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Abstract: Mapping and assessing Blue-Green Infrastructure (BGI) is crucial for identifying 

opportunities to enhance urban planning strategies that support ecological health and im-

prove the quality of urban living. This study presents a novel methodology for BGI mapping 

and evaluation, leveraging freely available datasets in Slovakia integrated with advanced 

GIS tools, including deep learning methods. The proposed approach combines Open-

StreetMap (OSM), LiDAR data, and orthophoto mosaics to provide a comprehensive frame-

work for assessing urban BGI. The first section evaluates green and blue areas in the study 

area, highlighting differences in dataset quality. OSM data underrepresented green spaces, 

while water bodies were reasonably well-represented. Orthophotomosaics, analyzed using 

deep learning, Normalized Difference Vegetation Index (NDVI) and Normalized Difference 

Water Index (NDWI), offered more precise results, with deep learning achieving higher ac-

curacy but requiring significant computational resources. LiDAR data accurately identified 

trees and shrubs but was less effective in mapping water bodies. In the second phase, we 

developed a BGI index by integrating the analyzed datasets and using object extraction 

techniques from the mentioned datasets. The final BGI index of 0.41 places the study area 

on the border between "Moderate" and "Good" BGI quality. This result suggests that BGI 

quality can be enhanced through urban interventions such as green roofs and permeable 

surfaces. The novelty of this study lies in the creation of a new methodology for BGI mapping 

in Slovakia using freely accessible datasets, providing a replicable model for similar re-

gions. This work contributes to the field by laying the foundation for future research aimed 

at mapping and evaluating BGI. 
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Introduction 

BGI represents a synergistic combination of natural and urban elements that support eco-

logical stability, biodiversity, and quality of life in both urban and rural areas. It is a strategic 

approach to land planning and management that includes the use of elements such as green 

roofs, rain gardens, parks, watercourses, and wetlands (Ghofrani et al. 2017). With the growing 

challenges of the climate crisis, urbanization, and environmental degradation, effective 

mapping and evaluation of BGI has become a key tool for sustainable development. BGI is  

a concept that integrates natural and engineering systems to promote ecological balance, incre-

ase resilience to climate change, and improve quality of life in urban areas (Ncube and Arthur 

2021). BGI is a crucial tool for enhancing biodiversity, water management, and improving  

the quality of life. 

BGI offers numerous benefits (Fenner 2017, Hamann et al. 2020) that span ecological sta-

bility, social sustainability, and economic advantages. Ecologically, it enhances air quality 

(Pugh et al. 2012) and water quality through natural filtration, boosts biodiversity, and im-

proves the land's capacity to retain stormwater (Kapetas and Fenner 2020, Kozak et al. 2020, 
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O’Donnell et al. 2020). Elements such as wetlands and rain gardens are pivotal for mitigating 

flood risks (O’Donnell and Thorne 2020, Deely et al. 2020), reducing pressure on sewer sys-

tems, and promoting sustainable water management. Furthermore, these natural features regu-

late microclimates, helping to alleviate the urban heat island effect common in cities 

(Gunawardena et al. 2017). Social benefits are equally significant (Liao 2019). Green and blue 

spaces in urban settings, such as parks, water bodies, and green roofs, provide venues for recre-

ation, relaxation, and physical activities, positively impacting the physical and mental health 

of residents (Venkataramanan et al. 2019). They also enhance the aesthetic appeal of urban 

environments, increasing residents’ satisfaction with their quality of life. Economically, BGI 

reduces the costs associated with technical solutions like constructing and maintaining con-

ventional sewage systems or cooling infrastructure (Silvennoinen et al. 2017). It also increases 

the attractiveness of areas for residential and commercial use, potentially boosting local eco-

nomies and property values in its vicinity. 

While BGI offers a wide range of benefits, its implementation can present certain challen-

ges and drawbacks (Dhakal and Chevalier 2017). One of the main obstacles is the high initial 

investment required. Establishing green roofs, planting vegetation, or restoring wetlands de-

mands significant financial resources, which can be a challenge, particularly for smaller mu-

nicipalities or projects with limited budgets. Maintenance also poses an issue; unlike technical 

solutions that may require occasional repairs, natural elements necessitate regular care, such 

as mowing grass, removing invasive plant species, or cleaning water bodies. Neglecting this 

upkeep can reduce the effectiveness of BGI systems. Space constraints in densely built-up 

areas can further complicate integrating BGI into existing urban structures. The lack of avai-

lable land often forces compromises between different land uses, potentially limiting the scale 

and quality of implemented measures. Seasonal and environmental factors can also affect  

the efficacy of BGI. For instance, rain gardens or retention systems may be less effective du-

ring periods of extreme drought or heavy rainfall that exceed their capacity. However, these 

disadvantages can largely be mitigated through meticulous planning, the involvement of ex-

perts, and the active participation of local communities in the design and management of BGI 

systems. By addressing these challenges proactively, BGI can remain a valuable tool for susta-

inable urban development. 

