

11. Snow and ice cover mapping using ESA Sentinel-1 and Sentinel-2 data

Why do we need information about snow and ice

Information on snow and ice is essential for several reasons:

- Climate Monitoring
- Water Resource Management
- Natural Hazard Assessment
- Ecosystem Monitoring
- Sea Level Rise

Cryosphere

- The portion of Earth's surface where water is found in its (mostly) solid form, including snow, ice, glaciers, ice caps, ice sheets, frozen ground (permafrost), and sea ice
- It encompasses regions of both land and sea that experience freezing temperatures, and it plays a crucial role in Earth's climate system.
- The cryosphere interacts with other components of the Earth system, such as the atmosphere, oceans, and biosphere, through processes like melting, freezing, and ice-albedo feedback
- Changes in the cryosphere can have significant impacts on global climate patterns, sea level rise, freshwater availability, and ecosystems.

Source:https://discoveringthearctic.org.uk/introducing-the-arctic/snow-water-ice-permafrost/cryosphere/

Examples of snow patterns in different environments

https://www.gadventures.com/trips/antarctica-classic-in-depth/XVAESX/, https://www.mergili.at/worldimages/picture.php?/8968,, https://www.antarcticglaciers.org/glacial-geology/glacial-landsystems/glaciated-valley-landsystems/debris-covered-glacier-landsystems/

Typical densities of snow and ice

Typical densities of snow and ice (kg/m³)	
New snow (immediately after falling in calm)	50-70
Damp new snow	100-200
Settled snow	200-300
Depth hoar	100-300
Wind packed snow	350-400
Firn	400-830
Very wet snow and firn	700-800
Glacier ice	830-917

Source: Paterson, W.S.B. 1994. The Physics of Glaciers.

Remote Sensing of Snow and Ice

Selected satellites used i.a. for cryospheric applications			
C-Band	Sentinel-1	Optical	Sentinel-2 MSI
	Envisat ASAR		SPOT-5 – 7 HRV/NAOMI
	ERS-1/-2		Terra ASTER
	Radarsat-1/-2		Sentinel-3 SLSTR/OLCI
X-Band	Cosmo-Skymed		Aqua/Terra MODIS
			NPP VIIRS

Radar for snow and ice

Sensor	Satellite	[GHz].	Resolution/Swath	Repeat
AMI	ERS-1,-2(1991-2011)	5.3 VV	25 m - 100 km	35d/1 d
SIR-C/X-SAR	Shuttle (1994)	1.2,5.3,9.6	3 25 m - 40 km	2 Campaigns
SIR-C/X-SAR	SRTM (Feb.2000)	5.3 & 9.6	50/100 m - 100/200 DEM	
Present				
SAR	Radarsat1(1995-)	5.3	10,30,100 m - 100-500 km	24 d
ASAR	Envisat (2002-12)	5.3	30,100,1000 - 100-400 km	35 d
PALSAR	ADEOS (2007-11)	1.2	15/100 m - 40-350 km	46 d
TerraSAR	TerraSAR-X(2007-)	9.6	1, 3,10 m - 10,30,100 km	11 d
TerraSAR2	TanDEM-X (2010-)	9.6	in Tandem with TerraSAR-X (InS	AR)
SAR	COSMO-SkyMed	9.6	1, 3,10 m - 10-100 km	16 d, 1d, 8d
SAR	Radarsat2 (2007-)	5.3	3, 10, 30 m, □20 km 24 d	
SAR	Sentinel-1 (2013-)	5.3	10 m, 30 m 250, 400 km	12 d x 2 Sat.
Future				
SAR Constellation	Radarsat (2019 -)	5.3	3 m100m 30500 km	16 d x 3 Sat.

