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Abstract: The occurrence of landslides has always been a problem in spatial planning  

as an environmental threat. The aim of the present study was to zoning landslide sensitive 

areas in the Urmia Lake Basin and to investigate the correlation between the characteristics 

of the region and the amount of landslide. To achieve these purposes, the situation of land-

slide sensitive areas in the Lake Urmia Basin was investigated using a combination of Fuzzy 

and Analytical Network Process (ANP) methods. The criteria' weight is obtained using  

the ANP, fuzzy Membership command, linear function, the fuzzy weight of the sub-criteria, 

and their fuzzy membership degree (between 0 and 1) are calculated. The weighted raster 

layers were combined using the Gamma overlay function. As a result of this operation,  

a classified map has been obtained which shows that 16.6% of the area has a very high 

landslide susceptibility, and the highest area of the study area, i.e., 27.32%, has a relatively 

high landslide susceptibility. The results of the present study were compared with the data 

recorded using field observations at landslide sites. The results showed that out of 182 points 

collected, 148 points (equivalent to 81.31%) correspond to class 6 (very high landslide sus-

ceptibility) and class 7 (extremely probable). The results of this research can be used in 

crisis management, identifying the suitability of the region in terms of geomorphological 

features, identifying environmental and natural hazards. 
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Introduction 

Landslides are one of the most devastating natural disasters in sloping areas and leave 

millions homeless worldwide (Oktorie 2017). Landslides and soil mass movements are con-

sidered a special type of natural disaster from the perspective of natural hazard management. 

The occurrence of this type of phenomenon every year in some parts of our country and 

other parts of the world causes significant human, financial and environmental losses (Zhang 

et al. 2020). Identifying landslide-prone areas by zoning hazard capability with appropriate 

statistical models is one of the first steps in reducing potential damage and landslide risk 

management (Ciurleo, Cascini and Calvello 2017). Natural hazards have permanently de-

stroyed many human-made structures, therefore, identifying high-risk areas should be con-

sidered one of the leading programs in land management studies (Jin et al. 2019). Environ-

mental issues and forecasting the Natural hazards using spatial modelling is one of the main 

branches of Geographic Information System (GIS) today, which provides accurate and up-

to-date results with very high accuracy compared to reality. In most sources, landslides are 

considered synonymous with mass movements (Lo, Feng and Chang 2018). Dozens of land-

slides occur in different parts of the country every year and threaten many residential areas,  
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roads, and facilities (Yazdadi and Ghanavati 2016). There are many methods for zoning 

landslide sensitive areas, but these methods are divided into direct and indirect methods  

in general. Direct zoning methods are based on judgments based on landslide areas. Still, 

indirect methods, which are also included in this study, are based on identifying controlling 

factors and combining these factors as indicators of landslide potential in zoning (Yazdadi 

and Ghanavati 2016). In the indirect method, the use of real data can help the researcher to 

achieve accurate results. For example, the exact location of faults in the region or accurate 

geomorphological information directly impacts the final results. Today, Spatial Decision 

Support System (SDSS) and multi-criteria decision-making methods (MCDM) have many 

applications in modelling environmental issues. Numerous studies have been conducted on 

landslide zoning maps with approaches based on direct and indirect methods, to name a few: 

Neaupane and Piantanakulchai (2006) presented an Analytical Network Process (ANP) 

model for assessing landslide risk in a fragile mountainous terrain in the eastern part of 

Nepal. The results showed that the ANP model could achieve a complex relationship be-

tween landslide control factors and minimise the error caused by subjective judgment. 

Xu et al. (2015) conducted a study on landslide sensitivity analysis using a combination 

of computer science, GIS and artificial neural network methods in the Yangtze River Three 

Gorges Reservoir Area. With the support of remote sensing and GIS, they selected four-

factor groups comprising ten separate sub-factors of landslide related data layers to establish 

a susceptibility evaluation model based on the back-propagation neural network including 

slope, aspect, plan curvature, strata and lithology, distance to faults, land use/land cover  

(LULC), Normalized Difference Vegetation Index, Normalized Difference Water Index, 

distance to roads, and effect of rivers. According to the results, the accuracy of the model is 

88%. Comparing the actual recorded data with the product of this research indicates the high 

accuracy of the model.  