Mapping and assessing BGI are essential processes that enable effective planning (Corti-

novis and Geneletti 2018), monitoring, and enhancement of its components. These processes 

employ modern technologies and methodologies to identify, analyze, and quantify the benefits 

that BGI provides to society and the environment. Mapping BGI involves identifying and spa-

tially locating individual elements such as green spaces (e.g., parks, green roofs, forests) and 

water features (e.g., rivers, wetlands, retention basins). Modern technologies, such as satellite 

imagery and aerial photography, facilitate detailed visualization and spatial analysis. Additio-

nally, LiDAR technology offers three-dimensional data on the structural height of vegetation 

and terrain topography, enhancing the accuracy of BGI mapping (Jarlath et al. 2012, Bellaka-

out et al. 2016, Tokarčík and Hofierka 2024b). Geharlisographic Information Systems (GIS) 

enable the integration and analysis of multiple data layers, contributing to precise evaluation 

of relationships among BGI elements (Li et al. 2022, Harlis and Seo 2024). Beyond its direct 

benefits, BGI mapping is also crucial for conducting advanced analyses and modeling in GIS, 

which can significantly aid the implementation of BGI components. For example, flood mo-

deling in urban areas can identify regions prone to waterlogging, providing data for the place-

ment of retention basins or rain gardens (Hofierka and Knutová 2015, Rusinko and Horáčková 

2022, Ujlakiová and Tokarčík 2023, Tokarčík and Hofierka 2024a). Solar modeling, on the other 

hand, helps determine the most suitable locations for green roofs or photovoltaic systems  

by analyzing sunlight exposure (Hofierka and Kaňuk 2009, Hofierka et al. 2020, Kolečanský 

et al. 2021, Onačillová et al. 2022). The integration of these analyses within GIS supports 

decision-making processes, ensuring that BGI contributes effectively to urban sustainability. 
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Furthermore, open data and participatory mapping, which involve local community engage-

ment, enhance data quality and foster a collaborative approach to BGI planning and management. 

Assessment of BGI focuses on analyzing the quality and functionality of its individual 

components (O’Donnell et al. 2018). Environmental assessment identifies risks such as the 

degradation of natural elements or insufficient resilience to climate extremes. Specific indica-

tors and metrics are used to quantify various aspects of BGI (Ncube et al. 2018). The most 

common method for assessing BGI is through indices, which aggregate various indicators into 

a single parameter, enabling easier comparisons and trend monitoring (Kremer et al. 2016, Li 

et al. 2022, Harlis and Seo 2024). Examples include ecological quality indices, green infras-

tructure indices, or urban sustainability indices. Ecosystem services, such as climate regula-

tion, water purification, or recreational space, provide a framework for a comprehensive eva-

luation of benefits. Sustainability indicators, such as the ratio of green areas to the total urba-

nized area or the availability of public green spaces, help identify areas needing improvement. 

GIS analyses additionally offer spatial assessments that aid in identifying ecological corridors 

and the connectivity between BGI components. Combining mapping and assessment creates  

a comprehensive picture of the state and potential of BGI. The results of these processes serve 

as a basis for policy development, urban planning, and the implementation of nature-based 

solutions. In Slovakia, open data serves as a crucial resource for detailed mapping and evalu-

ation. In recent years, the availability of open data across various domains such as geoinfor-

matics, environmental protection, and urban planning has been increasing. These datasets pro-

vide potential for in-depth analysis and strategic planning; however, their application in the 

context of BGI remains only partially explored.  

This article focuses on two main objectives. The first goal is to assess the effectiveness  

of using freely available datasets for mapping green and blue areas. This involves analyzing 

the quality, and reliability of public datasets in Slovakia, evaluating their potential for integra-

tion into the mapping and planning processes of BGI in urban areas. The second objective is 

to develop a new methodology for mapping and evaluating BGI based on freely accessible 

data. This process aims to create an innovative approach that integrates various advanced GIS 

tools and publicly available datasets, such as OSM, LiDAR, and orthophoto mosaic.  

The methodology incorporates advanced GIS techniques, including deep learning, vegetation 

indices, and object extraction methods, to assess the quality and potential of BGI. This appro-

ach also includes the development of a BGI index, which will serve as a model for similar 

regions and contribute to future research in BGI mapping and evaluation. 

 

Methods and data 

Study area 

Žiar nad Hronom is a district town in the Banská Bystrica Region in central Slovakia, loca-

ted in the valley of the Hron River, at the foot of the Štiavnica Mountains. It lies in a strate-

gically advantageous position between two significant mountain ranges, the Štiavnica Moun-

tains and the Kremnica Mountains, providing favorable conditions for industrial and agricul-

tural activities (Žiar nad Hronom 2024a). The town is situated on the main road and rail corri-

dor connecting central Slovakia with Bratislava and Košice. The Hron River, the second lon-

gest river in Slovakia, flows through Žiar nad Hronom. The town covers an area of 39.1 km², 

is located at an elevation of 272 meters above sea level, and has a population of 16,879 resi-

dents (Slovensko v kocke 2020). The area of interest is part of the urban area located in the center 

of Žiar nad Hronom (fig. 1). The total area of the selected location is 3.64 km². The boundary 

of the area of interest was delineated in such a way that it includes not only the built-up urban 

area but also the Hron River and a pond, as water features are crucial for the analysis of BGI. 

This inclusion ensures that the area contains relevant water bodies, which are important  

in evaluating ecological and environmental processes related to BGI. 
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Fig. 1. Location of the study area  

Source: ÚGKK SR (2022)  

The primary reason for selecting this area is the ongoing project in the city focused on imple-

menting water retention measures, which is closely related to the concept of BGI. This project 

aims to enhance flood control and improve water management, making the area particularly 

relevant for further research connected to BGI analysis. The inclusion of this area in the study 

will help evaluate the current state and potential improvements in BGI as part of the city’s efforts. 

As reported, Žiar nad Hronom recently secured nearly 800,000 EUR in funding for water reten-

tion projects, underlining the importance of these measures in the local development plan (Žiar 

nad Hronom 2024b). Therefore, this area is crucial for future research that builds upon this study, 

as it directly correlates with the implementation of BGI initiatives in the region. 
 

Input data and object extraction methods 

For the mapping and evaluation of BGI within our study area, three main sources of fre-

ely available spatial data were used: OpenStreetMap, orthophoto mosaic, and LiDAR data. 