Radar back-scatter signal

- Physical factors: dielectric constant of the surface materials (depends on the moisture content)
- Geometric factors: surface roughness, slopes, shape and orientation of the objects relative to the radar beam direction
- The types of landcover
- Sensor characteristics:
 Microwave frequency,
 polarisation and incident
 angle

Microwave Permittivity

Liquid Water Content [%"]

Microwave Penetration Depth in Dry Snow

Measured by microwave radiometry:

- Alpine snowpack (Mätzler, 1987)
 - Antarctic snow (Rott, 1993)
 - Retrieved by inversion of satellite MW radiometry (SMMR) data, Antarctic

Dry snow: Attenuation dominated by scattering losses

Backscattering from a Rough Surface

Factors for Backscattering of Snow (Ku to L-Band)

WET SNOW Dominant Scattering Mechanism: Surface Scattering

Liquid water content dominant factor

• Surface roughness *important*

• Grain size small effect

DRY SEASONAL SNOW: Scattering in the Volume and/or at Lower Interface

- σ° of medium below snow dominating for seasonal snow at f<10 GHz
- Grain size important for f> 10 GHz
- Snow Mass (snow water → Little sensitivity of at X- to L-band; equivalent, SWE)

 Ku-band sensitive to SWE, but ambiguity

 with grain size

REFROZEN SNOW (e.g. firn area on glaciers) Volume Scattering

- Volume inhomogeneities (grains, grain clusters, ice lenses, ice pipes, ..)
- Internal interfaces between snow layers of different density

EO Concepts for SWE Monitoring

Approach	Strengths	Weaknesses
Passive MW 18.7 & 37 GHz 10.6 & 32 GHz	sensitive to SWE & melt; global daily coverage; independent of clouds/illumination; very long record	Coarse resolution, not suitable for mountains and forests, saturation at higher SWE
Radar (Scat or SAR): Dual: Ku & Ka Single: Ku, Ka	sensitive to SWE & melt; high resolution; independent of clouds/illumination	algorithm maturity, coverage, SWE saturation, forests
InSAR L- , C-Band	direct SWE sensitivity; high resolution avoids volume scattering issues	forests, complexity; requires advanced acquisition plan
LIDAR	direct observation of snow depth; very high resolution, minor forests and topographic issues	SWE retrieval requires snow density; No Sensor

Radar (Scat or SAR)

Sensitivity of backscatter to SWE depends on scattering albedo:

Dual F: Ku + Ka Single F: Ku, Ka

Glacier Motion by InSAR and Offset Tracking

Objectives for mapping Ice Motion:

• Retrieving ice export by calving (Input/Output method for mass balance)

Interferometric measurement of displacement

signal phase (coherence)

Glacier Velocity Map

Basic principle: Matching of image templates by cross correlation (along track and in range) in co-registered SAR images.

Possibilities for features to be tracked:

- 1. Amplitude correlation: Uses persistent features in backscattering amplitude images (e.g. crevasses, drainage features). Advantage: Coherence not required. Disadvantage: Lack of features in accumulation areas of glaciers (snow areas) prohibits application.
- **2. Speckle tracking:** Uses coherent amplitude data (complex or magnitude). *Advantage*: Works also where no obvious amplitude features exist. No need coherence can be bridged.
- 3. Coherence tracking: Uses templates in coherence images and looks for maximum value. Method and possibilities similar to method (2).

 Typical achievable accuracy in displacement: 0.2 pixels in x and y.

 Errors depend on co-registration, type of features, quality of matching.

Glacier Velocity Map

Annual ice velocity maps of Greenland from Copernicus Sentinel-1 2014-17 and winter campaign 2017/18.

Source: https://www.esa.int/ESA_Multimedia/Images /2019/07/Ice_velocity_maps_of_Greenland

Ice Flow Map

Antarctic Peninsula ice flow

Ice-flow velocity of the George VI Ice Shelf

Source: https://www.esa.int/ESA_Multimedia/Images/2016/05/Antarctic_Peninsula_ice_flow, https://www.esa.int/ESA_Multimedia/Images/2022/10/Ice-flow_velocity_of_the_George_VI_Ice_Shelf

Applications in Cryosphere: Radar Sensors

- Snow Water Equivalent (SWE)
- Glacier topography and volume change
- Dynamics and mass balances of ice sheets
- Glacier motion
- 3D ice surface deformation
- River ice
- Sea ice

Source: https://www.nature.com/articles/s41597-021-00939-2

Optical for snow and ice

Incoming electromagnetic energy (λ) is affected by:

- Absorption $(E_A(\lambda))$
- Scattering ($E_S(\lambda)$)
- Transmission ($E_T(\lambda)$)