Rajabi et al. (2016) investigated the landslide susceptibility in the Azarshahr Chay catch-

ment using fuzzy logic. In this research, the criteria of distance to roads, distance to faults, 

distance to rivers, land use, lithology, elevation classes, slope, and aspect have been used. The 

results of this study showed that 24.47%, 26.4%, 25.92%, 17.59%, and 5.77% of the area are 

in very low, low, medium, high, and very high probability occurrence classes, respectively.  

Ghorbanzadeh et al. (2019) conducted a study on the application of MCDM methods 

and location of potential tourism areas in East Azerbaijan province. Therefore, the combi-

nation of ANP and Ordered Weighted Averaging (OWA) was used to achieve potential 

nature areas.  

Baharvand et al. (2020) used fuzzy logic and GIS methods for landslide susceptibility 

zoning in the Sorcha basin as a part of the Zagros. The results showed that a 0.9 fuzzy gamma 

operator has high accuracy for the landslide susceptibility Zoning (LSZ) map in the study 

area. Also, the landslide susceptibility zoning map's accuracy showed a strong (R2) relation-

ship between the sensitivity classes. The importance of investigating and evaluating land-

slide effects has been clearly stated in recent studies. However, in recent research, spatial 

analysis and its combination with MCDM methods have received less attention. Besides, 

Urmia Lake Basin (ULB) is prone to landslides; therefore, according to the importance  

of the study area, it is vital to assess the landslide susceptibility in this area. The present 

study seeks to evaluate the landslide susceptibility in ULB, applying a combination of 

MCDM methods and GIS techniques. The novelty of this study is the use of an appropriate 

and sufficient combination of criteria for landslide susceptibility assessment. Another im-

portant goal of the study is to determine the correlation between landslide-prone areas with 

different criteria used in the study. To achieve these goals, the ANP method was used to 

determine the weight and superiority of the criteria, and fuzzy logic was used to standardise 

and combine the criteria. Besides, in the present study, the remarkable ability of MCDM 
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analysis using ten criteria in a large area of Urmia Lake was utilised. Eventually, the models' 
accuracy was evaluated using ground control points received from the Department of Soil 

Science of Tabriz University, enabling us to increase the reliability of results compared to 

other studies. The results of this research can be used by environmental managers to identify 

high-risk areas.  
 

Materials and methods 

Study Area 

The Urmia basin is located between 35°39′ and 38°30′N, and 42°52′ and 44°13′E and 

area about 51,951 km2 in the north-western part of Iran (Fig. 1(. Its elevation varies between  

1,236 m and 3,733 m above mean sea level. According to the National Statistics Center of 

Iran, the population living in the ULB is equal to 5,518,958 people in 2016, which is about 

6.6% of the total population of Iran, while this population in 2000 was approximately 

4,322,781 people. Given the population growth, unsustainable agricultural development,  

and occurrence of frequent droughts in the Lake Urmia Basin in recent decades, this natural 

habitat has faced a severe ecosystemic and environmental risk (AghaKouchak et al. 2015). 

People career in rural areas is agriculture and livestock. Urmia Lake is one of the largest  

and best known permanent hypersaline lakes in the world is the outlet of this basin, which 

has shrunk by almost 90% in area and 80% in volume during the last four decades (Fazel et 

al. 2018). The weather in the Urmia basin is pleasant and temperate in summer and cold in 

winter. The effects of the Mediterranean winds from the Mountain chains located at the 

North West and west of the study area are quite apparent. The Urmia Lake, naturally, affects 

the region's humidity. The region's average annual rainfall is about 350 mm, most of which 

falls in October and November (Mosaffa et al. 2020). The flowchart of this research is also 

shown in Fig. 2.  