These spatial datasets were used independently to create BGI maps in order to assess their 

potential in the analysis and evaluation of BGI. Each of these datasets provides different types 

of information that are essential for comprehensive mapping and analysis of natural and urban 

elements. The reliability of the results is greatly influenced by the quality of the input data and 

the methods used to extract objects and areas. Therefore, this part of the study provides  

an assessment of both the data quality and the accuracy of the applied extraction methods.  

The separate processing using both simple and advanced GIS tools enabled the assessment  

of how these datasets can be used effectively for mapping blue-green infrastructure in the con-

text of evaluating their potential. The delineation of individual areas and objects, followed  

by the creation of separate maps from the available spatial datasets, represents a key step  

in the development of a new methodological approach for the analysis and evaluation of BGI. 
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The OSM project, founded in 2004, has gradually evolved into the most well-known and 

extensive example of voluntarily managed geographic information. Thanks to the active par-

ticipation of individuals from around the world, who contribute to its continuous development 

and updating, OSM has become a valuable and widely used source of geographic data across 

various fields. Several software tools are available that allow for the extraction of objects and 

layers, enabling quick and efficient acquisition of spatial data in vector format. In the context 

of our research focused on BGI, we utilized this data source to obtain polygon layers needed 

for BGI analysis within our study area, such as water bodies, green spaces, roads, built-up 

areas and buildings (Mondzech and Sester 2011). The individual areas and objects were  

delineated from the OSM project using the QuickOSM tool in QGIS. QuickOSM is a plugin  

for the QGIS software, designed specifically for extracting data from OSM. The plugin allows 

users to perform Overpass API queries directly within the QGIS environment, providing  

a powerful and efficient tool for retrieving specific features from the OSM database. Users can 

define the geographical area of interest and the type of features they want to extract. From  

a technical standpoint, QuickOSM automates and streamlines the extraction process, significan-

tly reducing the time and effort required to retrieve data from the large and complex OSM data-

base (3Liz 2022). However, it is important to note that QuickOSM relies entirely on the OSM 

database, meaning that the quality of the extracted data is contingent on the quality and com-

pleteness of the data available in OSM. As OSM is a crowd-sourced platform, the precision  

of the data can vary, and features may be underrepresented or inaccurately mapped. Consequ-

ently, while QuickOSM provides an efficient means of accessing and extracting data,  

it does not offer tools for assessing the reliability or completeness of the data extracted. There-

fore, the quality of the results depends on the availability and coverage of the data within  

the specific geographic area, which could limit its accuracy for some applications.  

Another dataset analyzed for its applicability in relation to BGI was the orthophoto mosaic, 

provided by the Geodesy, Cartography and Cadastre Office of the Slovak Republic. This pro-

duct is made available for free online via download from the government cloud in ZIP packa-

ges, divided by regions (West, Central, and East Slovakia). For the purpose of our research, 

we used the orthophoto mosaic from the 2nd cycle, which took place from 2020 to 2022 

(ÚGKK SR 2022). The orthophoto mosaic of Slovakia used in this study is provided in a geo-

referenced TIFF + TFW format, enabling correct placement and analysis of raster data in geo-

graphic space. The spatial resolution is 20 cm per pixel, ensuring a high level of detail ne-

cessary for accurate mapping and assessment of BGI (fig. 2). The orthophotomosaic contains 

four channels (RGBN) with 8-bit color depth, allowing for the display of the color spectrum, 

including infrared bands (Geoportál 2024a). For successful object classification from the or-

thophoto mosaic, advanced GIS tools were required to work with more complex algorithms 

and techniques. In our research, we applied two methods for creating the BGI map: deep lear-

ning and object extraction based on NDVI and NDWI indices. Object classification from  

the orthophoto mosaic using machine learning was carried out in ArcGIS Pro software. These 

models enable the processing of complex image data, such as orthophoto mosaics, and effecti-

vely classify objects based on learned patterns. This process is very useful for identifying and 

classifying different types of objects (e.g., buildings, vegetation, water bodies) on orthophoto 

maps, where manual classification can be time-consuming and inaccurate (Mohan and 

Giridhar 2022). For this purpose, we used a pre-trained model for object classification, called 

High Resolution Land Cover Classification, downloaded from the official ArcGIS website 

(Esri 2021). This model was specifically designed for land cover classification and has been 

tested on areas in the United States, providing reliable results for identifying various land cover 

types such as water, wetlands, tree canopy, shrubland, low vegetation, barren, structures, im-

pervious surfaces, impervious roads. The pre-trained model used in this study, with an overall 
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accuracy of 86.5% for classifying land cover into 9 categories, demonstrates a high level  

of reliability. This accuracy ensures that the model is robust enough to be applied in the extraction 

of objects for BGI mapping. Given its proven performance, this model is suitable for accurately 

classifying complex land cover types, including vegetation, water bodies, and urban areas, 

which are critical for effective BGI mapping and analysis. The following table (tab. 1) sum-

marizes the precision, recall, and F1 score of the model on the validation dataset for classifi-

cation into 9 land cover classes. 
 

