
Geoscience Frontiers 12 (2021) 351–364
HOSTED BY Contents lists available at ScienceDirect

Geoscience Frontiers

journal homepage: www.elsevier.com/locate/gsf
Research Paper
Landslide identification using machine learning

Haojie Wang a, Limin Zhang a,*, Kesheng Yin a, Hongyu Luo a, Jinhui Li b

a Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
b Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
A R T I C L E I N F O

Keywords:
Landslide risk
Landslide identification
Machine learning
Deep learning
Big data
Convolutional neural networks
* Corresponding author.
E-mail address: cezhangl@ust.hk (L. Zhang).
Peer-review under responsibility of China Univ

https://doi.org/10.1016/j.gsf.2020.02.012
Received 27 September 2019; Received in revised
Available online 10 March 2020
1674-9871/© 2020 China University of Geoscience
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
A B S T R A C T

Landslide identification is critical for risk assessment and mitigation. This paper proposes a novel machine-
learning and deep-learning method to identify natural-terrain landslides using integrated geodatabases. First,
landslide-related data are compiled, including topographic data, geological data and rainfall-related data. Then,
three integrated geodatabases are established; namely, Recent Landslide Database (RecLD), Relict Landslide
Database (RelLD) and Joint Landslide Database (JLD). After that, five machine learning and deep learning al-
gorithms, including logistic regression (LR), support vector machine (SVM), random forest (RF), boosting methods
and convolutional neural network (CNN), are utilized and evaluated on each database. A case study in Lantau,
Hong Kong, is conducted to demonstrate the application of the proposed method. From the results of the case
study, CNN achieves an identification accuracy of 92.5% on RecLD, and outperforms other algorithms due to its
strengths in feature extraction and multi dimensional data processing. Boosting methods come second in terms of
accuracy, followed by RF, LR and SVM. By using machine learning and deep learning techniques, the proposed
landslide identification method shows outstanding robustness and great potential in tackling the landslide
identification problem.
1. Introduction

Landslide identification plays an important role in landslide risk
assessment and management (Guzzetti et al., 2012; Zhang et al., 2012;
Chen et al., 2016; Naidu et al., 2018). With the advent of the remote
sensing technology, landslides can be identified through visual inter-
pretation of both remote sensing images and topographic surfaces
(Haneberg et al., 2009; Xu, 2015). Although the visual interpretation has
high identification accuracy, the process is time-consuming and
labor-intensive. Hence, automated or semi-automated methods for
landslide identification based on remote sensing techniques are highly
sought after in recent years.

Current studies on landslide identification are mainly based on opti-
cal images using pixel-based or object-oriented methods, and the digital
terrain model (DTM) is often used as auxiliary data for such analysis
(Guzzetti et al., 2012). Barlow et al. (2003) combined optical images and
digital elevation model (DEM) derivatives to identify translational
landslide scars using object-oriented methods. Mckean and Roering
(2004) constructed high-resolution DEMs and used their derivatives to
identify bedrock landslides near Christchurch, New Zealand. Martha
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et al. (2010) used a combination of spectral, shape and contextual in-
formation to identify landslides, and further used multi-temporal images
to identify historical landslides (Martha et al., 2012), both are based on
object-oriented methods. Keyport et al. (2018) further investigated the
feasibility of pixel-based and object-oriented landslide identification
methods using very high-resolution images.

Machine learning and deep learning techniques have been proven to
be a powerful and promising tool in many geotechnical applications
(Zhang et al., 2015; Lary et al., 2016; Zhang and Goh, 2016; Papaioannou
and Straub, 2017; Ching and Phoon, 2018; Li et al., 2018, 2019; Lo and
Leung, 2019) as well as in landslide identification. Moosavi et al. (2014)
compared pixel-based methods implemented by artificial neural network
(ANN) and support vector machine (SVM) with object-oriented ap-
proaches in producing landslide inventories. Van Den Eeckhaut et al.
(2012) used data segmentation and SVM to identify forested landslides
with DTM derivatives. Li et al. (2015) used random forests (RF) and SVM
to identify forested landslides in the Three Gorges area of China with
DTM derivatives based on object-oriented methods. Ding et al. (2016)
attempted automatic recognition of landslides using CNN and texture
change detection with pre- and post-landslide optical images in
d 22 February 2020
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Fig. 1. Proposed landslide identification method using machine learning.
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Shenzhen, China. Ghorbanzadeh et al. (2019) evaluated the performance
of ANN, SVM, RF and convolutional neural network (CNN) in detecting
landslide areas in Rasuwa District, Nepal, with optical images and DEM
derivatives.

Although efforts have been made to develop efficient landslide
identification methods, several problems remain unsolved concerning
the application of machine learning and deep learning towards landslide
identification:

(1) Current studies mainly focus on identifying landslides with
available optical images. The identification of relict landslides is
barely explored.

(2) The literature pays more attention to the identification process
itself; the impacts of different landslide types on identification
performance remain unclear.

(3) The literature relies heavily on the optical remote sensing images
to conduct landslide identification. The latest high-resolution
DTM can precisely capture minor terrain differences; yet the po-
tential of DTM-dominant landslide identification using machine
learning and deep learning has not been exploited.