 

Fig. 1. The geographical location of Lake Urmia catchment in Iran  

Altitude  
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Fig. 2. The flowchart of the research process 

Data sets 

According to different sources, the most important parameters affecting the landslide sus-

ceptibility that have been used in this study include distance to faults, distance to roads, dis-

tance to rive network, land use, lithology, soil type, elevation, slope, aspect, and an average 

rainfall (precipitation) of the study area (Feizizade et al. 2013, Rajabi, Valizadeh and Abedi 

2016, Ghorbanzadeh et al. 2019). For this purpose, lithological data and faults of the region 

from geological maps 1:50,000, map of roads from OSM online layer, precipitation map from 

the Meteorological Organization of Iran, soil map from the department Natural resources of 

West and East Azerbaijan provinces were obtained. The network layer of waterways was ex-

tracted using digital terrain model (DTM) analysis and finally, the layers related to elevation, 

slope, and aspect were prepared using digital elevation model (DEM) related to Shuttle Radar 

Topography Mission (SRTM) satellite with 30 m spatial resolution. It is easier to use matrix 

calculations to overlap and apply mathematical operations to data. Therefore, surface vector 

data (polygon) was restored based on the value of each class, which was coded according  

to expert opinions. Other linear data were transformed into a distance raster layer using the 

distance analysis. The classifications were based on the importance and impact of each class 

on landslide susceptibility. The precipitation layer of the region was prepared using the data 

obtained from the Meteorological Organization, converted to a raster and then reclassified. In 

the ranking, the higher rank is assigned to the regions that have more precipitation. Data col-

lection and preparation were performed in ArcMap 10.8 software environment. The Euclidean 

Distance command was used to calculate the distance layers. Moreover, Polygon to Raster 

command has been used to convert polygon layers to raster. Super Decisions software was 

used to calculate the weight of the criteria. To evaluate the outcomes' accuracy, ground data 

received from the Department of Soil Science of Tabriz University were used. These data were 

collected by geologist and geomorphologist experts using field investigations. An overview  

of the data used in the study is provided in Tab. 1. 
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Tab. 1. Data set used in the present study 

Category Data Unit Spatial  
resolution 

Source Term of use 

Geomorphological 

Elevation 
Meter above  
sea level 

30 m SRTM satellite MCDA 

Slope Degree 30 m SRTM satellite MCDA 

Aspect Degree 30 m SRTM satellite MCDA 

Geological 

Soil type --- 30 m 
Department of Natural re-
sources (West and EAP) 

MCDA 

Geology --- 30 m 
geological maps  
1:50,000 

MCDA 

Distance to 
faults 

Meter 30 m Sentinel-2 imagery MCDA 

Hydrological 
Distance to 
river network 

Meter 30 m SRTM satellite MCDA 

Human-made 

Distance to 
roads 

Meter 30 m OSM online layer MCDA 

Land use --- 10 m 
geological maps  
1:50,000 

MCDA 

Climatic precipitation 
Millimetre per  
month (average)  

30 m 
Meteorological 

Organization of Iran 
MCDA 

Field data 
Ground  
control points 

--- --- 
Department of Soil Science 
(University of Tabriz) 

Accuracy  
Evaluation 

Analytical Network Process (ANP) 

The network analysis process is one of the MCDM methods and developed form of Ana-

lytical Hierarchical Analysis (AHP) (Nimawat and Gidwani 2020). In some cases, using very 

simple decision models can achieve the optimal and desired answer. Still, in some cases, the 

analyses are so sensitive and important that simple models have not been responsive (Assad 

2017). Therefore, models that have a relatively strong mathematical basis should be used.  

In this study, to access landslide sensitive areas in the Urmia Lake Basin and the high number of 

criteria and their sensitivity to landslides, using the ANP technique and combining it with fuzzy 

logic has had good results. The ANP method weighs the criteria in a network and considers  

the internal relationships of the groups and their interactions with other groups, which helps to 

achieve more accurate results. 