Tab. 1. Performance metrics for High Resolution Land Cover Classification Model  

Class Precision Recall F1 Score 

Water 0.93614 0.93046 0.93329 

Wetlands 0.81659 0.75905 0.78677 

Tree Canopy 0.90477 0.93143 0.91791 

Shtubland 0.51625 0.18643 0.27394 

Low Vegetation 0.85977 0.86676 0.86325 

Barren 0.67165 0.50922 0.57927 

Structures 0.80510 0.84887 0.82641 

Impervious Surfaces  0.73532 0.68556 0.70957 

Impervious Roads 0.76281 0.81238 0.78682 

Source: Esri (2021) 
  

 This model is based on the UNet architecture, which has been implemented within  

the ArcGIS API for Python. The classification itself was triggered using the 'Classify Pixels 

Using Deep Learning' command, designed to classify individual pixels based on the pre-tra-

ined model (ARCGIS 2024). To apply this model, we simply selected the orthophoto mosaic 

as the input raster and set the number of classes to 9, as required by the model. The model was 

then run without the need for any further adjustments to its parameters, since it is pre-trained 

and ready to classify the input data. This pre-trained model, downloaded from the official Ar-

cGIS site, allowed us to classify land cover types directly, with the tool outputting a raster 

classified into the predefined land cover categories. It is important to note that to run this model 

in ArcGIS Pro, the Deep Learning Libraries must be installed and activated, as they provide 

the computational support needed for processing the data efficiently. The output of the mode-

ling is a new raster file with pixels classified into the aforementioned classes. Due to the need 

to analyze the individual areas, we converted the output raster into a vector dataset using  

the “raster to polygon” tool.  

In the context of BGI mapping, the orthophoto mosaic has potential due to the inclusion  

of four spectral bands, including the near-infrared. This allows for the calculation of the NDVI 

(Normalized Difference Vegetation Index) and NDWI (Normalized Difference Water Index), 

which can be used to detect specific objects and features in the landscape. The vegetation 

index NDVI is calculated using the formula: NDVI = (NIR + Red) / (NIR − Red), where 

NIR is the spectral band for near-infrared light and Red is the spectral band for red light. This 

index is used to detect vegetation and helps identify vegetative cover, where values close to 1 

indicate dense vegetation, and values near 0 suggest areas without vegetation. The NDWI in-

dex has a similar formula but works with the green spectral band: NDWI = (Green + NIR) / 

(Green − NIR), where 'Green' is the green spectral band and 'NIR' is the near-infrared spectral 

band. NDWI is used to detect water bodies, where values close to 1 indicate water, and values 
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close to -1 indicate dry or non-water areas (Onačillová et al. 2022). These indices were easily 

calculated in ArcGIS Pro using the tools available in the Raster Functions toolbox. After cal-

culating the NDVI index, the output raster was reclassified by selecting pixels with a value  

of 0.4 or higher. These pixels were then converted into a vector dataset for further analysis.  

A similar approach was applied to the NDWI index, where pixels with values of 0.4 or higher 

were selected and subsequently converted into a vector dataset. This process allowed us  

to extract the green and blue infrastructure components, providing accurate and precise da-

tasets for the further mapping and evaluation of BGI. The use of these thresholds helps ensure 

that only relevant areas contributing significantly to vegetation and water bodies are conside-

red for inclusion in the analysis, enhancing the reliability of the results.  
 

 

Fig. 2. Orthophoto map of the study area used for extracting BGI elements 

Source: ÚGKK SR (2022) 
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As with the orthophotomosaic, the provider of the LiDAR data is the Geodesy, Car-

tography, and Cadastre Office of the Slovak Republic (ÚGKK SR 2019). These data were 

collected as part of the airborne laser scanning (ALS) project in Slovakia, which began in 2017 

with the goal of creating a new digital elevation model (DEM) 5.0. The first cycle of the project 

was completed in May 2023, when the DEM 5.0 for the entire Slovak territory was released 

with a resolution of 1 meter. The entire data collection process and the creation of the final 

product were carried out by contractors, with each contractor responsible for data collection 

via ALS, data processing, point cloud classification into the required classes, and quality con-

trol of the ALS data and the final DEM 5.0 product. Currently, the second cycle of the project 

(2022–2026) is underway, with the creation of DEM 6.0. In this study, we used the classified 

point cloud from the first cycle of the project. Our area of interest is located in the Banská 

Bystrica region, where the average point density of the last return is 22 points per square meter. 

This density is essential for the accurate extraction of BGI elements such as vegetation and 

water bodies. The mandatory criteria for the collection of LiDAR data from the first cycle were 

set as follows: the absolute height accuracy of the point cloud in the ETRS89 system was  

≤ 0.15 m, and the positional accuracy in the ETRS89-TM34 system was ≤ 0.30 m. These spe-

cifications are critical for precise mapping, ensuring that the data can be reliably used to deli-

neate features such as trees, shrubs, and buildings in BGI mapping. For the successful ex-

traction of objects, high-quality classification of the point cloud is essential.  

The LiDAR data used in our study meet the following classification criteria: In the Ground 

class, a maximum of 0.5% of incorrectly classified points were allowed per 1 km² of area. For 

other classes, a maximum of 10% of incorrectly classified points were allowed per 1 km² (Geo-

portál 2024b). This ensures that the LiDAR data, from the perspective of classification, hold 

significant potential for BGI applications, providing a reliable foundation for accurate mapping 

of natural and urban elements. As in the previous cases, extraction of areas and objects is essential 

in the context of mapping and evaluating BGI. For this purpose, we used the "lasboundary" 

tool available in the LAStools package. This method allowed us to extract buildings, vegeta-

tion, and water bodies (Tokarčík and Hofierka 2024a, Tokarčík and Hofierka 2024b). When 

using the lasboundary tool for object extraction, we first selected the classification class from 

which the extraction was to be made. For our study, we utilized this tool for several classes, 

including Low Vegetation (03), Medium Vegetation (04), High Vegetation (05), Building (06), 

and Water (09). After selecting the appropriate classification, we adjusted the concavity para-

meter, setting its value to 0.5. This setting allowed us to capture the boundaries of objects with 

sufficient detail and accuracy, especially for complex features such as vegetation and buil-

dings. The concavity parameter is crucial for determining the degree to which the boundary 

follows the curves of the classified objects. By setting it to 0.5, we ensured that the tool could 

properly follow the contours of the features, allowing for precise delineation of the object 

boundaries without oversimplification. We also set the disjoint parameter to ensure that during 

the extraction process, features with no common boundaries would be separated. This setting 

was crucial for maintaining the integrity of individual objects, such as trees and buildings, 

which may not be adjacent but still need to be classified and delineated as separate entities 

(Rapidlasso 2024).  
 