The main objective of this paper is to propose an integrated landslide
identification method which is able to identify both relict and recent
landslides from DTM using machine learning and deep learning. A block-
based data extraction method is used to establish different types of
landslide databases. On each database, various machine learning and
deep learning models based on LR, SVM, RF, boosting and CNN are
trained and compared to evaluate their performance. A case study of
Lantau Island is worked out to validate the proposed method with the
assistance of a Recent Landslide Database (RecLD), a Relict Landslide
Database (RelLD) and a Joint Landslide Database (JLD).

2. Landslide identification using machine learning and deep
learning

In this study, machine learning and deep learning techniques are
adopted (1) to evaluate the performance of the proposed machine-
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learning and deep-learning based method for landslide identification,
and (2) to investigate the performance of the proposed method when
applying to identify different types of landslides. The overarching
methodology is summarized in Fig. 1 and will be introduced step by step
in the paper.

2.1. Raw data

Raw data that is needed can be divided into two categories: envi-
ronmental data and landslide inventory. The environmental data char-
acterize the overall environment or settings of landslides. Landslides,
especially relict landslides, are hard to identify from optical remote
sensing images due to the presence of a dense vegetation cover or other
reasons. A better way would be to identify landslides from a DTM which
truly reveals the surface change without being affected by the vegetation
cover. Owing to the advance of modern remote sensing, more and more
high-resolution DTMs become available. Even intricate terrain features
can be captured using such high-resolution DTMs. In addition, data that
relate to the slope failure mechanisms should also be gathered. For
example, to evaluate the stability of a slope, the factor of safety (FOS) of a
slice of an infinite slope, when the slip surface is below the groundwater
table, is given by (Griffiths et al., 2011; Wang et al., 2019):

FOS ¼ ðHγcos2β � uÞtanφ0 þ c0

Hγsinβcosβ
(1)

where H is the depth of the soil layer to the potential failure surface; β is
the slope inclination; γ is the total unit weight of the soil above the failure
surface; u is the pore water pressure at the failure surface; c0 and φ0 are the
effective cohesion and effective friction angle of the soil at the failure
surface, respectively. Based on Eq. (1), environmental data that represent
or relate to these six parameters (H, β, γ, u, c0 and φ0) will be needed.
Overall three general types of environmental data are needed:

(1) topographic data: Data such as elevation, curvature and slope
gradient are essential to describe the terrain and such data can be
derived from a DTM. In addition, elevation may have a relation to
H as the weathering conditions are likely to be similar in a small
interval of elevation;

(2) geological data: The regional geological conditions are critical for
landslide identification, which also have impacts on the γ, c0 and φ0

of the superficial soil deposits;
(3) rainfall-related data: Rainfall is one of the most common triggers

of landslides (Gao et al., 2018) and it can greatly affect the pore
water pressure u.

Hence, in the data collection step, three important types of data
should be considered: DTMs, geology maps, and rainfall-related data.

Landslide inventories are another essential part of raw data. Land-
slides can be classified into two kinds: relict and recent. Recent landslides
are those that clearly occurred within the time scale of available aerial
photographs; relict landslides are those that occurred earlier than the
time scale of the available aerial photographs (GEO, 1996;
Maunsell-Fugro Joint Venture and GEO, 2007). Both kinds of landslide
data can be obtained through aerial photograph interpretation (API) and
topographic surface interpretation.

2.2. Data processing

The raw data will be processed in two stages. The first stage is to
derive landslide-related predictors from the raw data. With reference to
Eq. (1) and landslide susceptibility studies (Reichenbach et al., 2018),
four geomorphological predictors and one hydrological predictor are
derived from the DTM, namely, elevation, aspect, curvature, slope
gradient and topographic wetness index (TWI). Besides, the superficial
geology and rainfall-related data are also included as two predictors. A



Fig. 2. Diagrams for (a) layer stacking, (b) data extraction for positive and (c)
negative samples.
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step duration orographic rainfall intensification factor (SDOIF) is chosen
to quantify the relationship between the rainfall intensity and terrain
surface features (AECOM and Lin, 2015; Gao et al., 2017). It is worth
mentioning that the predictors chosen in the proposed method are a
reference choice rather than a compulsory one. Predictors utilized in
different cases should be determined according to their own specific
conditions. Two principles should be followed when choosing the pre-
dictors: (1) the predictors should be closely related to either the trig-
gering and failure mechanisms of slopes or the ground features of the
landslide locations; (2) the predictors should be quantifiable and avail-
able. The second stage is to transform the data to a machine-readable
format. Coupled with the GIS platform, the data of the targeted
research area is transformed into raster with reasonable cell size. For
each predictor, a data layer is formed to store the data of the designated
area.
2.3. Establishment of databases

The next step is to establish databases for learning, which includes
three components: layer stacking, data extraction and establishment of
databases. As shown in Fig. 2a, by stacking the data layers that represent
different predictors, the original one-dimensional data of each layer are
stacked to form an n-dimensional dataset that contains the conjunct data
of all layers. Moreover, as this study aims to investigate the performance
difference of the same machine learning or deep learning algorithm on
different types of landslides, three different landslide inventories are
formed; namely, the Relict Landslide Inventory (RelLI), the Recent
Landslide Inventory (RecLI) and the Joint Landslide Inventory (JLI). Note
that the JLI contains both the relict and recent landslides. Combining the
n stacked layers of landslide predictor data, each landslide inventory can
then be mapped to the corresponding locations for data extraction. The
locations of all landslides are then obtained.

