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Abstract
A new downscaling algorithm for land surface temperature (LST) images retrieved from 
Landsat Thematic Mapper (TM) was developed over the city of Florence and the results 
assessed against a high-resolution aerial image. The Landsat TM thermal band has a spatial 
resolution of 120 m, resampled at 30 m by the US Geological Survey (USGS) agency, 
whilst the airborne ground spatial resolution was 1 m. Substantial differences between 
Landsat USGS and airborne thermal data were observed on a 30 m grid: therefore a new 
statistical downscaling method at 30 m was developed. The overall root mean square error 
with respect to aircraft data improved from 3.3 °C (USGS) to 3.0 °C with the new method, 
that also showed better results with respect to other regressive downscaling techniques 
frequently used in literature. Such improvements can be ascribed to the selection of 
independent variables capable of representing the heterogeneous urban landscape.
Keywords: Land surface temperature, urban area, airborne data, Landsat images, 
downscaling.

Introduction
Land surface temperature (LST) is a fundamental variable controlling the surface energy 
balance, and it is involved in physical, chemical, and biological processes of the Earth 
surface. In urban areas, LST allows the assessment of the surface urban heat island (SUHI) 
effect [Oke, 1973; Oke, 1982; Voogt, 2004]. Earth observation data have been widely ex-
ploited to retrieve LST: spaceborne sensors have the advantages of covering large areas at 
the same time, while temperature observations registered in situ are unevenly distributed in 
space. Different spaceborne platforms, such as ASTER [Hartz et al., 2006; Lu and Weng, 
2006; Weng et al., 2014], AVHRR [Lee, 1993; Streutker, 2003; Stathopoulou and Cartalis, 
2009], MODIS [Pou et al., 2006; Anniballe at al., 2014] and Landsat [Xian and Crane, 
2006; Yuan and Bauer, 2007; Xu et al., 2009; Xiong et al., 2012], were used to retrieve the 
SUHI.

http://creativecommons.org/licenses/by/4.0/
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Different factors need to be quantified to retrieve LST from satellite thermal infrared data, 
including sensor radiometric calibration, atmospheric correction and surface emissivity se-
lection. These factors greatly influence the final result, thus estimation of uncertainties in 
the retrieval process and validation procedures are important tasks especially for opera-
tional datasets. Moreover, the satellite sensor spatial resolution may be a limiting factor in 
representing the fine scale spatial variability of LST, especially in the presence of impervi-
ous surfaces and sharp transitions (e.g., buildings, roads, parking lots, sidewalks, and other 
built surfaces), such as in urban areas. Recommendations on the optimal spatial resolution 
for a satellite mission aimed at analyzing the urban LST and the related SUHI effects were 
suggested by [Sobrino et al., 2012], finding that resolutions finer than 50 m are necessary 
to successfully monitor the SUHI effect at district level and to avoid temperature underes-
timation. Lower spatial resolutions do not generally allow to distinguish thermal variations 
among nearby zones inside the city.
Besides satellites, airborne sensors may also be used to measure the thermal properties of the 
surface. The benefits of aircraft thermal remote sensing are a much higher spatial resolution 
(down to sub-meter) and the possibility to plan surveys when conditions are optimal to meet 
the project requirements. On the other hand, aircraft surveys are necessarily sporadic and 
expensive, and cannot therefore represent an operational solution on a continuous basis. 
Using light aircraft with low weight and low cost sensors can represent a compromise 
between operational costs, data coverage and accuracy. Airborne thermal remote sensing 
has been utilized in some studies for the monitoring of the SUHI effects [Lo et al., 1997; 
Voogt and Oke, 1998; Saaroni et al., 2000; Gluch et al., 2006; Kottmeier et al., 2007].
In this work, we developed a new downscaling algorithm for Landsat TM LST from 
120 to 30 m spatial resolution, and validated it against high-resolution (1 m pixel size) 
airborne LST imagery over the city of Florence. The improvement associated with the 
30 m sharpening approach was quantified, and compared with the USGS standard 30 m 
resampled product currently available.
In addition, a comparison with other downscaling techniques based on regression schemes 
was carried out in order to further evaluate the performance of the new method. The satellite 
data capability to resolve spatial thermal details was assessed given the availability of a 
unique high-resolution airborne imagery, since in situ measurements, sparsely distributed, 
are typically not usable to this aim in heterogeneous urban landscapes.