BGI index calculation 

As part of the assessment and mapping of BGI, we developed a simple weighted index 

specifically tailored to the needs of our study. It is important to emphasize that no official 

universal BGI index currently exists (Li et al. 2022, Harlis and Seo 2024). Consequently, our 

approach was to design an index that integrates analytical weights assigned to various catego-

ries of landscape elements, emphasizing their ecological and environmental contributions  
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to BGI processes. This index was adapted from existing methodologies but customized to align 

with the datasets available and the specific context of our study area (Ariff et al. 2019, Li et 

al. 2022, Harlis and Seo 2024, Das and Kumar 2022). Given the absence of a standardized BGI 

index, our weighted sum approach ensures flexibility and relevance to the local environmental 

conditions. Each category in the index was assigned a weight proportional to its significance 

in supporting ecological services, such as climate regulation, biodiversity enhancement, and 

water retention. For example, trees and shrubs were assigned the highest weight, reflecting 

their critical role in regulating urban microclimates and supporting biodiversity. Similarly, 

green spaces, water bodies, built-up areas, and buildings were weighted based on their specific 

contributions to ecological processes and their potential for sustainable interventions like green 

roofs or permeable surfaces. 

In our study, we draw on existing researches that highlights the importance of various land 

types and elements in the context of BGI. However, due to the absence of a universal BGI 

index, we assigned weight values based on our expert assessment. These weights were care-

fully chosen to reflect the specific environmental and urban dynamics of our study area, while 

considering the key roles that trees, green areas, water bodies, buildings and built-up environ-

ments play in supporting ecological functions and urban sustainability. The weights for the 

individual categories were set as follow: 

 Trees and Shrubs (1): We assigned the highest weight to trees and shrubs because they 

play a pivotal role in various ecological processes, including stormwater management, co-

oling, air quality improvement, and supporting biodiversity (Ghofrani et al. 2017). Their 

ability to reduce the urban heat island effect and provide shade makes them essential for urban 

resilience, especially in the face of climate change. The weight of 1 reflects their overwhel-

ming importance in urban BGI systems. 

 Green Areas (0.75): Green areas such as parks, meadows, and other vegetation types also 

significantly contribute to BGI functions, particularly stormwater retention and the mitiga-

tion of the urban heat island effect (Pugh et al. 2012). These areas are important for main-

taining the ecological balance within urban environments, reducing pollutants, and impro-

ving the quality of life. A weight of 0.75 was assigned to green areas due to their signi-

ficant, yet slightly less critical, role compared to trees and shrubs. 

 Blue areas (0.5): Water bodies, such as lakes, rivers, and ponds, were assigned a weight 

of 0.5, acknowledging their essential role in regulating the water cycle, managing flood 

risks, and maintaining aquatic biodiversity (Kapetas and Fenner 2020). Although they are 

crucial for environmental stability, their contribution to other ecosystem services, like co-

oling or air purification, is more limited compared to trees and vegetation. 

 Buildings (0.1): Although buildings are generally seen as an obstacle to ecological pro-

cesses, they are included in the index because they represent areas where BGI measures, 

such as green roofs or permeable surfaces, can be implemented. The weight of 0.1 reflects 

the fact that while buildings themselves are not inherently beneficial for BGI, they provide 

the opportunity for sustainable interventions within urban areas (Silvennoinen et al. 2017). 

 Built-up areas (0.05): Built-up land, including impervious surfaces such as streets and 

parking lots, affects the potential for BGI measures, yet it is the least favorable category 

from an ecological perspective. These areas contribute minimally to ecological processes 

and do not offer many opportunities for integrating BGI measures, thus receiving the lo-

west weight of 0.05 (Gunawardena et al. 2017). 
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For calculating the BGI index, we use a simple weighted system, where each category  

of landscape element is multiplied by its assigned weight, and these values are then summed. 

The result is then divided by the total area of the land:  

 

BGI Index = ∑(area of category × weight)/(total area). 

To interpret the results, the BGI index values are categorized based on their ability to support 

ecological balance: 

 0–0.2: Low BGI quality - the area has significantly limited ecological, climatic, and social 

benefits. It requires extensive interventions to improve the blue-green infrastructure. 

 0.2–0.4: Moderate BGI quality - the area has some blue-green infrastructure, but it is not 

sufficiently developed to effectively support ecological and climatic functions. 

 0.4–0.6: Good BGI quality - the area has a balanced blue-green infrastructure that provi-

des significant benefits for both the ecosystem and its inhabitants. 

 0.6–1: High BGI quality - the area has a well-developed blue-green infrastructure, 

offering extensive ecological, climatic, and social benefits, and serves as a model for susta-

inable development. 

 

Results 

The results of this research are divided into two main sections, reflecting the defined ob-

jectives. The first section focuses on analyzing the applicability of freely available datasets for 

mapping BGI. Specifically, it examines and evaluates green and water areas, which are crucial 

in the context of BGI. The second section introduces a methodological approach to creating  

a final BGI map with a weighted index, integrating various datasets for a more precise evalu-

ation of the ecological potential of the study area. 

 

Mapping of green and blue areas 

Based on the initial results, significant differences between datasets in usability and pro-

cessing demands for mapping vegetation and water surfaces were confirmed. The first dataset 

analyzed was OSM, utilized to identify green and blue areas within the study site. However, 

OSM data proved unsuitable for capturing green areas accurately, as these were underestima-

ted in the context of the examined area (fig. 3).  