To perform this analysis, we first created a hierarchical model and then specified  

the relationship between criteria and sub-criteria as networks. The most important difference 

with the AHP method is that the relationships are not only linear from top to bottom, but the 

interrelationships between the criteria with the sub-criteria and the sub-criteria with each other 

can also be examined. Then we create pairwise comparison matrices for the desired criteria 

and calculate the weight vectors.  

As a result of pairwise comparisons between the criteria, the weight vector of the criteria 

is obtained. Saaty (2004) has proposed Eq. 1 for the weight vector: 

AW = λmax W (1) 

In this relation, λmax is the largest eigenvalue of matrix A. The W vector is normalised using 

Eq. 2 (Saaty 2004): 

1

n

i
i

w


  
(2) 
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After obtaining the weight vector, the incompatibility rate for the comparisons should  

be calculated, which according to the standard, should be less than 0.1. Otherwise, the required 

corrections should be made in the pairwise comparisons. The incompatibility rate is obtained 

using the Eq. 3 (Saaty 2004): 

1

1n








 (3) 

After creating the pairwise comparison matrix of criteria, the normalised weights of  

the matrices are entered in a primary super matrix through it. The interrelationship between all 

the parts of the studied system can be observed. Using the initial supermatrix proportional to 

their relative weight, a factor is taken from its parts to equal the columns’ sum, which standard-

ises the matrix. As a result of this operation, a new supermatrix is created, which is called the 

weighted supermatrix. In this matrix, the sum of each column is equal to 1. In this step, we 

increase the weighted supermatrix obtained to the extent that the parts of the matrix converge 

and its linear values are equal (Saaty 2004): 

lim ( )K
K

w


 (4) 

The criteria used in this research are divided into five general categories, which are human-made 

(roads and land use), geological (geology, distance to faults, soil classes), climatic (precipitation), 

geomorphological (slope, aspect, elevation), and hydrological (distance to river network). Un-

weighted, weighted, and limited matrices have been presented in Tab. 2 and Tab. 3. 
 

Tab. 2. The unweighted matrix 
Class Eleva-

tion 
Precipi-
tation 

Aspect Lithology Slope Distance to 
river network 

Distance 
to road 

Distance 
to fault 

Soil 
type 

LULC 

Elevation 0.00 0.03320  0.00 0.16 0.00 0.00 0.00 0.00 0.07 0.06982 

Precipitation 0.13 0.00000 0.00 0.10 0.00 0.00 0.00 0.21 0.10 0.09028 

Aspect 0.13 0.04684 0.00 0.13 0.33 0.00 0.00 0.11 0.12 0.08928 

Lithology 0.13 0.08786 0.00 0.00 0.00 0.00 0.00 0.13 0.10 0.15439 

Slope 0.13 0.05963 0.00 0.05 0.00 0.00 0.00 0.08 0.09 0.09529 

Dist. to river network 0.13 0.19647 0.00 0.06 0.00 0.00 0.33 0.08 0.13 0.11995 

Distance to road 0.13 0.02126 0.00 0.08 0.00 0.25 0.00 0.15 0.10 0.07443 

Distance to fault 0.13 0.23662 0.00 0.13 0.67 0.25 0.33 0.00 0.08 0.14122 

Soil type 0.13 0.01890 0.00 0.10 0.00 0.25 0.33 0.10 0.00 0.06857 

LULC 0.00 0.29221 0.00 0.19 0.00 0.25 0.00 0.12 0.09 0.00000 

 

