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Precision viticulture relies on high-resolution, timely data to support vineyard management

and improve grape quality. UAV-based remote sensing enables flexible monitoring, with

hyperspectral imagery capturing biochemical traits and LiDAR providing detailed 3D canopy

structure. While each technique has limitations, their integration combines spectral and

structural strengths, improving vine detection and reducing background interference.
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The experimental site is situated in the Slovak part of the Tokaj wine-growing

region, located in the southeastern part of Slovakia on the border with Hungary. The

area of interest lies between the villages of Malá Tŕňa and Bara (48.4403° N,

21.7038° E) on a south-facing slope. The geo-logical bedrock consists mainly of

Permian to Carboniferous conglomerates, sandstones, and shales, which form the

substrate of the local soils. The soils are predominantly Cambisols, characterized

by shallow profiles with high skeletal content. The texture corresponds to medium-

heavy soils with a tendency toward lighter fractions.
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Location of the study area in the Slovak Tokaj region (left) and orthophoto of the vineyard site as 

marked by red rectangle.

Dataset PC1 (%) PC2 (%) PC3 (%) Cumulative variance (%)

(D) HS + CHM (185 bands) 96.35 3.2 0.10 99.47

(C) HS only (184 bands) 95.82 3.45 0.11 99.38

(B) RGB (3 bands) 93.11 5.72 1.18 100.00

(A) RGB + CHM (4 bands) 96.48 3.31 0.21 100.00

Input dataset OA (%) Kappa PA Vine (%) PA Non-vine (%) UA Vine (%) UA Non-vine (%) F1-score BA (%)

(D) HS + CHM 96.0 0.85 81.6 99.0 94.7 96.2 0.88 90.3

(C) RGB + CHM 93.0 0.75 71.3 97.9 87.9 94.2 0.79 84.6

(B) HS 89.0 0.55 48.9 97.6 81.0 90.1 0.61 73.2

(A) RGB 89.0 0.60 58.6 95.9 75.0 91.7 0.66 77.3

Tab. 1. Variance explained by the first three principal components for each dataset.

Tab. 2. Summary of accuracy assessment for vineyard classification using PCA and the maximum likelihood classifier with different input datasets.

Results of binary maximum likelihood classification of vineyard structure: (A) simulated natural-colour composite (3-band RGB) image,

(B) complete hyperspectral (HS) image, (C) simulated natural-colour composite combined with the canopy height model (CHM), and

(D) complete HS image combined with CHM.

Mean spectral reflectance curves (solid lines) of vine canopies (green) and inter-row areas (dark grey), derived from the classification results

shown in Figure 5D, with ribbons indicating ±1 standard deviation. Coloured regions denote key spectral intervals: Blue (430–500 nm),

Green (520–600 nm), Red (630–690 nm), Red edge (700–740 nm), and Near-infrared (760–1000 nm). Spectral separation between vine and

inter-row areas is most pronounced in the red-edge and NIR domains, which are widely used for vegetation monitoring.

This study demonstrates the potential of integrating UAV-based LiDAR and hyperspectral

data for vineyard mapping in the Slovak part of the Tokaj Region. While hyperspectral

imagery alone was prone to confusion between vine canopies, soil, and inter-row

vegetation, incorporating LiDAR-derived canopy height models (CHM) significantly

improved classification accuracy, reaching 96% with a Kappa of 0.85. Even natural colour

composites combined with CHM achieved satisfactory results, emphasizing the practical

value of structural information when hyperspectral data are unavailable. Accurate

delineation of vine rows forms a key basis for precision viticulture, supporting tasks such as

vigour monitoring, yield estimation, and site-specific canopy management. The integration

of hyperspectral and LiDAR data thus provides vineyard managers with reliable, high-

resolution maps for decision-making, while offering a scalable framework for broader

viticultural applications. Future research should expand toward multi-temporal monitoring,

incorporate additional variables such as vigour or disease status, and employ advanced

machine-learning methods to enhance robustness and operational use in the sustainable

management of the Tokaj wine landscape.

This approach is especially relevant in the Tokaj wine region, where complex terrain and

microclimatic variation affect vine vigour. Despite Tokaj’s significance, vineyard remote-sensing

research in its Slovak part remains scarce and lacks hyperspectral–LiDAR applications. This study

addresses that gap by demonstrating how multimodal UAV data can enhance precision viticulture

and contribute to the sustainable management of this culturally valuable landscape.
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UAV-based hyperspectral and LiDAR data were acquired over a vineyard

using the Scout B1-100 helicopter platform. Two tightly co-registered payloads

were deployed: a RIEGL VUX-1 laser scanner for 3D structure and an AISA

KESTREL 10 hyperspectral camera (400–1000 nm) for canopy reflectance.

LiDAR was flown at 30 m AGL (5 m/s), providing point densities >600 pts/m²;

hyperspectral data were collected at 100 m AGL (5 m/s) with ~0.1 m GSD. An

atmospheric correction was applied in ENVI 5.3 using the FLAASH module to

transform radiance into surface reflectance.

LiDAR point clouds were georeferenced, filtered, and classified into ground

and vegetation to derive a digital terrain model and a normalized canopy

height model (CHM, 10 cm resolution). Hyperspectral data were

radiometrically and geometrically corrected, atmospherically corrected to

surface reflectance, and resampled to 10 cm.

Four input feature sets were prepared: (i) PCA-reduced hyperspectral cube, (ii)

PCA-reduced hyperspectral + CHM, (iii) PCA-reduced simulated RGB

composite, and (iv) PCA-reduced RGB + CHM. In each case, the first three

principal components (>99% variance) and, where applicable, CHM were used

as predictors in a supervised maximum likelihood classification with two

classes: vine rows and non-vine areas.

Accuracy was assessed using 1,000 independent reference points interpreted

from hyperspectral RGB orthophotos and validated by field observations.

Transect profiles across (A) and along (B) 

vineyard rows show LiDAR point heights 

above ground, with grey points for non-vine 

returns and green points for vine returns. 

The red line marks the smoothed 99th-

percentile vine height, approximating the 

upper canopy envelope.