The total area of green spaces identified from OSM was only 0.25 km², significantly less 

compared to other datasets. On the other hand, water surfaces were captured relatively accu-

rately, with an area of 0.16 km², closely matching results from other methods. The percentage 

of BGI representation in OSM was merely 11.6%, with the substantial underrepresentation  

of green spaces making this dataset unsuitable for detailed BGI mapping in urban environ-

ments. The orthophotomosaic was one of the analyzed datasets, with its potential for mapping 

BGI evaluated using two different approaches: applying deep learning tools and using vegetation 

indices NDVI and NDWI (fig. 4). The use of vegetation indices was made possible by the po-

tential of the orthophoto mosaic, which includes the near-infrared band. The deep learning 

method for analyzing the orthophotomosaic proved to be highly effective in extracting green 

and water areas. Results showed that green areas were identified with an area of 2.02 km² and 

water bodies with an area of 0.15 km², representing 59.61% of the total BGI area. This method 

effectively identified not only trees and shrubs but also larger green areas such as parks and 

gardens. However, shadows in the orthophoto mosaic sometimes caused incorrect classifica-

tion of certain areas as water bodies, and smaller paved areas and paths near vegetation were  

often misclassified as green areas.  
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Fig. 3. Green and blue areas identified from OSM 

 

Fig. 4. Green and blue areas identified from orthophoto mosaic using:  

A – using deep learning method, B – NDVI and NDWI index 
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The combination of the NDVI and NDWI indices yielded effective results in extracting 

green areas, such as parks and gardens. Green areas covered 1.38 km², and water bodies  

0.06 km², representing 39.56% of the total BGI. The NDVI index proved to be more suitable 

than deep learning for identifying green areas, as deep learning often misclassified smaller 

built-up areas and paths near vegetation as green areas, reducing the accuracy of the results. 

However, problems arose when extracting water areas, as certain structures, such as buil-

dings or asphalt surfaces, had similar index values to water. This phenomenon caused parts 

of non-green areas, like built-up zones, to be incorrectly classified as water bodies. Due  

to these challenges, we decided to select only areas with high index values (above 0.5). This 

approach, however, resulted in a reduced extent of identified water bodies compared to other 

methods. The solution to this problem could involve manual classification and filtering  

of the extracted polygons, which would allow for more precise separation of water bodies 

from other structures. However, this approach is not efficient as manual processing is time-

consuming and requires a high degree of interaction. As a result, the overall effectivenes s 

of the mapping process decreases, negatively impacting both the scope and accuracy  

of the analysis. 

For the deep learning method, we used ArcGIS Pro and the Classify Pixel Using Deep 

Learning tool, leveraging a pre-trained model available from ArcGIS’s official site. The model 

was executed in ArcGIS Pro, enabling efficient extraction of various areas, including green 

spaces, trees, shrubs, built-up areas, buildings, and water bodies. The processing time was 

around 17 hours, indicating the computational intensity of this method, but the results yielded 

high-quality and precise outputs. The output was a raster map, which was converted to polygon 

format using the Raster to Polygon tool for further processing and analysis. The NDVI and 

NDWI method in ArcGIS Pro was faster and more efficient as these indices are already integ-

rated into the software. However, it required manual correction, particularly when extracting 

water bodies with index values similar to built-up areas. Compared to the OSM dataset,  

the orthophoto mosaic showed significantly greater potential for BGI mapping due to its higher 

accuracy and the ability to utilize advanced tools such as deep learning. 

LiDAR data provided highly accurate results in identifying trees and shrubs, with approxi-

mately 0.74 km² of green areas mapped from the total area. Water bodies were delineated over 

a space of 0.11 km² (fig. 5). Due to the specific characteristics of LiDAR, vertical structures 

like trees were captured with high precision. However, areas with lower vegetation and water 

bodies were harder to identify and required additional processing. For water bodies, the low 

reflectivity of water caused challenges in detection, which affected the accuracy of their deli-

neation. Similar to the orthophoto mosaic, the analysis of LiDAR data offers the advantage  

of enabling not only the identification of greenery but also the accurate delineation of other 

objects, particularly buildings. This approach provides detailed insights into urban structure 

and enhances the accuracy of mapping built-up areas. 

To extract objects from LiDAR data, we used the lasboundary tool in LAStools, which 

effectively detects the boundaries of various objects, provided that the point cloud classifica-

tion is accurate. Although processing large datasets can be time-intensive, this method is sig-

nificantly faster than deep learning approaches. Tools like LAStools are particularly efficient 

for extracting height-differentiated features such as trees and buildings but struggle with water 

bodies and low vegetation. Tab. 2 provides a summary comparing the efficiency of greenery 

and water body extraction across datasets. 
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Fig. 5. Green and blue areas identified from LiDAR data 

 

Tab. 2. The sizes of green and blue areas identified based on the used data sources 

 Dataset 
Green areas 

[km2] 
Blue areas 

[km2] 
BGI coverage 

[%] 

OpenStreetMap 0.25 0.16 11.60 

Ortophotomosaic (deep learning) 2.02 0.15 59.61 

Ortophotomosaic (NDVI and NDWI) 1.38 0.06 39.56 

Lidar data 0.74 0.11 23.35 

 

BGI map and index 

The second part of the results describes the proposed methodological procedure for crea-
ting the final BGI map and calculating the BGI index based on weighted values for specific 
areas within the study site. This approach integrates previous extraction results and various 
datasets and tools to offer a comprehensive view of the area's landscape and urban components. 
The methodology elaborates on index calculations and weight justifications for different land 
types, focusing on accurate classification into categories such as trees and shrubs, green areas, 
blue areas, built-up areas, and buildings. 