Tab. 3. The weighted (limited) matrix 

Class Eleva-
tion 

Precipi-
tation 

Aspect Lithology Slope Distance to 
river network 

Distance 
to road 

Distance 
to fault 

Soil 
type 

LULC 

Elevation 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.03 0.09 

Precipitation 0.06 0.14 0.05 0.00 0.00 0.00 0.00 0.11 0.05 0.16 

Aspect 0.06 0.02 0.04 0.00 0.17 0.00 0.00 0.05 0.06 0.10 

Lithology 0.06 0.04 0.08 0.00 0.00 0.00 0.00 0.07 0.05 0.13 

Slope 0.06 0.03 0.05 0.00 0.00 0.00 0.00 0.04 0.04 0.09 

Dist. to river network 0.06 0.10 0.06 0.00 0.00 0.00 0.33 0.04 0.06 0.05 

Distance to road 0.06 0.01 0.04 0.00 0.00 0.25 0.00 0.07 0.05 0.06 

Distance to fault 0.06 0.12 0.07 0.00 0.33 0.25 0.33 0.06 0.04 0.08 

Soil type 0.06 0.01 0.03 0.50 0.00 0.25 0.33 0.05 0.04 0.13 

LULC 0.00 0.01 0.05 0.00 0.00 0.25 0.00 0.00 0.07 0.10 
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Fuzzy Logic 

The fuzzy theory basis can be considered as a set theory in mathematics (Barros, 

Bassanezi and Lodwick 2017). Membership in a set in classical mathematics is associated 

with two-value logic such as Boolean logic, binary logic (zeros and ones), but in the fuzzy 

method, multi-value logic is used and membership in a set is examined using the degree  

of membership intensity (Yousefi et al. 2018, Baharvand et al. 2020). In Boolean logic,  

the result is that a region either has landslide susceptibility or does not have a landslide 

susceptibility. In fuzzy logic, problem-solving is based on the real world and tries to include 

uncertainties in the model and prevent incorrect results. The purpose of using fuzzy theory 

is to create a new way of expressing everyday uncertainties and ambiguities (Yousefi et al. 

2018). In the fuzzification step, the value of each class is determined by sub-criteria, 

and based on the functions of fuzzy membership, the rank or fuzzy value of each class  

in the fuzzy set is determined, which is a value between zero and one. One of the most 

widely used fuzzy membership degree functions is the linear function that has been used  

in this research to fuzzy weight the layers of layers (Baharvand et al. 2020). The linear 

function works in both positive and negative linear forms due to the importance of proximity 

to the features. Triangular, trapezoidal, and Gaussian linear functions are used to obtain 

fuzzy membership degrees in a layer. The fuzzy operation is performed in the GIS environ-

ment using the Fuzzy membership commend and a linear function. As a result of which this 

command can be set between 0 and 1 by selecting the desired function for fuzzy. The purpose 

of this process is to standardise the unit of measurement of the criteria. For example,  

the precipitation map is in mm per year, the elevation map is in meters, and the slope map 

is in degrees. Using fuzzy, all layers are placed between zero and one, based on the intrinsic 

importance of their classes. 

Results 

All ten effective criteria in the landslide susceptibility including distance to faults, distance 

to roads, distance to river network, land use, lithology, soil classes, elevation, slope, aspect 

and precipitation of the study area were prepared in the form of raster maps and normalised 

values [0, 1] (Fig. 3). The maps of criteria were shown based on equal interval classification 

(five intervals in stretched type). 

As represented in Fig. 3, the criteria used to assess the susceptibility of landslides in  

the study area are standardised. In these maps, the fuzzy linear function has been applied 

for standardisation, and based on the effect of each class on the probability of landslides, they 

are assigned a value between 1 and 0. Technically speaking, applying standardisation, all cri-

teria are prepared for raster calculations and participate in pixel calculations in the same and 

logical way.  

Ranking Layer and ANP weights 

Geology layer, soil type, and land use were reclassified using the experts' judgments of 

GIS. It should be mentioned that this reclassify determines the importance of the inner class 

of each layer. For example, in the soil type layer, based on the importance of soil type and its 

effect on landslide probabilities and inspiration from the results of other research, classes from 

number one (maximum impact) to number 7 (lowest Impact) were coded. Internal classes  

in the layers of distance to roads, faults, and river network were also reclassified based on 

proximity or distance to the features (river network, fault, and roads). In this context, inner 

classes ranked first in the criteria that proximity had a positive effect on the landslide suscep-

tibility.  
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Fig. 3. Map of criteria used in landslide zoning: 

(a) Aspect, (b) Distance to fault, (c) Distance to road, (d) Soil type, (e) Land use,  

(f) Precipitation, (g) Slope, (h) Distance to river network, (i) Lithology (j) Elevation 

Fuzzification 

In this step, the desired layers were first prepared to enter the weighting stage using  

the experts' opinion and the results of research conducted in this field. Then, the weighting 

process was applied to the criteria using ANP multi-criteria spatial decision-making technique. 