As all data layers of a designated area have gone through rasterization
in the data processing step, each landslide record is then assigned to a cell
according to its location. The cell which contains the landslide record is
defined as a landslide cell. Shown in Fig. 2b, the data located in the
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surrounding areas of the landslide cells will be extracted to generate
positive samples for learning. The size of the extraction area can be
specified according to actual demand. Fig. 2b shows an extraction area of
11 by 11 cells. Note that a ‘positive sample’ here means that there is a
recorded landslide in the data extracted area of the sample and the
extracted data include the whole n-dimensional data within the sur-
rounding area. Meanwhile, shown in Fig. 2c, according to the corre-
sponding landslide inventory, random areas where no recorded landslide
exists are picked to generate negative samples. For a particular landslide
inventory, the number of positive samples is given. The number of
negative samples is set to be identical to that of the positive ones to avoid
skewed data problem (James et al., 2013).

With the extracted positive and negative samples from different
landslide inventories, the samples are combined to form three databases;
namely, the Relict Landslide Database (RelLD), the Recent Landslide
Database (RecLD) and the Joint Landslide Database (JLD). For each
established database, the data which is originally extracted from the
same data layer needs to be normalized as they may have different orders
of magnitude. For example, the elevation may reach nearly thousand-
meter level while the slope gradient ranges from 0� to 90�. The incon-
sistent magnitude of data layers may cause slow convergence or
convergent failure of adopted machine learning algorithms (James et al.,
2013). Hence, normalization is conducted to each dimension of the
established databases.
2.4. Machine learning and deep learning algorithms

Having established the databases, the next step is to train various
machine learning and deep learning models and conduct landslide
identification. In this study, landslide identification is a binary classifi-
cation problem, each sample is given a prediction of either positive or
negative using the trained models. Four types of machine learning al-
gorithms and one deep learning algorithm are chosen to evaluate the
feasibility of machine learning and deep learning in landslide
identification.

2.4.1. Logistic regression (LR)
As one of the most widely-used classification algorithms, logistic

regression shows satisfactory performance with relatively low compu-
tational cost (James et al., 2013). A logistic function for multiple variable
logistic regression can be written as:

PðXÞ¼ eβ0þβ1X1þ…þβm

1þ eβ0þβ1X1þ…þβm
(2)

where X¼ (X1,…, Xm) arem predictors, the set of β are the corresponding
learning parameters, and P(X) is the probability of being positive given
the predictors X. The maximum likelihood method is often used to esti-
mate the learning parameters.

2.4.2. Support vector machine (SVM)
The support vector machine is another popular classification

approach that was developed in the 1990s. It is considered as one of the
most adaptable algorithms for its good performance in various settings. A
support vector machine uses kernels to enlarge the feature space and
quantify the similarity of two observations, therefore to capture the non-
linear decision boundary for classification (James et al., 2013). For
example, Eq. (3) describes a popular kernel named radial kernel:

K

 
xi; xi’

!
¼ exp

 
� λ
Xm
j¼1

�
xij � xi’j

�2! (3)

where xij and xi’j are the ith pair of observations of the jth predictor, m is
the number of predictors, λ is a tuning parameter which accounts for the
smoothness of the decision boundary and K stands for the kernel
function.
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2.4.3. Random forest (RF)
Random forest is essentially a tree-based method, which has a reliable

and good prediction performance by combining a large number of de-
cision trees to yield a single consensus prediction. The major feature of
random forest is that it is not allowed to consider a majority of the
available features at each split of the tree (Friedman et al., 2001). For
example, a common practice for choosing the number of splits is:

m0 ¼ ffiffiffiffi
m

p
(4)

where m0 is the number of predictors at each split and m is the number of
all predictors.

2.4.4. Boosting
As a branch of the ensemble methods, boosting is a way of combining

the performance of a number of weak classifiers to produce a powerful
“committee”, so it is regarded as a strong classifier. As an example, the
prediction given by Discrete AdaBoost is described as:

FðxÞ¼ sign

 XM
1

cmfmðxÞ
!

(5)

where fm(x) is a weak classifier that produces either positive or negative
prediction, cm is a coefficient calculated by learning weights, M is the
number of weak classifiers, the sign function here returns either a positive
or negative prediction and F(x) is the corresponding prediction. By
combining several models, the boosting method can achieve a better
prediction performance compared with a single model. The main pro-
cedure of boosting is to fit a sequence of weak learners (e.g., discriminant
analysis, k nearest neighbors, decision tree, etc.) to weighted versions of
training data (Friedman et al., 2000). In this study, three popular
boosting algorithms are selected to implement the landslide identifica-
tion; namely Discrete AdaBoost, LogitBoost and Gentle AdaBoost.