Study area and data
Study area
The study area is a zone over Florence, Italy (between 43.754 °N to 43.796 °N and 
11.226 °E to 11.291 °E), comprising the city center, part of the Arno river and some 
periurban vegetated areas (Fig. 1), with 31% of vegetation cover. The city is lying in 
central Italy, having a sub-Mediterranean climate with a hot, dry summer, a mild and 
quite wet winter, and wet autumn and spring. The city centre is characterized by small 
squares surrounded by a network of narrow streets linked to the ancient gates; buildings 
have an average height of 20 m with a maximum height of 116 meters for the Cathedral. 
The roof style is uniform and made of red terracotta tiles, while large paving stones are 
still characterizing squares and pedestrian areas.
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Landsat data and processing
Data from TM instrument onboard Landsat-5 platform were used, selecting two passages 
over Florence on July 10 and July 26, 2010, both at 11:50 CEST (Central European Summer 
Time). These are the two Landsat acquisitions closer to the aircraft flight. The Landsat TM 
sensor is composed by seven bands, six of them in the visible and near infrared (TM1-
5, TM7), and one band in the thermal infrared region, with spectral range 10.4-12.5 μm 
(TM6). TM has a native spatial resolution of 30 m for the six reflective bands and 120 m for 
the thermal band. TM6 is also delivered at 30 m, after resampling with a cubic convolution, 
by the USGS (http://earthexplorer.usgs.gov).
The two images, composed of 160×170 pixels at 30 m resolution, were processed according 
to the calibration technique proposed by [Chander et al., 2009] in order to convert digital 
number values to at-sensor spectral radiance values. Atmospheric correction of the TM 
reflective bands and computation of the surface reflectance were performed using the 
Chavez method [Chavez, 1996], that requires only data from the same satellite scenes, 
without needing contemporary in-situ measurements [Cui et al., 2014].

Airborne data and processing
Aircraft measurements were made by a Sky Arrow ERA (Environmental Research Aircraft), 
that allows the mounting of multiple optic systems [Gioli et al., 2006]. The thermographic 
images were provided by a FLIR A40-M thermal camera (Tab. 1). The flight survey was 
made on July 18, 2010 at 13:30 CEST, at 1370 m above sea level, acquiring a total of 305 
images with 1 m pixel size over the study area (Fig. 1). These raw images were initially 
analyzed by the FLIR ThermaCam Researcher Software, then geometrically corrected by 
means of Ground Control Points and a Digital Elevation Model, finally orthorectified with 
the PCI Geomatica software. The study area resulted composed of 4815×5115 pixels.

Table 1 - The FLIR A40-M thermal camera main specifications.

Detector Uncooled micro bolometer - 
Vanadium Oxide (VOx)

Spectral Response Band 7.5-13 µm 

Thermal sensitivity 0.08°C at 30°C

IFOV 1.3 mrad

Calibration source Internal

Focal length 18 mm

Visible images were also simultaneously acquired during the flight by means of a Canon 
EOS-20D camera allowing a direct comparison with thermographic images. Both airborne 
and Landsat data were projected in the UTM WGS84 coordinate system.
Ground-based measurements were made at the Ximeniano Observatory, located in the city 
centre, where meteorological variables are measured continuously. LST of the building roof 
(Lat 43.774° N, Lon 11.255° E) was acquired using an infrared thermometer (IRT L4000, 
Everest Interscience), allowing airborne data calibration.
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Figure 1 - Study area maps: the white curve (left panel) contains the municipality of Florence 
(102.3 km2), the yellow zone (right panel) is the study area mapped by the flight (approximately 6 
km×2.5 km). S1, S2, S3 and S4 refer to sub-areas analyzed in detail hereafter. Coordinates (UTM 
WGS84) of the center of the left panel: 680950 m E, 4850000 m N, 32 T zone. Images from Google 
Earth.

LST data processing
LST retrieval from Landsat
LST was retrieved from the TM6 data, by inverting the radiative transfer equation accord-
ing to:

L T L Lsens s,λ λ λ λ λ λ λε ε τ( )
↓ ↓= ( ) + −( )



 + [ ]Β 1 1

where Lsens,λ is the at-sensor radiance at the top-of-atmosphere, ελ is the surface emissivity, 
Bλ(Ts) is the Planck’s law where Ts is the LST, Lλ

↓  is the downwelling atmospheric radiance, 
τλ is the total atmospheric transmissivity and Lλ

↓  is the upwelling atmospheric radiance. 
From Equation [1] it is possible to find LST by inversion of the Planck’s law [Jimenez-
Munoz et al., 2009], known the surface emissivity and the atmospheric parameters τλ, Lλ