The results indicate that LiDAR data has shown the greatest potential for identifying trees 
and shrubs due to its accuracy and detail. This allowed for effective extraction of medium and 
high vegetation. As a result, the methodology was adjusted to include the extraction of trees 
and shrubs using the LiDAR tool, lasboundary, which facilitated precise classification of these 
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vegetation types within the study area. The total area covered by high and medium vegetation 
is 0.667 km2, accounting for 18.32 % of the total study area. Based on prior analyses, the metho-
dology for creating the BGI map and index includes green areas identified using the NDVI 
index. This approach was chosen for its accuracy in differentiating vegetation, thereby mini-
mizing the risk of misclassifying built-up areas and pathways, an issue often encountered with 
deep learning methods. NDVI captures the extent and characteristics of green areas, which is 
critical for developing a reliable BGI index and map. The total area of green spaces (excluding 
trees and shrubs) is 0.838 km2, representing 23.02 % of the total research area. When exami-
ning previous results, it is evident that the size of water areas identified via OSM aligns closely 
with areas derived from the deep learning method. However, deep learning faced challenges, 
such as shadows in the orthophotomap being misclassified as water, necessitating manual fil-
tering. Therefore, OSM data proved to be the most effective solution. This step, however, is 
contingent on the specific study area, requiring an individualized approach to delineate water 
bodies for other regions. For the final map, we used the extraction of water bodies using  
the QuickOSM tool, which relies on OSM data. The total area covered by blue spaces is  
0.159 km², which accounts for 4.36 % of the area. The deep learning tool applied to orthopho-
tomosaics has proven to be highly effective for identifying built-up areas. By analyzing  
the pixel values in the orthophoto, it reliably delineates features such as parking lots, roads, 
and industrial zones, enabling precise classification within urban landscapes. On the other 
hand, OSM data are too generalized and do not reflect the detailed reality, especially in smaller 
or more complex built-up areas. LiDAR data are not suitable for identifying areas such as 
parking lots or roads because these surfaces typically lack distinct height variations that Li-
DAR sensors capture. LiDAR technology is optimized for detecting three-dimensional structu-
res and topographical features, such as buildings or vegetation. The NDVI index is not suitable 
either, as it is primarily used for vegetation analysis, not for artificial structures. Therefore, we 
incorporated deep learning methods, specifically the use of a pretrained model with the "Clas-
sify pixels using deep model" tool, to extract built-up areas (1.459 km2) and integrate them 
into the final map. The last category included in the area assessment from the BGI perspective 
and methodology is buildings. For this purpose, data from airborne laser scanning were used. 
LiDAR data allow for more precise identification of individual buildings based on their shape 
and height structure, minimizing inaccuracies that may arise when using generalized OSM data. 
While OSM is a good source for obtaining building footprints, it often lacks current or detailed 
information about buildings, especially in peripheral or less urbanized areas. For this reason, 
buildings derived from LiDAR data were incorporated into the final BGI map. This approach is 
highly effective not only for identifying buildings but also for other uses, such as evaluating 
suitability for implementing green roofs. The area of buildings extracted from LiDAR data in our 
study area reaches a total of 0.516 km². The final BGI map, created based on the described 
methodology incorporating various GIS tools and spatial data sources, is shown in fig. 6.  

Based on the extracted areas and their sizes, as well as the weights assigned to each area, 

we calculated the BGI index. The BGI index value of 0.41 places the area of interest on the 

boundary between "Moderate BGI Quality" and "Good BGI Quality." This indicates that while 

the blue-green infrastructure is relatively well-represented, there is potential for further impro-

vement. The current vegetation and water coverage contribute effectively to functions such as 

cooling, air purification, and flood mitigation. However, the borderline nature of the value 

suggests that measures like implementing green roofs or converting impermeable surfaces into 

semi-permeable or permeable ones could help solidify the classification into the "Good Qua-

lity" category. These enhancements would not only improve stormwater management but also 

increase the area’s overall ecological and climatic resilience, promoting more sustainable ur-

ban development. The methodological approach, based on integrating multi-source data, pro-

ves to be a robust and flexible tool that can be effectively applied to evaluate BGI in other 

cities. The values of the areas used to derive the final BGI index, based on the assigned weig-

hts, are summarized in tab. 3. 
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Fig. 6. BGI map created based on the new methodological approach  

 

Tab. 3. Overview of BGI classes contributing to the final index calculation 

 BGI area class Area [km2] Weight Source dataset Extraction method 

Trees and shrubs 0.667 1 LiDAR data lasboundary (LAStools) 

Green areas  0.838 0.75 orthophoto mosaic NDVI index (ArcGIS Pro) 

Blue areas 0.159 0.5 OSM QuickOSM (QGIS) 

Buildings 0.516 0.1 LiDAR data Lasboundary (LAStools) 

Built-up areas 1.459 0.05 orthophoto mosaic deep learning (ArcGIS Pro) 

 

The calculation of the weighted BGI index within ArcGIS Pro proved to be an effective 

method for evaluating the quality of BGI in the study area. By utilizing the attribute table  

to calculate areas and weights and applying the Field Calculator and Summarize function, we 

were able to efficiently determine the overall BGI index. This approach, centralized within  

a single GIS platform, allowed for quick processing and analysis of the data. One of the key 

advantages of this method was its flexibility in responding to changes. Whenever adjustments 

to the weights or areas of specific BGI components were needed, these modifications could be 

made rapidly, providing an efficient means to update the index and ensure that the analysis re-
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mained relevant and current. This responsiveness to changes in the data, along with the centrali-

zed nature of the calculation, made the process not only efficient but also adaptable to the evol-

ving urban and environmental planning needs of the study area. 

