practices oriented to increase carbon inputs to cropland and grassland soils. 

In order to obtain consistent results and to allow comparisons between 

countries and regions, the use of RothC as a standard spatialized SOC 

model is requested. 

Using the study dataset within Ukraine, the end user will receive a 

complete set of necessary maps for assessing the potential of carbons 

sequestration by the different scenarios of land management, in 

particular: 

Final SOC stocks (tC/ha) 

Khmilnyk_SOCseq_T0_Map030.tif 

Khmilnyk_SOCseq_finalSOC_BAU_Map030.tif 

Khmilnyk_SOCseq_finalSOC_SSM1_Map030.tif 

Khmilnyk_SOCseq_finalSOC_SSM2_Map030.tif 

Khmilnyk_SOCseq_finalSOC_SSM3_Map030.tif 

Uncertainties 

Khmilnyk_SOCseq_T0_UncertaintyMap030.tif 

Khmilnyk_SOCseq_BAU_UncertaintyMap030.tif 

Khmilnyk_SOCseq_SSM_UncertaintyMap030.tif 

SOC Absolute differences (SSM 1-3 – T0), In tC/ha 

Khmilnyk_SOCseq_AbsDiff_BAU_Map030.tif 

Khmilnyk_SOCseq_AbsDiff_SSM1_Map030.tif 

Khmilnyk_SOCseq_AbsDiff_SSM2_Map030.tif 

Khmilnyk_SOCseq_AbsDiff_SSM3_Map030.tif 

Absolute sequestration rates: Abs. Diff./20 years, In tC/ha/year 

Khmilnyk_SOCseq_ASR_BAU_Map030.tif 

Khmilnyk_SOCseq_ASR_SSM1_Map030.tif 

Khmilnyk_SOCseq_ASR_SSM2_Map030.tif 

Khmilnyk_SOCseq_ASR_SSM3_Map030.tif 

Uncertainties for the Absolute sequestration rates 

Khmilnyk_SOCseq_ASR_BAU_UncertaintyMap030.tif 
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Khmilnyk_SOCseq_ASR_SSM1_UncertaintyMap030.tif 

Khmilnyk_SOCseq_ASR_SSM2_UncertaintyMap030.tif 

Khmilnyk_SOCseq_ASR_SSM3_UncertaintyMap030.tif 

Relative sequestration rates: Relative Diff./20 years, In tC/ha/year 

Khmilnyk_SOCseq_RSR_SSM1_Map030.tif 

Khmilnyk_SOCseq_RSR_SSM2_Map030.tif 

Khmilnyk_SOCseq_RSR_SSM3_Map030.tif 

Uncertainties for the Relative difference 

Khmilnyk_SOCseq_RSR_SSM1_UncertaintyMap030.tif 

Khmilnyk_SOCseq_RSR_SSM2_UncertaintyMap030.tif 

Khmilnyk_SOCseq_RSR_SSM3_UncertaintyMap030.tif 

Relative difference SSM - SOCBAU 

Khmilnyk_SOCseq_RelDiff_SSM1_Map030.tif 

Khmilnyk_SOCseq_RelDiff_SSM2_Map030.tif 

Khmilnyk_SOCseq_RelDiff_SSM3_Map030.tif 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgement 

We thank the authors of the technical manual "GSOCseq Global 

Soil Organic Carbon Sequestration Potential Map" - G. Peralta, L. Di 

Paolo, C. Omuto, K. Viatkin, I. Luotto, Y. Yigini - for their 

tremendous work in writing scripts and their testing. We are grateful to 

K. Viatkin for the kindly provided datasets for Ukraine, which greatly 

helped in the preparation of these methodological recommendations. 



64 

 

References 
1. Abberton, M.T., Conant, R.T. & Batello, C. 2010. Grassland carbon 

sequestration: Management, policy and economics : proceedings of the 

Workshop on the role of grassland carbon sequestration in the mitigation of 

climate change. Integrated crop management, 1020-4555. Rome, Food; 

Agriculture Organization of the United Nations, Plant Production; Protection 

Division; Food; Agriculture Organization of the United Nations. 

2. Al-Adamat, R., Rawajfih, Z., Easter, M., Paustian, K., Coleman, K., Milne, E., 

Falloon, P., Powlson, D.S. & BATJES, N.H. 2007. Predicted soil organic 

carbon stocks and changes in Jordan between 2000 and 2030 made using the 

GEFSOC Modelling System. Agriculture, Ecosystems & Environment, 

122(1): 35–45. https://doi.org/10.1016/j.agee.2007.01.006 

3. Allen, M.R. & Stocker, T.F. 2014. Impact of delay in reducing carbon dioxide 

emissions. Nature Climate Change, 4(1): 23–

26. https://doi.org/10.1038/nclimate2077 

4. Anonymous. undated. Global Soil Organic Carbon (GSOC) Map | Global Soil 

Partnership | Food and Agriculture Organization of the United Nations. [Cited 

26 November 2020]. http://www.fao.org/global-soil-partnership/pillars-

action/4-information-and-data-new/global-soil-organic-carbon-gsoc-map 

5. Bahn, M., Kutsch, W.L. & Heinemeyer, A. 2012. Synthesis: emerging issues 

and challenges for an integrated understanding of soil carbon fluxes. In W.L. 