Then, a linear fuzzy function was used to standardise. Using this operation, the internal weight 

of the layers was set between 0 and 1. Tab. 4 shows the results of fuzzification, ANP weights 

and also the rank of each inner class for each criterion. In Tab. 4, the fuzzy membership degree 

column indicates the degree and severity of the impact of each class on the landslide suscepti-

bility. In fact, this membership is based on the numbers observed in the rank column that in-

dicates the importance of each class of layers used to identify the probability of landslides, 

which has been obtained from the opinions of geology experts. Then, after the calculations, 

the final weight of each layer was obtained, named ANP weight. 

After determining the importance of each of the criteria used in the research, the fuzzy 

gamma function was used to overlap the layers and create landslide zoning maps. To illustrate 

the obtained map, verbal variables were used to express the probable severity of the landslide 

(Fig. 4). The method was as follows: After obtaining the weight of the discussed criteria, first, 

the weight of each layer was multiplied using ArcGIS 10.8 software and the Raster Calculator 

command in that layer. Then, using the Fuzzy Overlay command, the weighted layers with  

a value between zero and one were overlapped, and the final landslide probability map was 

obtained. The final map was classified based on the Equal interval classification method. 
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Tab. 4. Fuzzy membership and ANP weights of criterion 

Criteria 
Fuzzy member-

ship degree 
Rank 

ANP 
weight 

Criteria 
Fuzzy member-

ship degree  
Rank ANP weight 

Elevation 

0 1 

0.093 Slope 

0 1 

0.145 

0.166 2 0.166 2 

0.333 3 0.333 3 

0.499 4 0.499 4 

0.666 5 0.666 5 

0.833 6 0.833 6 

1 7 1 7 

Soil type 

0 1 

0.238 Lithology 

0 1 

0.093 

0.166 2 0.166 2 

0.333 3 0.333 3 

0.499 4 0.499 4 

0.666 5 0.666 5 

0.833 6 0.833 6 

1 7 1 7 

Aspect 

0 1 

0.048 
Distance  
to fault 

0 1 

0.040 

0.166 2 0.166 2 

0.333 3 0.333 3 

0.499 4 0.499 4 

0.666 5 0.666 5 

0.833 6 0.833 6 

1 7 1 7 

Precipitation 

0 1 

0.133 
Distance  
to river  
network 

0 1 

0.016 

0.166 2 0.166 2 

0.333 3 0.333 3 

0.499 4 0.499 4 

0.666 5 0.666 5 

0.833 6 0.833 6 

1 7 1 7 

Land use 

0 1 

0.135 
Distance  
to road 

0 1 

0.054 

0.166 2 0.166 2 

0.333 3 0.333 3 

0.499 4 0.499 4 

0.666 5 0.666 5 

0.833 6 0.833 6 

1 7 1 7 

After obtaining the final landslide susceptibility map in the study area, the accuracy of  

the zoning map was evaluated using the points collected in the real environment. The results 

showed that out of 182 points collected, 148 points (equivalent to 81.31%) correspond to class  

6 (very high landslide susceptibility) and class 7 (extremely probable). Fig. 4 shows the location  

of the harvested points to evaluate the accuracy of the results. As it can be observed in the obtained 

map, the areas classified as agricultural lands have a very low landslide susceptibility. This 

can also highlight the importance of protecting vegetation in preventing natural hazards.  