2.4.5. Convolutional neural network (CNN)
As one of the most popular deep learning algorithms, convolutional

neural networks have gained much attention for its remarkable contri-
bution in computer vision (Goodfellow et al., 2016). A typical CNN is
composed of four key components: convolutional layers, activation
layers, pooling layers and fully connected layers. Built with these layers,
many well-designed CNN structures have been proposed in many fields of
study. In this study, each sample with different data layers is like a special
‘picture’ with multiple channels. The classification of high dimensional
data is also the strength of the CNN.

2.5. Model evaluation

In this study, seven performance evaluation indices are used to assess
the performance of each model. In order to calculate these seven indices,
concepts of four kinds of predicted samples for classification learning
need to be clarified:

(1) true positive (TP): the predicted class is positive and the predic-
tion agrees with the actual class;

(2) false positive (FP): the predicted class is positive while the pre-
diction disagrees with the actual class;

(3) true negative (TN): the predicted class is negative while the pre-
diction agrees with the actual class; and

(4) false negative (FN): the predicted class is negative and the pre-
diction disagrees with the actual class.

Seven performance indices, i.e., accuracy, precision, recall, speci-
ficity, false positive rate (FPR), F1 score and Matthews correlation coef-
ficient (MCC) are defined as follows:
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Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(6)
Specificity ¼ TN
TNþ FP

(7)

FPR ¼ FP
TNþ FP

(8)

Precision ¼ TP
TPþ FP

(9)

Recall ¼ TP
TPþ FN

(10)

F1 score ¼ 2 �Precision �Recall
Precisionþ Recall

(11)

MCC ¼ TP �TN� FP �FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp (12)

The accuracy quantifies the percentage of samples which are correctly
predicted on a certain database. The specificity measures the proportion
of actual negatives that are correctly identified. A model with a high
specificity is more talented in classifying negative samples. FPR is the
probability of false alarm. The precision evaluates the fraction of true
positive samples among all predicted positive samples, while the recall
quantifies the fraction of true positive samples among all actual positive
samples. A high precision means that the model has a high probability to
give a correct positive sample classification. While the recall explains
how sensitive the model is towards identifying the actual positive sam-
ples; in other words, the recall quantifies the probability of detecting
actual positive samples. As the precision and recall evaluate different
aspects of the model, an index which combines both is also used. The F1
score is the harmonic mean of the precision and recall, where an F1 score
reaches its best value at 1 and worst at 0. A more comprehensive index,
the MCC that returns a value between�1 and 1 is also used. A coefficient
of 1 represents a perfect prediction; 0, no better than random prediction;
�1, total disagreement between prediction and observation. Both F1
score and MCC are measures of model accuracy. As accuracy, F1 score
and MCC are all proportional to the model performance, this study pro-
poses a simple combined index, overall accuracy (OA), to quantify the
overall performance of a model:

OA ¼ Accuracyþ F1 þMCC (13)

The model with the highest OA will be chosen as the best model for
landslide identification in any area of interest.

Besides, predictor importance (PI) is an important index to evaluate
which predictor contributes the most for the model training. The
magnitude of PI for different models trained by different algorithms may
be inconsistent and the predictor importance ranking for different
models may also be slightly different. Hence, an index called averaged
relative predictor importance (ARPI) is proposed to assess the general
predictor importance on multiple algorithms. For example, the ARPI for
predictor i with q algorithms can be given by:

ARPIðiÞ ¼ 1
q

Xq
j¼1

PIði; jÞPm
i¼1

PIði; jÞ
(14)

where PI(i, j) is the importance of the ith predictor trained by the jth
algorithm, m is the total number of predictors, and q is the number of
algorithms.



Fig. 3. Location of the study area.
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3. Landslide identification on Lantau Island, Hong Kong

3.1. Study area

As shown in Fig. 3, the study area covers the entire Lantau Island.
With a total area of around 147 km2, Lantau Island is the largest outlying
island located at southwestern Hong Kong. Due to the steep terrain, there
is only a small amount of flat ground near the seaside. Inactive human
activities cause a relatively complete natural state around Lantau Island.
In Fig. 4, the main bed rocks on Lantau Island are weathered volcanic
rocks and granitic rocks, which are usually covered with younger alluvial
and colluvial materials. The oldest rocks are sandstone and siltstone, and
these sedimentary rocks usually have smaller outcrops. Mixed forest
grows at the foot of the hillslope, while thick shrubs and weeds develop
in the middle of slopes. Outcrops of bedrock usually appear on the peak
or in areas with slope angles greater than 40�. With a subtropical
monsoon climate, the area is warm and dry in winter but hot and humid
in summer. Lantau Island is affected by frequent high intensity storms
and typhoons, making it a landslide-prone area (Fig. 5) and giving this
Fig. 4. Simplified geologica
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area high scientific value of landslide studies.