Kutsch, ed. Soil carbon dynamics, pp. 257–271. Cambridge, Cambridge 

University Press. 

6. Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the 

world. European Journal of Soil Science, 47(2): 151–

163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x 

7. Beek, J. & Frissel, M.J. 1973. Simulation of nitrogen behaviour in soils. 

Simulation monographs. Wageningen, Pudoc. (also available 

at http://eprints.icrisat.ac.in/13135/). 

8. Bolinder, M.A., Janzen, H.H., Gregorich, E.G., Angers, D.A. & 

VandenBygaart, A.J. 2007. An approach for estimating net primary 

productivity and annual carbon inputs to soil for common agricultural crops in 

Canada. Agriculture, Ecosystems & Environment, 118(1-4): 29–

42. https://doi.org/10.1016/j.agee.2006.05.013 

9. Campbell, E.E. & Paustian, K. 2015. Current developments in soil organic 

matter modeling and the expansion of model applications: a 

review. Environmental Research Letters, 10(12): 

123004. https://doi.org/10.1088/1748-9326/10/12/123004 

10. Clarholm, M. & Bergström, L., eds. 1989. Ecology of Arable Land – 

Perspectives and Challenges: Proceeding of an International Symposium, 9-

https://doi.org/10.1016/j.agee.2007.01.006
https://doi.org/10.1038/nclimate2077
http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data-new/global-soil-organic-carbon-gsoc-map
http://www.fao.org/global-soil-partnership/pillars-action/4-information-and-data-new/global-soil-organic-carbon-gsoc-map
https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
http://eprints.icrisat.ac.in/13135/
https://doi.org/10.1016/j.agee.2006.05.013
https://doi.org/10.1088/1748-9326/10/12/123004


65 

 

12 June 1987 Swedish University of Agricultural Sciences, Uppsala, Sweden. 

Developments in plant and soil sciences. Dordrecht, Springer Netherlands. 

11. Coleman, K. & Jenkinson, D.S. 1996. RothC-26.3 - A Model for the turnover 

of carbon in soil. In D.S. Powlson, P. Smith & J.U. Smith, eds. Evaluation of 

soil organic matter models. pp. 237–246. NATO ASI series. Series i, global 

environmental change. Paper presented at, 1996, Berlin; New York. 

12. Easter, M., Paustian, K., Killian, K., Williams, S., Feng, T., Al-Adamat, R., 

BATJES, N.H., Bernoux, M., Bhattacharyya, T., Cerri, C.C., Cerri, C.E.P., 

Coleman, K., Falloon, P., Feller, C., Gicheru, P., Kamoni, P., Milne, E., Pal, 

D.K., Powlson, D.S., Rawajfih, Z., Sessay, M. & Wokabi, S. 2007. The 

GEFSOC soil carbon modelling system: A tool for conducting regional-scale 

soil carbon inventories and assessing the impacts of land use change on soil 

carbon. Agriculture, Ecosystems & Environment, 122(1): 13–

25. https://doi.org/10.1016/j.agee.2007.01.004 

13. Eggleston, H.S., ed. 2006. 2006 IPCC guidelines for national greenhouse gas 

inventories. Hayama, Japan, Institute for Global Environmental Strategies. 

14. Falloon, P.D., Smith, P., Smith, J.U., Szabó, J., Coleman, K. & Marshall, 

S. 1998. Regional estimates of carbon sequestration potential: linking the 

Rothamsted Carbon Model to GIS databases. Biology and Fertility of Soils, 

27(3): 236–241. https://doi.org/10.1007/s003740050426 

15. Falloon, P., Jones, C.D., Cerri, C.E., Al-Adamat, R., Kamoni, P., 

Bhattacharyya, T., Easter, M., Paustian, K., Killian, K., Coleman, K. & Milne, 

E. 2007. Climate change and its impact on soil and vegetation carbon storage 

in Kenya, Jordan, India and Brazil. Agriculture, Ecosystems & Environment, 

122(1): 114–124. https://doi.org/10.1016/j.agee.2007.01.013 

16. Falloon, P. & Smith, P. 2003. Accounting for changes in soil carbon under the 

Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in 

model projections. Soil Use and Management, 19(3): 265–

269. https://doi.org/10.1111/j.1475-2743.2003.tb00313.x 

17. FAO. 2020. GSOCseq Global Soil Organic Carbon Sequestration Potential 

Map Technical Manual. G. Peralta,L. Di Paolo, C. Omuto, K. Viatkin, I. 

Luotto, Y. Yigini, 1st Edition, Rome https://fao-

gsp.github.io/GSOCseq/index.html 

18. Farina, R., Coleman, K. & Whitmore, A.P. 2013. Modification of the RothC 

model for simulations of soil organic C dynamics in dryland 

regions. Geoderma, 200-201: 18–

30. https://doi.org/10.1016/j.geoderma.2013.01.021 

19. Farina, R., Marchetti, A., Francaviglia, R., Napoli, R. & Di Bene, 

C. 2017. Modeling regional soil C stocks and CO2 emissions under 

Mediterranean cropping systems and soil types. Agriculture, 

https://doi.org/10.1016/j.agee.2007.01.004
https://doi.org/10.1007/s003740050426
https://doi.org/10.1016/j.agee.2007.01.013
https://doi.org/10.1111/j.1475-2743.2003.tb00313.x
https://doi.org/10.1016/j.geoderma.2013.01.021


66 

 

Ecosystems & Environment, 238: 128–

141. https://doi.org/10.1016/j.agee.2016.08.015 

20. Follett, R.F., Kimble, J.M., Pruessner, E.G., Samson-Liebig, S. & Waltman, 

S. 2009. Soil Organic Carbon Stocks with Depth and Land Use at Various 

U.S. Sites. In R. Lal & R.F. Follett, eds. Soil carbon sequestration and the 

greenhouse effect, pp. 29–46. SSSA special publication. Madison, WI, Soil 

Science Society of America, Inc. 