The figure below (fig. 7) presents the schematic diagram of the newly developed metho-

dological approach for BGI mapping and assessment. This framework represents a compre-

hensive integration of freely available datasets and advanced GIS tools, tailored to the specific 

requirements and conditions of the study area. Although the diagram illustrates a methodolo-

gical workflow, it is an integral part of the results section, as it constitutes the primary outcome 

of this research. 
 

 

Fig. 7. The proposed methodological framework for BGI mapping and assessment  

Discussion 

The evaluation of BGI mapping in this study revealed significant differences in the quality 

and applicability of datasets. OSM data proved to be the least reliable for detailed BGI map-

ping, primarily due to its generalization and inconsistent representation of green spaces. This 

aligns with findings from Mondzech and Sester (2011), which highlighted the limitations  

of OSM in accurately capturing detailed landscape features. The substantial underrepresenta-

tion of green areas in our results underscores the challenges in relying on voluntary geographic 

information systems for precise urban planning. However, OSM’s performance in identifying 

water bodies was relatively acceptable, suggesting potential for specific applications, espe-

cially when higher-resolution datasets are unavailable. 

In contrast, LiDAR and orthophoto mosaic data demonstrated significantly greater relia-

bility. LiDAR data were particularly effective in identifying vertical structures like trees, 

shrubs and buildings, consistent with Jarlath et al. (2012), Bellakaout et al. (2016), Tokarčík 

and Hofierka (2024b), who emphasized LiDAR’s potential for urban objects analysis. How-

ever, as seen in our results, LiDAR’s limitations in detecting water bodies due to reflectivity 

issues highlight the need for complementary datasets. Similarly, orthophoto mosaics provided 

comprehensive coverage, with deep learning tools achieving high accuracy in identifying both 

vegetation and water features. This reflects the findings of Mohan and Giridhar (2022), who 

reported the effectiveness of deep learning in extracting complex patterns in urban landscapes. 

The computational intensity of deep learning, while a drawback, was mitigated by its high 

precision and adaptability for urban analyses. 
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From a methodological perspective, the weighted BGI index developed in this study offers 

a straightforward yet practical tool for evaluating blue-green infrastructure. Unlike more com-

plex indices, which may require extensive data processing and sophisticated modeling, this 

index prioritizes simplicity and efficiency, making it easily integrable within GIS platforms. 

Inspired by the methodologies described by Li et al. (2022) and Harlis and Seo (2024), it adapts 

basic principles of weighting to the specific environmental and dataset conditions of Slovakia. 

This study lays the foundation for further research, for example in the context of hydrolog-

ical and solar modeling, which are crucial for enhancing the ecological and functional benefits 

of BGI. As shown by Tokarčík and Hofierka (2024a), Onačillová et al. (2022), Rusinko and 

Horáčková (2022) and Hofierka et al. (2020), modeling tools can complement BGI assess-

ments by identifying areas prone to flooding or suitable for green roofs and solar panels.  

The unique contribution of this research lies in the combination of freely available datasets 

with advanced GIS tools to create a replicable model for BGI assessment. While the results 

are promising, they also highlight areas for improvement, such as increasing the resolution  

of the datasets or integrating community-generated data to increase accuracy. Future studies 

could build on this work by incorporating more comprehensive methodologies to achieve  

a deeper assessment and mapping of BGI. Extending the application of the proposed method-

ology to different urban contexts could improve its adaptability, while integrating additional 

datasets and advanced modeling tools could yield more detailed insights into the effective  

implementation of BGI in urban environments. 

 

Conclusions 

By leveraging a combination of freely available datasets such as OSM, LiDAR data, and 

orthophotomosaics, along with advanced GIS tools, including deep learning methods, we were 

able to assess and quantify green and blue spaces in urban areas. The findings indicate that 

while OSM data tended to underrepresent green spaces, LiDAR and orthophoto mosaics pro-

vided more accurate and precise results, with deep learning methods achieving the highest 

accuracy, albeit with significant computational demands. The BGI index derived from this 

process highlighted that the study area falls between "Moderate" and "Good" BGI quality, 

suggesting that urban interventions such as green roofs and permeable surfaces could signifi-

cantly enhance BGI.  

In addition to the overall findings, it is important to emphasize the effectiveness of the tools 

used for extracting BGI elements during the study. The use of deep learning methods on or-

thophoto mosaics facilitated the extraction of precise vegetation features, enhancing the accu-

racy of green space mapping. LiDAR data provided robust results for tree and shrub identifi-

cation but was less effective in delineating water bodies. The ability to integrate these diverse 

datasets within GIS platforms such as ArcGIS Pro further amplified the analysis, allowing for 

seamless spatial operations and the generation of relevant indices. The efficiency of the GIS 

tools not only streamlined the process but also provided a flexible approach, enabling quick 

adjustments to dataset weights or boundary changes, essential for iterative analysis and deci-

sion-making. This demonstrated the significant potential of GIS in BGI mapping, highlight-

ing the technology's adaptability and capacity to improve urban planning for ecological sus-

tainability.  

Given the promising results, this study lays the groundwork for further research into BGI 

in Slovakia, providing a replicable model that can be extended to other regions. The use  

of GIS tools, particularly in the context of open data, has proven invaluable in streamlining  

the process of BGI mapping and evaluation, providing a robust platform for future urban plan-

ning efforts aimed at improving ecological resilience and sustainability in urban areas. This 

study not only contributes to the body of knowledge on BGI but also emphasizes the efficiency 

and adaptability of GIS technologies in advancing environmental and urban planning initiatives. 
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