3.2. Data

A landslide inventory “Enhanced Natural Terrain Landslide Inventory
(ENTLI)” has been established by Geotechnical Engineering Office (GEO,
1996; Maunsell-Fugro Joint Venture and GEO, 2007). The ENTLI con-
tains both recent and relict landslide records from 1924 to 2009 in the
study area and the spatial distribution of landslides is visualized in Fig. 6.
Table 1 summarizes the landslide inventory for the study area. There are
5810 recent landslides and 20,884 relict landslides. The recent landslides
are identified through visual interpretation of aerial photographs and are
classified into three kinds: channelized landslides, open hillslope land-
slides and costal landslides. The relict landslides that occurred earlier
than the time scale of available aerial photographs are identified based
on API and terrain characteristics and are classified into classes A, B or C,
with different interpretation confidence. Similar to the recent landslides,
there is an independent class for costal landslides. As mentioned in the
methodology, three landslide inventories are formed based on the ENTLI
data; namely, the Relict Landslide Inventory (RelLI), the Recent Land-
slide Inventory (RecLI) and the Joint Landslide Inventory (JLI).

Apart from the landslide inventory, DTM, superficial geology and
rainfall-related data are also prepared for this case study. Table 2 sum-
marizes seven predictors for this case study. These predictors are classi-
fied into three types:

(1) topographic predictors: elevation (Fig. 7a), aspect (Fig. 7b), cur-
vature (Fig. 7c), topographic wetness index (TWI) (Fig. 7d) and
slope gradient (Fig. 7e);

(2) geological predictor: superficial geology (Fig. 7f); and
(3) rainfall-related predictor: 24-h step duration orographic intensi-

fication factor (SDOIF) (Fig. 7g).

First, a high-resolution DTM of the study area with raster cell size of 2
m � 2 m is utilized to derive data layers using GIS. Specifically, with the
digital elevation of the terrain surface, three widely used slope charac-
teristics (i.e., slope gradient, curvature and slope aspect) are calculated
for each cell. Also, a hydrological parameter TWI is calculated to consider
the hydrological flow path on the terrain surface:
l map of the study area.



Fig. 5. Landslides near Ngong Road, Southwestern Lantau, 9th October 2011
(Source: Google Earth; coordinates: 22�1405000N, 113�5305500E).
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TWI ¼ lnða=tanbÞ (15)
where a is the local upslope area draining through a certain point per unit
contour length and tanb is the local slope.

Second, the superficial geological map of the study area is extracted
from the 1: 20,000 geo-map from Geology Survey of Hong Kong. In total,
as shown in Fig. 7f, seven types of surface geomaterials (i.e., Jurassic
granite rocks; Jurassic sandstone, siltstone and mudstone; Jurassic tuff
and lava; Cretaceous granite rocks; Cretaceous tuff and lava; Quaternary
deposits; and fill) are distributed over the terrain surface of the study
area. Note that for non-Quaternary deposit and non-fill area, the rock
mineral is usually subject to heavy weathering in the shallow surfaces. As
the lithology is a categorical variable, a dummy variable approach is
applied. To be specific, the following treatment is conducted:
Fig. 6. Spatial distribution of recent and relict landslides
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For each cell j within the study area;
For each geomaterial type i ði 2 ½1; 2; 3; 4; 5; 6; 7�Þ; create a dummy variable :

xi ¼

�
1;
0;

if the i� type geomaterial agree with the cell material
if the i� type geomaterial disagree with the cell material

Endfor
Endfor

(16)

where the seven geomaterial types correspond to seven types of super-
ficial geomaterials.

In addition, a factor called SDOIF is also included in this study to
consider the effect of orographic amplification on rainfall. Based on
regional rainfall data, the SDOIF over time period t for a given cell j can
be calculated by:

ftðjÞ¼ rtðjÞ
r0;tðjÞ (17)

where ft(j) is the average SDOIF over time t for cell j, rt(j) is the total
rainfall containing orographic influence for cell j, and r0,t(j) is the rainfall
without the orographic influence. The SDOIF data is extracted from
AECOM and Lin (2015) with a resolution of 5 km � 5 km; Kriging is then
used to derive the SDOIF data layer for the entire study area and the
result is shown in Fig. 7g.

3.3. Preparation of databases

After the preparation of the seven data layers of predictors, a layer
stacking process is conducted to integrate the data into a multiple-layer
dataset (Fig. 7h). In this step, the data from the whole study area are
organized in a tensor form with dimensions of 12,637 � 9737 � 13. As
the dummy variable approach is applied to the superficial geology layer,
the original superficial geology data layer is extended to 7 dimensions.
Including the other six data layers, there are 13 layers in total.

After the establishment of the fundamental dataset, the three land-
slide inventories (i.e., RelLI, RecLI and JLI) are mapped on the study area
individually and data extraction is carried out in each case. As mentioned
in ENTLI on a shaded relief map of the study area.



Fig. 7. Multiple data layers: (a) elevation; (b) aspect; (c) curvature; (d) TWI; (e) slope gradient; (f) superficial geology; (g) SDOIF; and (h) all layers stacked.
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Table 1
Summary of 26,694 landslides in Enhanced Natural Terrain Landslide Inventory
(ENTLI) within the study area.