21. Food and Agriculture Organization of the United Nations. 2017. Voluntary 

Guidelines for Sustainable Soil Management. Rome, 

FAO. http://www.fao.org/documents/card/en/c/5544358d-f11f-4e9f-90ef-

a37c3bf52db7/ 

22. Franko, U. 1996. Modelling approaches of soil organic matter turnover within 

the CANDY system. In D.S. Powlson, P. Smith & J.U. Smith, eds. Evaluation 

of soil organic matter models. pp. 247–254. NATO ASI series. Series i, global 

environmental change. Paper presented at, 1996, Berlin; New York. 

23. Gilhespy, S.L., Anthony, S., Cardenas, L., Chadwick, D., Prado, A. del, Li, C., 

Misselbrook, T., Rees, R.M., Salas, W., Sanz-Cobena, A., Smith, P., Tilston, 

E.L., Topp, C.F.E., Vetter, S. & Yeluripati, J.B. 2014. First 20 years of DNDC 

(DeNitrification DeComposition): Model evolution. Ecological Modelling, 

292: 51–62. https://doi.org/10.1016/j.ecolmodel.2014.09.004 

24. Gottschalk, P., Smith, J.U., Wattenbach, M., Bellarby, J., Stehfest, E., Arnell, 

N., Osborn, T.J., Jones, C. & Smith, P. 2012. How will organic carbon stocks 

in mineral soils evolve under future climate? Global projections using RothC 

for a range of climate change scenarios. Biogeosciences, 9(8): 3151–

3171. https://doi.org/10.5194/bg-9-3151-2012 

25. Grace, P., Ladd, J., Robertson, G. & Gage, S. 2006. SOCRATES - A simple 

model for predicting long-term changes in soil organic carbon in terrestrial 

ecosystems. Soil Biology and Biochemistry, 38(5): 1172–

1176. https://doi.org/10.1016/j.soilbio.2005.09.013 

26. Hadas, A., Parkin, T.B. & Stahl, P.D. 1998. Reduced CO 2 release from 

decomposing wheat straw under N-limiting conditions: simulation of carbon 

turnover. European Journal of Soil Science, 49(3): 487–

494. https://doi.org/10.1046/j.1365-2389.1998.4930487.x 

27. Hansen, S., Jensen, H.E., Nielsen, N.E. & Svendsen, H. 1991. Simulation of 

nitrogen dynamics and biomass production in winter wheat using the Danish 

simulation model DAISY. Fertilizer research, 27(2-3): 245–

259. https://doi.org/10.1007/BF01051131 

28. Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., 

Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M.N., Geng, X., Bauer-

Marschallinger, B., Guevara, M.A., Vargas, R., MacMillan, R.A., Batjes, 

N.H., Leenaars, J.G.B., Ribeiro, E., Wheeler, I., Mantel, S. & Kempen, 

https://doi.org/10.1016/j.agee.2016.08.015
http://www.fao.org/documents/card/en/c/5544358d-f11f-4e9f-90ef-a37c3bf52db7/
http://www.fao.org/documents/card/en/c/5544358d-f11f-4e9f-90ef-a37c3bf52db7/
https://doi.org/10.1016/j.ecolmodel.2014.09.004
https://doi.org/10.5194/bg-9-3151-2012
https://doi.org/10.1016/j.soilbio.2005.09.013
https://doi.org/10.1046/j.1365-2389.1998.4930487.x
https://doi.org/10.1007/BF01051131


67 

 

B. 2017. SoilGrids250m: Global gridded soil information based on machine 

learning. PloS one, 12(2): 

e0169748. https://doi.org/10.1371/journal.pone.0169748 

29. IPCC. 2019. 2019 Refinement to the 2006 IPCC Guidelines for National 

Greenhouse Gas Inventories. https://www.ipcc-

nggip.iges.or.jp/public/2006gl/vol4.html 

30. Jansson, C., Wullschleger, S.D., Kalluri, U.C. & Tuskan, 

G.A. 2010. Phytosequestration: Carbon Biosequestration by Plants and the 

Prospects of Genetic Engineering. BioScience, 60(9): 685–

696. https://doi.org/10.1525/bio.2010.60.9.6 

31. Jenkinson, D.S., Adams, D.E. & Wild, A. 1991. Model estimates of CO2 

emissions from soil in response to global warming. Nature, 351(6324): 304–

306. https://doi.org/10.1038/351304a0 

32. Jenkinson, D.S. & Coleman, K. 2008. The turnover of organic carbon in 

subsoils. Part 2. Modelling carbon turnover. European Journal of Soil Science, 

59(2): 400–413. https://doi.org/10.1111/j.1365-2389.2008.01026.x 

33. Jenkinson, D.S. & Rayner, J.H. 1977. The Turnover of Soil Organic Matter in 

Some of The Rothamsted Classical Experiments. Soil Science, 123(5): 298–

305. https://doi.org/10.1097/00010694-197705000-00005 

34. Jenny, H. 1994. Factors of soil formation: A system of quantitative pedology. 

New York, Dover. 