In addition, areas with a high landslide susceptibility are in mountainous areas and usually 

without dense vegetation. Proximity to drainage network and faults also has a high impact on 

the landslide susceptibility in these areas (Fig 3b, c and j). In order to evaluate the study area 

in terms of the landslide susceptibility, the area of each potential hazard level was calculated 

in km2 and percentage (Tab. 5). 



- 95 - 

 
Fig. 4. Landslide susceptibility areas in Urmia Lake Basin 

Tab. 5. Percentage of landslide susceptibility 

Fuzzy intervals Number of pixels Area (km2) Percentage of area (%) Verbal variable 

0.0 1,866,011 01,879.410 03.61 Without Risk 

0–0.166 3,645,597 03,881.037 07.47 Very low probability 

0.167–0.333 8,852,058 10,966.850 21.11 Low probability 

0.334–0.499 8,956,115 12,488.500 24.03 Moderate probability 

0.50–0.666  7,442,622 10,698.360 20.59 High probability 

0.667–0.833  7,168,558 08,451.702 16.27 Very high probability 

0.834–1  2,872,366 03,585.129 06.9 Extremely probable 

The results of ANP showed that soil type with a weight of 0.23, slope with a weight of 

0.14, land use with a weight of 0.135, and rainfall with a weight of 0.133 are the most important 

criteria in identifying the landslide susceptibility in different areas of ULB. The weight of other 

criteria was also obtained to determine their relative importance in the landslide susceptibility 

(Fig. 5). 
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Fig. 5. The ANP weight of each criterion 

Discussion 

Various scientific methods have been proposed for zoning landslide-sensitive areas, some 

using statistics and some spatial data. Using MCDM methods with emphasis on spatial ap-

proach in complex spatial decisions can be a suitable performance method. In this research, 

spatial analysis and MCDM methods have been used. For instance, the performed studies in 

this field include the following:  

In the study of Feizizadeh and Blaschke (2013), three different GIS-MCDA methods were 

applied to landslide susceptibility mapping for the Urmia Lake Basin in northwest Iran.  

To achieve this goal, nine landslide causal factors (lithology, DEM, slope, aspect, land cover, 

precipitation, distance to streams and the distance to roads and faults) were used. The landslide 

susceptibility maps were produced based on weighted overly techniques including analytic 

hierarchy process (AHP), weighted linear combination (WLC) and ordered weighted average 

(OWA). The research result indicated the AHP performed best in the landslide susceptibility 

mapping closely followed by the OWA method while the WLC method delivered significantly 

poorer results.  

Furthermore, we can mention the study of Feizizadeh et al. (2014) which aimed to map  

the landslide susceptibility. They used GIS-based spatial analysis in combination with multi-

criteria evaluation (MCE) methods. Besides, they applied a combination of AHP and fuzzy  

to address the landslide susceptibility in the Izeh River Basin, Iran. According to their out-

comes, the integration of fuzzy set theory with AHP enables researchers to access reliable 

accuracies and a high level of reliability in the resulting landslide susceptibility map. Addi-

tionally, based on their investigation, approximately 53% of known landslides within our study 

area fell within zones classified as having very high susceptibility, with the further 31% falling 

into zones classified as having high susceptibility.  

Based on another study, Abedi Gheshlaghi and Feizizadeh (2017) used a combination of two 

models of the analytical network process (ANP) and fuzzy logic for landslide risk mapping in the 

Azarshahr Chay Basin in northwest Iran. After field investigations and a review of research lit-

erature, factors affecting the occurrence of landslides including slope, slope aspect, altitude, li-

thology, land use, vegetation density, rainfall, distance to fault, distance to roads, distance to 

rivers, along with a map of the distribution of occurred landslides were prepared in GIS environ-

ment. Then, fuzzy logic was used for weighting sub-criteria, and the ANP was applied to weight 

the criteria. Evaluating the results of this study by using receiver operating characteristic curves 

shows that the hybrid model designed by areas under the curve 0.815 has good accuracy.  