Recent landslides Relict landslides

Class No. of landslides Class No. of landslides

Channelized 2593 A 6480
Open hillslope 3144 B 9007
Costal 73 C 4529

Costal 868

Subtotal 5810 Subtotal 20,884
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before, the whole research area is rasterized into 2 m � 2 m cells. After
the landslide mapping, landslide cells can then be confirmed according to
the mapped landslide locations. Then, the size of data extraction area,
viz., sample size, needs to be determined. In order to ease the compu-
tational load of model training in later stages while capturing as many
terrain features as possible, the sample size is set to be 22m� 22m as the
widths of 93.03% of the landslide records in this case study are smaller
than 22 m. Hence, an area of 22 m� 22 m is utilized to conduct data
extraction for each positive or negative sample by referring to Fig. 2b and
c. Positive samples are extracted from the areas that contain the landslide
cells which means there are inventory-recorded landslides, and negative
samples of the same number are extracted randomly from areas where no
landslide records are found in the inventory. Examples of a positive
sample and a negative sample are displayed in Fig. 8. Noted that, for the
convenience of demonstration, the superficial geology layer is not pro-
cessed with the dummy variable approach. In each positive sample, there
usually exists a clear landslide scar (as marked with red lines in Fig. 8);
while in a negative one, no landslide characteristics can be observed.
After the data extraction, three landslide databases are then established
by integrating the samples: Recent Landslide Database (RecLD), Relict
Landslide Database (RelLD) and Joint Landslide Database (JLD). Very
few costal landslides have a distance less than 22 m from the coastline;
these records are excluded from the databases.
3.4. Landslide identification based on landslide databases RecLD, RelLD
and JLD

RecLD, RelLD and JLD contain 11,552, 41,320 and 52,872 samples in
total, respectively. The positive and negative sample ratio is 50/50 for
each landslide database.

As described in the methodology section, five types of machine
learning algorithms, viz. LR, SVM, RF and Boosting (Discrete AdaBoost,
LogitBoost and Gentle AdaBoost), and one deep learning algorithm, viz.
CNN, are applied to each database separately. As each algorithm can be
trained and tuned with a variety of parameters and settings, configura-
tions which are typical for their general applications are chosen. For the
deep learning algorithm CNN, the depth of CNN often needs to be tuned
for specific applications. Hence, two CNNs structures with different
Table 2
Summary of predictors.

Topographic, geology and rainfall-
related predictors

Description Source, sc
resolution

Elevation (m) Digital elevation of the terrain surface DTM, 2 m
Slope gradient (º) Angle of the slope inclination DTM, 2 m
Curvature Curvature of the slope, indicating

concave or convex surfaces
DTM, 2 m

Aspect (º) Exposition of the slope DTM, 2 m
Topographic wetness index (TWI) An index to quantify the topographic

control on hydrological process
DTM, 2 m

Superficial geology Lithology of the surface material Geo-map,
Step duration orographic
intensification factor (SDOIF)

An index to quantify the amplification of
orography on rainfall

AECOM a
5 km � 5
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numbers of layers are built in this case study. Detailed layer settings of
the two CNNs are displayed in Fig. 9. One with 6 layers is denoted as
CNN-6 (i.e., two convolutional layers, two max-pooling layers and two
fully connected layers) and another with 11 layers is denoted as DCNN-
11 (i.e., four convolutional layers, four max-pooling layers and three fully
connected layers) where D means deep.

Each database is shuffled first and processed with data normalization.
Then, the databases are split by a ratio of 70/30 into training sets and test
sets. To be specific, for RecLD, there are 8086 training samples and 3466
test samples; for RelLD, 28,924 training samples and 12,396 test samples;
and for JLD, 37,010 training samples and 15,862 test samples.

The training and test sets of different databases are utilized to train
machine learning and deep learning models and evaluate their perfor-
mance. Results with RecLD, RelLD and JLD are summarized in
Tables 3–5, respectively. For each model and database, their accuracy on
training and test sets, precision, recall, specificity, F1 score, MCC and OA
on test sets are all evaluated. For all three databases, DCNN-11 has the
highest OA among all models. The three sets of identification results are
projected on the elevation map (Figs. 10a, 11a and 12a) and compared
with the corresponding actual landslide distributions (Figs. 10b, 11b and
12b). Statistically, the RecLD database-trained DCNN-11 achieves an
area-accuracy of 92.47% in identifying recent landslides. The area-
accuracy refers to the percentage of the study area that are correctly
identified. The RelLD database-trained DCNN-11 identifies 86.29% area
correctly for relict landslides. Also, the JLD database-trained DCNN-11
has a correct landslide identification rate of 88.81%.