35. Jenny, H., Gessel, S.P. & Bingham, F.T. 1949. Comparative Study of 

Decomposition Rates of Organic Matter in Temperate and Tropical 

Regions. Soil Science, 68(6): 419–432. https://doi.org/10.1097/00010694-

194912000-00001 

36. Jo Smith, P.S., Jeannette Meyer, M.W., Sönke Zaehle, M.L., Robert J.A. 

Jones, R.H., Mark Rounsevell, L.M., REGINSTER, I. & Kankaanpää, 

S. 2006. Projected changes in mineral soil carbon of European forests, 1990–

2100. Canadian Journal of Soil Science, 86(Special Issue): 159–

169. https://doi.org/10.4141/S05-078 

37. Keenan, T.F., Carbone, M.S., Reichstein, M. & Richardson, A.D. 2011. The 

model-data fusion pitfall: assuming certainty in an uncertain world. Oecologia, 

167(3): 587–597. https://doi.org/10.1007/s00442-011-2106-x 

38. Kutsch, W., Bahn, M. & Heinemeyer, A. 2016. Soil carbon dynamics: An 

integrated methodology / edited by Werner L. Kutsch (Johann Heinrich von 

Thünen Institut, Braunschweig), Michael Bahn (Leopold-Franzens Universität 

Innsbruck), Andreas Heinemeyer (Stockholm Environment Institute, 

University of York). Reprinted with corrections edition. Cambridge, 

Cambridge University Press. 

39. Kutsch, W.L., ed. 2012. Soil carbon dynamics: An integrated methodology. 

Repr. with edition. Cambridge, Cambridge University Press. 

https://doi.org/10.1371/journal.pone.0169748
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
https://doi.org/10.1525/bio.2010.60.9.6
https://doi.org/10.1038/351304a0
https://doi.org/10.1111/j.1365-2389.2008.01026.x
https://doi.org/10.1097/00010694-197705000-00005
https://doi.org/10.1097/00010694-194912000-00001
https://doi.org/10.1097/00010694-194912000-00001
https://doi.org/10.4141/S05-078
https://doi.org/10.1007/s00442-011-2106-x


68 

 

40. Lal, R. 2004. Soil carbon sequestration impacts on global climate change and 

food security. Science (New York, N.Y.), 304(5677): 1623–

1627. https://doi.org/10.1126/science.1097396 

41. Lal, R. & Follett, R.F., eds. 2009. Soil carbon sequestration and the 

greenhouse effect. Second edi edition. SSSA special publication. Madison, 

WI, Soil Science Society of America, Inc. 

42. Lal, R., Smith, P., Jungkunst, H.F., Mitsch, W.J., Lehmann, J., Nair, 

P.RamachandranK., McBratney, A.B., de Moraes Sá, J.C., Schneider, J., Zinn, 

Y.L., Skorupa, A.L.A., Zhang, H.-L., Minasny, B., Srinivasrao, C. & 

Ravindranath, N.H. 2018. The carbon sequestration potential of terrestrial 

ecosystems. Journal of Soil and Water Conservation, 73(6): 145A—–

152A. https://doi.org/10.2489/jswc.73.6.145A 

43. Lauenroth, W.K., Skogerboe, G.V. & Flug, M., eds. 1983. Analysis of 

ecological systems: State-of-the-art in ecological modelling / edited by 

William K. Lauenroth, Gaylord V. Skogerboe, Marshall Flug ; proceedings of 

a symposium held from 24 to 28 May 1982 at Colorado State University, Fort 

Collins, Colorado, U.S.A. ; sponsored by the International Society for 

Ecological Modelling (ISEM) ; hosted by the Natural Resource Ecology 

Laboratory, Colorado State University. Developments in environmental 

modelling. Armstrong; Oxford, Elsevier Scientific. 

44. Lehtonen, A., \backslashvTupek, B., Nieminen, T.M., Balázs, A., Anjulo, A., 

Teshome, M., Tiruneh, Y. & Alm, J. 2020. Soil carbon stocks in Ethiopian 

forests and estimations of their future development under different forest use 

scenarios. Land Degradation & Development. https://doi.org/10.1002/ldr.3647 

45. Li, C. 1996. The DNDC Model. In D.S. Powlson, P. Smith & J.U. Smith, 

eds. Evaluation of soil organic matter models. pp. 263–267. NATO ASI 

series. Series i, global environmental change. Paper presented at, 1996, Berlin; 

New York. 

46. Lieth, H. 1975. Modeling the Primary Productivity of the World. In H. Lieth 

& R.H. Whittaker, eds. Primary productivity of the biosphere, pp. 237–263. 

Ecological studies, analysis and synthesis, 0070-8356. Berlin, Heidelberg, 

Springer Berlin Heidelberg. 

47. Lieth, H. & Whittaker, R.H., eds. 1975. Primary Productivity of the 

Biosphere. Ecological studies, analysis and synthesis, 0070-8356. Berlin, 

Heidelberg, Springer Berlin Heidelberg. 