Principle of energy conservation:

(energy can only be transferred, but neither be created nor destroyed)

$$E_I(\lambda) = E_A(\lambda) + E_S(\lambda) + E_T(\lambda)$$

Optical sensors measure the amount of light receiving the satellite (= at-satellite radiance L), which is often converted to

Optical for snow and ice

Reflectance depends on

- Wavelength energy
- Atmospheric attenuation
- Geometry of the Surface
- Surface Materials

Specular reflector (mirror)

Nearly Specular reflector (water)

Hot spot reflection

diffuse reflector (lambertian)

nearly diffuse reflector

Selected Optical Sensors for Snow and Glacier Monitoring

Sensor	Satellite	Bands	Resolution
MSI	Sentinel-2	VIS, SWIR	10, 20, 60 m
OLCI, SLSTR	Sentinel-3	VIS, SWIR, TIR	300, 500, 1000 m
AVHRR	NOAA	VIS, SWIR, TIR	1 km
MODIS	TERRA, ACQUA	0.4 – 12 μm (36 Ch.)	250, 1000 m
ASTER	TERRA	VIS, SWIR, TIR, Stereo	15, 30, 90 m
ETM+	LANDSAT 5,7	VIS, SWIR, TIR	15, 30, 60 m
OLI - LDCM	LANDSAT 8	VIS, SWIR, TIR	15, 30, 100 m
HRV	SPOT5	VIS, SWIR	2.5, 5, 10 m
Dig-Camera	Ikonos	VIS, NIR (4 Kan.)	1, 4 m
Dig-Camera	QuickBird	VIS, NIR (4 Kan.)	0.7, 2.5 m
Dig-Camera	PLEIADES	VIS, NIR	0.5, 2.0 m
IR Bands:	NIR 0.7 – 1.2 μm	ı; SWIR 0.7 - 2.3 μm; TIR 8	3 – 12 μm

Extinction Coefficient of pure ice and sea water

Penetration depth (for intensity)

$$d_p = 1/K_e$$

 $K_e[m^{-1}]$ extinction coefficient

Visible light penetration in snow is a few centimetres; scattering losses dominate!

Spectral Reflectivity of Snow: Grain Size

Strong effect of grain size in near IR

Model Calculation by Wiscomb and Warren (1980)

Angular Dependence of Snow Reflectivity

Snow albedo dependence on solar zenith angle

Main Factors for Spectral Reflectance of Snow

- Impurities (Soot, Dust, ...) main factor at visible wavelengths
- Grain size; important at $\lambda > 1 \mu m$
- Liquid water content (relevant in shortwave IR; primarily an indirect effect through grain size)
- Illumination and observation geometry (bidirectional reflectance)
- Surface roughness

https://www.cambridge.org/core/journals/journal-of-glaciology/article/albedo-reduction-of-ice-caused-by-dust-and-black-carbon-accumulation-a-model-applied-to-the-ktransect-west-greenland/3FE93E004C1793A5DC4D78FD4CD1ECB4

Selected Snow Products from Optical Satellite data

GlobSnow, 1 km, Fractional SE

JAXA MDS10C, 5 km, Binary SE

MOD10_C5, 0.5 km, Fractional SE

Pathfinder, 5 km, Fractional SE

JAXA GHRM5C, 5 km, Binary SE

MODSCAG, 0.5 km, Fractional SE

CryoClim, 5 km, Fractional SE

AutoSnow, 4 km, Binary SE

MEaSUREs, 25 km, Binary SE

IMS, 4 km, Binary SE

Hemispheric snow products reprojected in EASE-GRID 2.0

Applications in Cryosphere: Optical Sensors

- · Snow and ice areas mapping
- Lake ice monitoring
- Glacier mapping
- Albedo
- Glacier facies (snow, firn, ice, debris, supraglacial lakes, etc.)
- Snow and ice properties
- Ice motion (offset tracking)
- Ice sheet boundaries
- Surface topography

Visualized NDSI over New Zealand, acquired on 2019-09-19.

Snow Cover Duration for Mont-Blanc area during an hydrological year (1 September 2016 to 31 August 2017) produced by synthesis of Theia snow-covered surface products.

Thank you for the attention