Moreover, to evaluate the importance of various predictors, ARPI for
all seven predictors are calculated for the three boosting methods
(Table 6). For RecLD, the three most important predictors are slope
gradient, curvature and TWI. While for RelLD, aspect is the most
important predictor, followed by slope gradient and TWI. When it comes
to JLD, the three most important predictors are slope gradient, TWI and
aspect.
3.5. Model evaluation and analysis results

From the landslide identification results and ranking of the impor-
tance of the predictors (Tables 3–6 and Figs. 10–12), some interesting
patterns and phenomena can be found:

(1) Across all three databases, as a result of its strengths in feature
extraction and processing multi dimensional data, CNN always
has the highest accuracy on the test sets in terms of all accuracy
indices (i.e., Accuracy, F1, MCC and OA), followed by the boosting
methods, RF and LR. No significant performance differences are
observed among the three boosting methods. However, taking the
benefits of ensemble learning, all boosting methods lead to satis-
factory results. LR, as one of the most widely used machine
learning algorithms, has an averaged accuracy above 80%, which
is considered quite good as it is the simplest among all the
ale/ Data type Data summary

Minimum Average Maximum Standard
deviation

Continuous �2.40 187.84 933.35 166.19
Continuous 0.00 24.49 83.28 12.20
Continuous �1054.37 1.78 1315.10 18.04

Continuous 0.00 181.13 360.00 103.40
Continuous �2.07 2.93 19.44 2.12

1: 20,000 Categorical
nd Lin (2015),
km

Continuous 1.08 1.29 1.37 0.06



Fig. 8. Examples of (a) a positive sample and (b) a negative sample.
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algorithms in this study. The worst performance goes to SVM,
whose accuracy is below 80%. As the models are trained with
typical configurations in this case study, the ranking of model
performance in this case study is not necessarily applicable for
other case studies or different model settings. However, the
outstanding performance of the proposed landslide identification
method has been validated and this case study can be taken as a
benchmark for future landslide identification studies.

(2) The difference in the accuracies between the training set and the
test set can indicate whether a model is overfitting or not. If the
difference is large and the accuracy on the training set is very high,
the model is regarded as overfitting. Among the eight machine
learning and deep learning models, RF has the highest chance to
overfit, followed by the boosting methods. On the contrary,
underfitting occurs when a model is not sufficiently sophisticated
to precisely capture relationships between the predictors and the
response, often leading to low accuracy on both training and test
sets. SVM is more susceptible to underfitting than other models,
followed by LR. Even though both overfitting and underfitting can
be addressed with a variety of methods, this case study will not
conduct further tuning as its aim is to provide an overall assess-
ment of the proposed method.
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(3) Among the three databases, the machine learning and deep
learning models trained on RecLD have the highest average per-
formance, followed by those trained on JLD. The lowest goes to
those trained on RelLD. This result is reasonable as the interpre-
tation result of the relict landslides in ENTLI is not completely
accurate and hence may bring certain noises to the databases.

(4) Among all predictors, slope gradient, aspect, curvature and TWI
are the most important according to the results of ARPI.

(5) The highest area-accuracy on the entire study area goes to the
models trained on RecLD, followed by JLD and RelLD. This
ranking agrees with the average model performance described
earlier. Besides, there is an interesting phenomenon that the area-
accuracy is higher than the corresponding DCNN-11 test set ac-
curacy for RecLD and JLD. This is mainly because the specificity of
the DCNN-11 models from the two databases is higher than the
accuracy (Tables 3 and 5), indicating that these two models are
more powerful in identifying non-landslide areas. As the majority
of the study area is non-landslide area, the DCNN-11 models
trained on RecLD and JLD tend to achieve a higher area-accuracy.

(6) Taken the Recent Landslide Database (RecLD) as an example, the
number of training samples is 8086 that occupy an area of 3.91
km2, while the whole Lantau Island covers an area of 147.16 km2.



Fig. 9. Two constructed CNN models: (a) CNN-6, a 6-layer CNN model; (b) DCNN-11, an 11-layer deep CNN model.

Table 3
Comparison of the performance of eight machine learning and deep learning models on RecLD.

Machine learning
models

Accuracy on
training set

Accuracy on
test set

Precision on
test set

Recall on
test set

Specificity on
test set

FPR on rest
set

F1 score on
test set

MCC on test
set

OA on test
set

LR 0.8492 0.8315 0.8283 0.8283 0.8346 0.1654 0.8283 0.6629 2.3227
SVM 0.7940 0.7726 0.8349 0.6690 0.8725 0.1275 0.7428 0.5542 2.0696
RF 0.9861 0.8396 0.8226 0.8729 0.8050 0.1950 0.8470 0.6801 2.3667
Discrete AdaBoost 0.9175 0.8529 0.8554 0.8554 0.8503 0.1497 0.8554 0.7056 2.4139
LogitBoost 0.9014 0.8592 0.8470 0.8826 0.8350 0.1650 0.8644 0.7188 2.4424
Gentle AdaBoost 0.9217 0.8589 0.8579 0.8661 0.8514 0.1486 0.8620 0.7177 2.4386
CNN-6 0.9168 0.8875 0.8837 0.8968 0.8779 0.1221 0.8902 0.7749 2.5526
DCNN-11 0.9309 0.8932 0.9258 0.8507 0.9343 0.0657 0.8866 0.7886 2.5685

Table 4
Comparison of the performance of eight machine learning and deep learning models on RelLD.