48. Lorenz, K. & Lal, R. 2018. Carbon sequestration in agricultural ecosystems. 

Cham, Switzerland, Springer. 

49. Lugato, E., Bampa, F., Panagos, P., Montanarella, L. & Jones, 

A. 2014. Potential carbon sequestration of European arable soils estimated by 

modelling a comprehensive set of management practices. Global change 

biology, 20(11): 3557–3567. https://doi.org/10.1111/gcb.12551 

https://doi.org/10.1126/science.1097396
https://doi.org/10.2489/jswc.73.6.145A
https://doi.org/10.1002/ldr.3647
https://doi.org/10.1111/gcb.12551


69 

 

50. Manzoni, S. & Porporato, A. 2009. Soil carbon and nitrogen mineralization: 

Theory and models across scales. Soil Biology and Biochemistry, 41(7): 1355–

1379. https://doi.org/10.1016/j.soilbio.2009.02.031 

51. Martens, R. 1995. Current methods for measuring microbial biomass C in soil: 

Potentials and limitations. Biology and Fertility of Soils, 19(2-3): 87–

99. https://doi.org/10.1007/BF00336142 

52. Milne, E., Adamat, R.A., BATJES, N.H., Bernoux, M., Bhattacharyya, T., 

Cerri, C.C., Cerri, C.E.P., Coleman, K., Easter, M., Falloon, P., Feller, C., 

Gicheru, P., Kamoni, P., Killian, K., Pal, D.K., Paustian, K., Powlson, D.S., 

Rawajfih, Z., Sessay, M., Williams, S. & Wokabi, S. 2007. National and sub-

national assessments of soil organic carbon stocks and changes: The GEFSOC 

modelling system. Agriculture, Ecosystems & Environment, 122(1): 3–

12. https://doi.org/10.1016/j.agee.2007.01.002 

53. Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., 

Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B.S., Field, D.J., 

Gimona, A., Hedley, C.B., Hong, S.Y., Mandal, B., Marchant, B.P., Martin, 

M., McConkey, B.G., Mulder, V.L., O’Rourke, S., Richer-de-Forges, A.C., 

Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, 

V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., Wesemael, B. 

van & Winowiecki, L. 2017. Soil carbon 4 per mille. Geoderma, 292: 59–

86. https://doi.org/10.1016/j.geoderma.2017.01.002 

54. Mondini, C., Coleman, K. & Whitmore, A.P. 2012. Spatially explicit 

modelling of changes in soil organic C in agricultural soils in Italy, 2001–

2100: Potential for compost amendment. Agriculture, 

Ecosystems & Environment, 153: 24–

32. https://doi.org/10.1016/j.agee.2012.02.020 

55. Moradizadeh, M. & Saradjian, M.R. 2016. Vegetation Effects Modeling in 

Soil Moisture Retrieval Using MSVI. Photogrammetric 

Engineering & Remote Sensing, 82(10): 803–

810. https://doi.org/10.14358/PERS.82.10.803 

56. Morais, T.G., Teixeira, R.F.M. & Domingos, T. 2019. Detailed global 

modelling of soil organic carbon in cropland, grassland and forest soils. PloS 

one, 14(9): e0222604. https://doi.org/10.1371/journal.pone.0222604 

57. Motavalli, P.P., Palm, C.A., Parton, W.J., Elliott, E.T. & Frey, S.D. 1995. Soil 

pH and organic C dynamics in tropical forest soils: Evidence from laboratory 

and simulation studies. Soil Biology and Biochemistry, 27(12): 1589–

1599. https://doi.org/10.1016/0038-0717(95)00082-P 

58. Neumann, M. & Smith, P. 2018. Carbon uptake by European agricultural land 

is variable, and in many regions could be increased: Evidence from remote 

sensing, yield statistics and models of potential productivity. The Science of 

https://doi.org/10.1016/j.soilbio.2009.02.031
https://doi.org/10.1007/BF00336142
https://doi.org/10.1016/j.agee.2007.01.002
https://doi.org/10.1016/j.geoderma.2017.01.002
https://doi.org/10.1016/j.agee.2012.02.020
https://doi.org/10.14358/PERS.82.10.803
https://doi.org/10.1371/journal.pone.0222604
https://doi.org/10.1016/0038-0717(95)00082-P


70 

 

the total environment, 643: 902–

911. https://doi.org/10.1016/j.scitotenv.2018.06.268 

59. Palosuo, T., Foereid, B., Svensson, M., Shurpali, N., Lehtonen, A., Herbst, M., 

Linkosalo, T., Ortiz, C., Rampazzo Todorovic, G., Marcinkonis, S., Li, C. & 

Jandl, R. 2012. A multi-model comparison of soil carbon assessment of a 

coniferous forest stand. Environmental Modelling & Software, 35: 38–

49. https://doi.org/10.1016/j.envsoft.2012.02.004 

60. Parshotam, A. & Hewitt, A.E. 1995. Application of the Rothamsted carbon 

turnover model to soils in degraded semi-arid land in New 

Zealand. Environment International, 21(5): 693–

697. https://doi.org/10.1016/0160-4120(95)00071-R 

61. Parton, W.J. 1996. The CENTURY model. In D.S. Powlson, P. Smith & J.U. 

Smith, eds. Evaluation of soil organic matter models. pp. 283–291. NATO 

ASI series. Series i, global environmental change. Paper presented at, 1996, 

Berlin; New York. 