Also, Mallick et al. (2018) used an integrated approach of GIS and statistical modelling 

including fuzzy analytical hierarchy process (FAHP), weighted linear combination and MCE 
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models for landslide susceptibility evaluation. In the modelling process, eleven causative fac-

tors include slope aspect, slope, rainfall, geology, geomorphology, distance from lineament, 

distance from drainage networks, distance from the road, land use/land cover, soil erodibility 

and vegetation proportion were identified for landslide susceptibility mapping. The study re-

sults show that the weighted overlay analysis method using the FAHP, and eigenvector method 

is a reliable technique to map landslide susceptibility areas.  

Jana Vojteková and Matej Vojtek (2020) evaluated the landslide susceptibility of Handlová, 

Slovakia. They applied the AHP technique to heightening the criteria used in their research, 

which named slope angle, geology, slope aspect, elevation, distance to rivers, distance to faults, 

and land use. Based on the resulting susceptibility map, 51.98% out of the total study area is 

characterised by high and very high susceptibility classes. Also, using ground data, the accu-

racy of their model was equal to 60.8%.  

In another study related to landslide susceptibility mapping, Zhou et al. (2020) developed  

a landslide susceptibility map at the national level in Kenya using the fuzzy analytic hierarchy 

process method. First, they used a hierarchical evaluation index system containing ten landslide 

contributing factors to produce a susceptibility map. Then, the weights of these indexes were 

determined through pairwise comparisons, in which triangular fuzzy numbers (TFNs) were em-

ployed to scale the relative importance based on the opinions of experts. Ultimately, these 

weights were merged in a hierarchical order to obtain the final landslide susceptibility map. These 

factors included mean annual precipitation, altitude, slope, aspect, curvature, topographic wet-

ness index, stream power index, soil texture, land use and landform. The results indicated that 

the TFN-AHP model showed a significantly improved performance (Area under the curve – 

AUC = 0.86) compared with the conventional AHP (AUC = 0.72) in LSM for the study area. 

Conclusion 

In the present study, determining the weight and priority of the criteria over each other, 
determining the internal weight of the criteria using the fuzzy linear function, and fuzzy over-
lap using the gamma function were applied. The ANP method was very useful as one of the 
multi-criteria spatial decision-making techniques in determining the priority of criteria. Ac-
cording to the number of criteria used in the present study, the decision was made in a multi-
dimensional space with ten layers with different values. Fuzzy operations were used to unify 

the layer units to divide the values of each layer between zero and one. This means that values 
close to number one have a higher value (greater impact on landslide occurrence), and values 
that tend to zero have a lower value (lesser impact on landslide occurrence). After weighting 
and fuzzy operations using the above methods and combining all the criteria with each other, 
landslide-sensitive zoning maps were obtained in different areas of the Urmia Lake Basin.  
The result of zoning landslide-sensitive areas in the Lake Urmia Basin shows that only 7.47%, 

equivalent to 3,881.037 km2 of the area in question has a very low landslide susceptibility.  
In contrast, 16.27%, equivalent to 8,451.702 km2 of the mentioned area has a very high landslide 
susceptibility, which in general can be said that 67.80% of the area has a moderate to high land-
slide susceptibility and 56.23% of the area has a moderate to low landslide susceptibility 
(Tab. 5). Considering the high weight of precipitation in the matrix of pairwise comparisons 
of criteria and its significant relationship with high areas and areas with high slope, it was 

concluded that these areas also have a high landslide susceptibility. The best operator for 
overlapping the effective criteria for landslide susceptibility by trial and error, the Gamma 
function, was the most suitable. In general, for zoning, the landslide susceptibility, soil type with 
a weight of 0.23, slope with a weight of 0.14, land use with a weight of 0.135, and rainfall with 
a weight of 0.133 are among the most important factors that have been used in the present 
study. The results of this research can be used by managers and planners in resource manage-

ment and deployment of facilities in different areas to determine the optimal areas. It can also 
be considered by researchers and geologists for geological studies and similar research.  
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