Machine learning
models

Accuracy on
training set

Accuracy on
test set

Precision on
test set

Recall on
test set

Specificity on
test set

FPR on rest
set

F1 score on
test set

MCC on test
set

OA on test
set

LR 0.8134 0.7995 0.8027 0.7952 0.8037 0.1963 0.7990 0.5989 2.1974
SVM 0.7505 0.7425 0.7082 0.8269 0.6577 0.3423 0.7630 0.4918 1.9973
RF 0.9906 0.8036 0.8298 0.7663 0.8413 0.1587 0.7968 0.6091 2.2094
Discrete AdaBoost 0.8639 0.8288 0.8368 0.8179 0.8397 0.1603 0.8273 0.6578 2.3139
LogitBoost 0.9133 0.8343 0.8379 0.8298 0.8388 0.1612 0.8339 0.6686 2.3368
Gentle AdaBoost 0.9350 0.8292 0.8344 0.8224 0.8360 0.1640 0.8284 0.6585 2.3161
CNN-6 0.9140 0.8494 0.8761 0.8147 0.8842 0.1158 0.8443 0.7005 2.3942
DCNN-11 0.9026 0.8638 0.8688 0.8579 0.8698 0.1302 0.8633 0.7277 2.4548

H. Wang et al. Geoscience Frontiers 12 (2021) 351–364

360



Table 5
Comparison of the performance of eight machine learning and deep learning models on JLD.

Machine learning
models

Accuracy on
training set

Accuracy on
test set

Precision on
test set

Recall on
test set

Specificity on
test set

FPR on rest
set

F1 score on
test set

MCC on test
set

OA on test
set

LR 0.8229 0.8181 0.8197 0.8107 0.8254 0.1746 0.8152 0.6362 2.2695
SVM 0.7295 0.7267 0.7620 0.6509 0.8010 0.1990 0.7021 0.4573 1.8861
RF 0.9899 0.8140 0.8079 0.8307 0.7968 0.2032 0.8191 0.6279 2.2610
Discrete AdaBoost 0.8704 0.8383 0.8323 0.8430 0.8337 0.1663 0.8376 0.6766 2.3526
LogitBoost 0.9092 0.8412 0.8396 0.8416 0.8425 0.1575 0.8406 0.6841 2.3659
Gentle AdaBoost 0.9212 0.8360 0.8326 0.8366 0.8353 0.1647 0.8346 0.6719 2.3425
CNN-6 0.8995 0.8725 0.8759 0.8649 0.8800 0.1200 0.8704 0.7450 2.4879
DCNN-11 0.9012 0.8750 0.8809 0.8642 0.8856 0.1144 0.8725 0.7500 2.4975

Fig. 10. RecLD based machine learning results: (a) predicted recent landslides using DCNN-11 and (b) recent landslides in ENTLI.
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Fig. 11. RelLD based machine learning results: (a) predicted relict landslides using DCNN-11 and (b) relict landslides in ENTLI.
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Only the information of 2.66% area is used during model training
while the proposedmethod is able to give an overall area-accuracy
of 92.47%. In the light of this, the general applicability and the
adaptability of the proposed method have been proven promising
in the case study.

4. Limitations

Although the proposed method works well in the case study, some
limitations should be pointed out. First, the ENTLI covers the landslides
ranging from 1924 to 2009 while the DTM utilized was captured in 2011,
which implies some inconsistences in the terrain data and the landslide
data. This may lead to underestimated performance of the proposed
method. Second, as described before, the relict landslide records of
ENTLI are not completely accurate. Third, CNNs with more layers should
be investigated in the future when higher computational power is
available.
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5. Conclusions

This paper proposes an integrated method for landslide identification
using machine learning and deep learning. A case study on Lantau Island,
Hong Kong, with multiple landslide databases, is conducted to illustrate
and validate the proposed method. The following conclusions can be
drawn:

(1) Among all eight machine learning and deep learning models (i.e.,
LR, SVM, RF, Discrete AdaBoost, LogitBoost, Gentle Adaboost,
CNN-6 and DCNN-11), DCNN-11 is found to be the most prom-
ising model to tackle the landslide identification problem.

(2) Among the three landslide databases (i.e., RecLD, RelLD and JLD),
models trained on RecLD show the highest averaged identification
accuracy, 89.3%with the DCNN-11 model. The highest accuracies
trained on JLD and ReclLD are 87.5% and 86.4%, respectively.



Fig. 12. JLD based machine learning results: (a) predicted landslides using DCNN-11 and (b) landslides in ENTLI.

Table 6
Results of ARPI based on models trained with three Boosting methods.

Database Elevation (m) Aspect (º) Curvature Slope gradient (º) TWI Superficial geology SDOIF

RecLD 0.0358 0.0459 0.2121 0.5089 0.1320 0.0421 0.0232
RelLD 0.0128 0.4068 0.0669 0.3727 0.1138 0.0175 0.0095
JLD 0.0184 0.0827 0.0806 0.6524 0.1215 0.0327 0.0118
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(3) Slope gradient, aspect, curvature and TWI are shown to be more
important than the other three predictors (i.e., elevation, super-
ficial geology and SDOIF).

(4) The area identification accuracy of DCNN-11 is as high as 92.5%
when trained with RecLD, 88.6% when trained with JLD, and
86.3% with RelLD. These show remarkable performance and
robustness of the proposed landslide identification method.
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