62. Parton, W.J., Cole, C.V., Stewart, J.W.B., Ojima, D.S. & Schimel, 

D.S. 1989. Simulating regional patterns of soil C, N, and P dynamics in the 

U.S. central grasslands region. In M. Clarholm & L. Bergström, eds. Ecology 

of arable land – perspectives and challenges, pp. 99–108. Developments in 

plant and soil sciences. Dordrecht, Springer Netherlands. 

63. Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., 

Dungait, J., Ellert, B., Frank, S., Goddard, T., Govaerts, B., Grundy, M., 

Henning, M., Izaurralde, R.C., Madaras, M., McConkey, B., Porzig, E., Rice, 

C., Searle, R., Seavy, N., Skalsky, R., Mulhern, W. & Jahn, 

M. 2019. Quantifying carbon for agricultural soil management: from the 

current status toward a global soil information system. Carbon Management, 

10(6): 567–587. https://doi.org/10.1080/17583004.2019.1633231 

64. Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P. & Smith, 

P. 2016. Climate-smart soils. Nature, 532(7597): 49–

57. https://doi.org/10.1038/nature17174 

65. Petri, M., Batello, C., Villani, R. & Nachtergaele, F. 2009. Carbon status and 

carbon sequestration potential in the world’s grasslands. FAO. 

66. Plutzar, C., Kroisleitner, C., Haberl, H., Fetzel, T., Bulgheroni, C., Beringer, 

T., Hostert, P., Kastner, T., Kuemmerle, T., Lauk, C., Levers, C., Lindner, M., 

Moser, D., Müller, D., Niedertscheider, M., Paracchini, M.L., Schaphoff, S., 

Verburg, P.H., Verkerk, P.J. & Erb, K.-H. 2016. Changes in the spatial 

patterns of human appropriation of net primary production (HANPP) in 

Europe 1990–2006. Regional Environmental Change, 16(5): 1225–

1238. https://doi.org/10.1007/s10113-015-0820-3 

https://doi.org/10.1016/j.scitotenv.2018.06.268
https://doi.org/10.1016/j.envsoft.2012.02.004
https://doi.org/10.1016/0160-4120(95)00071-R
https://doi.org/10.1080/17583004.2019.1633231
https://doi.org/10.1038/nature17174
https://doi.org/10.1007/s10113-015-0820-3


71 

 

67. Poeplau, Christopher and Don, Axel. 2012. Sensitivity of soil organic carbon 

stocks and fractions to different land-use changes across Europe. Geoderma, 

192: 189–201. https://doi.org/10.1016/j.geoderma.2012.08.003 

68. Poulton, P., Johnston, J., Macdonald, A., White, R. & Powlson, 

D. 2018. Major limitations to achieving "4 per 1000" increases in soil organic 

carbon stock in temperate regions: Evidence from long-term experiments at 

Rothamsted Research, United Kingdom. Global change biology, 24(6): 2563–

2584. https://doi.org/10.1111/gcb.14066 

69. Powlson, D.S., Smith, P. & Smith, J.U., eds. 1996. Evaluation of soil organic 

matter models: Using existing long-term datasets. NATO ASI series. Series i, 

global environmental change. Berlin; New York, NATO Advanced Research 

Workshop {∖∖textquotedbl}Evaluation of Soil Organic Matter Models Using 

Existing Long-term Datasets{∖∖textquotedbl}; Springer. 

70. Richter, J. 1981. Simulation of nitrogen behaviour of soil-plant systems, 

Papers of a workshop Models for the behaviour of nitrogen in soil and uptake 

by plant. Zeitschrift für Pflanzenernährung und Bodenkunde, 144(4): 428–

429. https://doi.org/10.1002/jpln.19811440414 

71. Riggers, C., Poeplau, C., Don, A., Bamminger, C., Höper, H. & Dechow, 

R. 2019. Multi-model ensemble improved the prediction of trends in soil 

organic carbon stocks in German croplands. Geoderma, 345: 17–

30. https://doi.org/10.1016/j.geoderma.2019.03.014 

72. S., J.D. 1990. The turnover of organic carbon and nitrogen in 

soil. Philosophical Transactions of the Royal Society of London. Series B: 

Biological Sciences, 329(1255): 361–

368. https://doi.org/10.1098/rstb.1990.0177 

73. Saggar, S., Parshotam, A., Sparling, G.P., Feltham, C.W. & Hart, 

P.B.S. 1996. 14C-labelled ryegrass turnover and residence times in soils 

varying in clay content and mineralogy. Soil Biology and Biochemistry, 

28(12): 1677–1686. https://doi.org/10.1016/S0038-0717(96)00250-7 

74. Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R. & Kapos, V. 2014. Global 

soil carbon: understanding and managing the largest terrestrial carbon 

pool. Carbon Management, 5(1): 81–91. https://doi.org/10.4155/cmt.13.77 

75. Schmer, M.R., Jin, V.L., Wienhold, B.J., Varvel, G.E. & Follett, 

R.F. 2014. Tillage and Residue Management Effects on Soil Carbon and 

Nitrogen Under Irrigated Continuous Corn. Soil Science Society of America 

Journal, 78(6): 1987–1996. https://doi.org/10.2136/sssaj2014.04.0166 

76. Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., 

Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., 

Nannipieri, P., Rasse, D.P., Weiner, S. & Trumbore, S.E. 2011. Persistence of 

soil organic matter as an ecosystem property. Nature, 478(7367): 49–

56. https://doi.org/10.1038/nature10386 

https://doi.org/10.1016/j.geoderma.2012.08.003
https://doi.org/10.1111/gcb.14066
https://doi.org/10.1002/jpln.19811440414
https://doi.org/10.1016/j.geoderma.2019.03.014
https://doi.org/10.1098/rstb.1990.0177
https://doi.org/10.1016/S0038-0717(96)00250-7
https://doi.org/10.4155/cmt.13.77
https://doi.org/10.2136/sssaj2014.04.0166
https://doi.org/10.1038/nature10386


72 

 

77. Schulze, E.D., Ciais, P., Luyssaert, S., Schrumpf, M., Janssens, I.A., 

Thiruchittampalam, B., Theloke, J., Saurat, M., Bringezu, S., Lelieveld, J., 

Lohila, A., Rebmann, C., Jung, M., Bastviken, D., Abril, G., Grassi, G., Leip, 

A., Freibauer, A., Kutsch, W., Don, A., Nieschulze, J., Börner, A., Gash, J.H. 

& Dolman, A.J. 2010. The European carbon balance. Part 4: integration of 

carbon and other trace-gas fluxes. Global change biology, 16(5): 1451–

1469. https://doi.org/10.1111/j.1365-2486.2010.02215.x 

78. Shang, C. & Tiessen, H. 1998. Organic Matter Stabilization in Two Semiarid 

Tropical Soils: Size, Density, and Magnetic Separations. Soil Science Society 

of America Journal, 62(5): 1247–

1257. https://doi.org/10.2136/sssaj1998.03615995006200050015x 

79. Shirato, Y., Hakamata, T. & Taniyama, I. 2004. Modified rothamsted carbon 

model for andosols and its validation: changing humus decomposition rate 

constant with pyrophosphate-extractable Al. Soil Science and Plant Nutrition, 

50(1): 149–158. https://doi.org/10.1080/00380768.2004.10408463 

80. Shirato, Y. & Yokozawa, M. 2005. Applying the Rothamsted Carbon Model 

for Long-Term Experiments on Japanese Paddy Soils and Modifying It by 

Simple Tuning of the Decomposition Rate. Soil Science and Plant Nutrition, 

51(3): 405–415. https://doi.org/10.1111/j.1747-0765.2005.tb00046.x 

81. Sierra, C.A., Müller, M. & Trumbore, S.E. 2012. Models of soil organic 

matter decomposition: the SoilR package, version 1.0. Geoscientific Model 

Development, 5(4): 1045–1060. https://doi.org/10.5194/gmd-5-1045-2012 

82. Sinclair, T.R. & Seligman, N.G. 1996. Crop Modeling: From Infancy to 

Maturity. Agronomy Journal, 88(5): 698–

704. https://doi.org/10.2134/agronj1996.00021962008800050004x 

83. Six, J., Conant, R.T., Paul, E.A. & Paustian, K. 2002. Stabilization 

Mechanisms of Soil Organic Matter: Implications for C-Saturation of 

Soils. Plant and Soil, 241(2): 155–

176. https://doi.org/10.1023/A:1016125726789 

84. Smith, J.O., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R.J.A., 

Montanarella, L., Rounsevell, M.D.A., Reginster, I. & Ewert, 

F. 2005. Projected changes in mineral soil carbon of European croplands and 

grasslands, 1990-2080. Global Change Biology, 11(12): 2141–

2152. https://doi.org/10.1111/j.1365-2486.2005.001075.x 

85. Smith, P. 2004. How long before a change in soil organic carbon can be 

detected? Global Change Biology, 10(11): 1878–

1883. https://doi.org/10.1111/j.1365-2486.2004.00854.x 

86. Smith, P., Andrén, O., Brussaard, L., Dangerfield, M., Ekschmitt, K., Lavelle, 

P. & Tate, K. 1998. Soil biota and global change at the ecosystem level: 

describing soil biota in mathematical models. Global Change Biology, 4(7): 

773–784. https://doi.org/10.1046/j.1365-2486.1998.00193.x 

https://doi.org/10.1111/j.1365-2486.2010.02215.x
https://doi.org/10.2136/sssaj1998.03615995006200050015x
https://doi.org/10.1080/00380768.2004.10408463
https://doi.org/10.1111/j.1747-0765.2005.tb00046.x
https://doi.org/10.5194/gmd-5-1045-2012
https://doi.org/10.2134/agronj1996.00021962008800050004x
https://doi.org/10.1023/A:1016125726789
https://doi.org/10.1111/j.1365-2486.2005.001075.x
https://doi.org/10.1111/j.1365-2486.2004.00854.x
https://doi.org/10.1046/j.1365-2486.1998.00193.x


73 

 

87. Smith, P. & Falloon, P.D. 2000. Modelling refractory soil organic 

matter. Biology and Fertility of Soils, 30(5-6): 388–

398. https://doi.org/10.1007/s003740050019 

88. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., 

Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., 

McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., 

WATTENBACH, M. & Smith, J. 2008. Greenhouse gas mitigation in 

agriculture. Philosophical Transactions of the Royal Society of London. Series 

B: Biological Sciences, 363(1492): 789–

813. https://doi.org/10.1098/rstb.2007.2184 

89. Smith, P., Smith, J.U., Franko, U., Kuka, K., Romanenkov, V.A., Shevtsova, 

L.K., Wattenbach, M., Gottschalk, P., Sirotenko, O.D., Rukhovich, D.I., 

Koroleva, P.V., Romanenko, I.A. & Lisovoi, N.V. 2007. Changes in mineral 

soil organic carbon stocks in the croplands of European Russia and the 

Ukraine, 1990–2070; comparison of three models and implications for climate 

mitigation. Regional Environmental Change, 7(2): 105–

119. https://doi.org/10.1007/s10113-007-0028-2 

90. Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, 

O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., 

Kelly, R.H., Klein-Gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E., 

Mueller, T., Parton, W.J., Thornley, J.H.M. & Whitmore, A.P. 1997. A 

comparison of the performance of nine soil organic matter models using 

datasets from seven long-term experiments. Geoderma, 81(1-2): 153–

225. https://doi.org/10.1016/S0016-7061(97)00087-6 

91. Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., 

Batjes, N.H., Egmond, F. van, McNeill, S., Kuhnert, M., Arias-Navarro, C., 

Olesen, J.E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., 

Sanz-Cobena, A. & Klumpp, K. 2020. How to measure, report and verify soil 

carbon change to realize the potential of soil carbon sequestration for 

atmospheric greenhouse gas removal. Global Change Biology, 26(1): 219–

241. https://doi.org/10.1111/gcb.14815 

92. Tifafi, M., Guenet, B. & Hatté, C. 2018. Large Differences in Global and 

Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and 

NCSCD: Intercomparison and Evaluation Based on Field Data From USA, 

England, Wales, and France. Global Biogeochemical Cycles, 32(1): 42–

56. https://doi.org/10.1002/2017GB005678 

93. Vries, W. de. 2018. Soil carbon 4 per mille: a good initiative but let’s manage 

not only the soil but also the expectations. Geoderma, 309: 111–

112. https://doi.org/10.1016/j.geoderma.2017.05.023 

94. Weihermüller, L., Graf, A., Herbst, M. & Vereecken, H. 2013. Simple 

pedotransfer functions to initialize reactive carbon pools of the RothC 

https://doi.org/10.1007/s003740050019
https://doi.org/10.1098/rstb.2007.2184
https://doi.org/10.1007/s10113-007-0028-2
https://doi.org/10.1016/S0016-7061(97)00087-6
https://doi.org/10.1111/gcb.14815
https://doi.org/10.1002/2017GB005678
https://doi.org/10.1016/j.geoderma.2017.05.023


74 

 

model. European Journal of Soil Science, 64(5): 567–

575. https://doi.org/10.1111/ejss.12036 

95. Wieder, W.R., Grandy, A.S., Kallenbach, C.M. & Bonan, 

G.B. 2014. Integrating microbial physiology and physio-chemical principles in 

soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) 

model. Biogeosciences, 11(14): 3899–3917. https://doi.org/10.5194/bg-11-

3899-2014 

96. Wiesmeier, M., Poeplau, C., Sierra, C.A., Maier, H., Frühauf, C., Hübner, R., 

Kühnel, A., Spörlein, P., Geuß, U., Hangen, E., Schilling, B., Lützow, M. von 

& Kögel-Knabner, I. 2016. Projected loss of soil organic carbon in temperate 

agricultural soils in the 21(st) century: effects of climate change and carbon 

input trends. Scientific reports, 6: 32525. https://doi.org/10.1038/srep32525 

97. Wiesmeier, M., Schad, P., Lützow, M. von, Poeplau, C., Spörlein, P., Geuß, 

U., Hangen, E., Reischl, A., Schilling, B. & Kögel-Knabner, 

I. 2014. Quantification of functional soil organic carbon pools for major soil 

units and land uses in southeast Germany (Bavaria). Agriculture, 

Ecosystems & Environment, 185: 208–

220. https://doi.org/10.1016/j.agee.2013.12.028 

98. Williams, J.R., Dyke, P.T. & Jones, C.A. 1983. Epic - a Model for Assessing 

the Effects of Erosion on Soil Productivity. In W.K. Lauenroth, G.V. 

Skogerboe & M. Flug, eds. Analysis of ecological systems, pp. 553–572. 

Developments in environmental modelling. Armstrong; Oxford, Elsevier 

Scientific. 

99. Yigini, Y., Olmedo, G.F., Reiter, S., Baritz, R., Viatkin, K. & Vargas, 

R. 2018. Soil organic carbon mapping cookbook. 2nd editio edition. Rome, 

FAO; FAO. 

https://doi.org/10.1111/ejss.12036
https://doi.org/10.5194/bg-11-3899-2014
https://doi.org/10.5194/bg-11-3899-2014
https://doi.org/10.1038/srep32525
https://doi.org/10.1016/j.agee.2013.12.028


75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Developing the map of carbons sequestration by the different 

scenarios of land management.  

 

Compilers: Cherlinka Vasyl, Gallay Michal 
 

Methodical recommendations  

 

 

 

 

 

 

 