↓  
and Lλ

↓ . These atmospheric parameters were computed using a web-based tool (http://
atmcorr.gsfc.nasa.gov) that takes the National Centers for Environmental Prediction 
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modeled atmospheric profiles as inputs to the MODTRAN radiative transfer code [Barsi et 
al., 2003; Barsi et al., 2005] for a given site and date [Coll et al., 2010].
Land surface emissivity ελ, was estimated using a Normalized Difference Vegetation Index 
(NDVI) method [Sobrino et al., 2004]: from the NDVI image, natively at 30 m spatial 
resolution, the fractional vegetation cover (fv) was computed and inserted in the effective 
emissivity equation [Stathopoulou and Cartalis, 2009]:

ε ε ελ = −( ) + [ ]1 2f fv c v v

where εv is the emissivity of vegetation (0.99) and εc is the emissivity of the urban/densely 
built surfaces (0.94). Pixels corresponding to water surfaces (e.g. the Arno river) were 
settled to 0.99. Such emissivity values were chosen in agreement with [NASA, 1999; 
Hancock et al., 2012] considering the TM6 spectral range (10.4-12.5 μm).
An additional emissivity estimation approach was also tested, consisting in a subpixel-
level land cover classification based on a spectral mixture analysis (SMA) [Mitraka et al., 
2012], that resulted in a RMS emissivity difference SMA-NDVI of 0.018 and a RMS LST 
difference of 1.1°C. Such LST difference was considered not influential for the purpose of 
this work, therefore the NDVI approach was adopted. Overall, LST was retrieved using the 
TM6 data resampled at 30 m from the original 120 m, using the emissivity map generated 
with NDVI data that are natively at 30 m resolution.

LST retrieval from airborne data
Equation [1] was also employed at the aircraft altitude [Jimenez-Munoz et al., 2012] to 
retrieve LST from airborne thermal data. The same emissivity algorithm used for the Landsat 
LST retrieval was applied. Since it was not possible to use the above web-based tool for 
aircraft altitude and spectral range, the atmospheric correction of the airborne radiances 
was applied following a tuning approach. Different values of the atmospheric parameters 
τλ, Lλ

↓  and Lλ
↓  were generated and a triplet was chosen according to the in situ LST value 

registered by the infrared thermometer at the ground: the selected triplet minimized the error 
between the aircraft LST 1 m2 pixel covering the ground reference roof and the measured in 
situ value, obtaining a difference of 0.5°C. Such an empirical estimation of the atmospheric 
parameters is possible by the complete match between aircraft pixel and the ground infrared 
thermometer field of view area. 

Downscaling framework
A downscaling is the enhancement of spatial resolution of an imagery data using information 
available at a higher spatial resolution, finally increasing the information content of the 
original image [Atkinson, 2013]. In this work Landsat LST was downscaled from 120 to 
30 m resolution, using the 30 m reflective bands in a regressive disaggregation approach 
[Kustas et al., 2003; Dominguez et al., 2011; Mukhherjee et al., 2015]. Several approaches 
using NDVI at finer resolution for LST downscaling were proposed [Kustas et al., 2003; 
Agam et al., 2007; Inamdar et al., 2008; Mukhherjee et al., 2015], even though NDVI 
cannot entirely explain LST spatial variations, especially in urban texture. Since an urban 
area is a complex system composed of heterogeneous features, three generalized land cover 
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classes, i.e. built-up, vegetation and open water, were considered here. NDVI, Normalized 
Difference Built-up Index (NDBI), and Normalized Difference Water Index (NDWI) were 
computed from Landsat data to represent those three classes [Xu, 2007; Borgogno-Mondino 
et al., 2016]:

NDVI TM TM TM TM= − +( ) ( ) [ ]4 3 4 3 3/

NDBI TM TM TM TM= − +( ) ( ) [ ]5 4 5 4 4/

NDWI TM TM TM TM= − +( ) ( ) [ ]2 4 2 4 5/

The proposed downscaling approach is based on fitting a least-squares linear relation 
using these three spectral indices as predictors and LST as the predicted variable, after the 
aggregation of each spectral index to 120 m resolution with block-averaging (subscript 120):

LST a a NDVI a NDBI a NDWI
120 0 1 120 2 120 3 120

6= + + + [ ]· · ·

Then, a residual of LST (∆T120) is computed as the difference between model estimation 
(LST120) and the corresponding observation (LSTobs) [Kustas et al., 2003]:

∆T LST LSTobs120 120
7= − [ ]

The residual ∆T120 is introduced in the model to take into account part of LST spatial 
variability that depends on factors other than the employed predictors, such as soil moisture. 
Finally, finer resolution LST is estimated by:

LST a a NDVI a NDBI a NDWI DT
30 0 1 30 2 30 3 30 120

8= + + + + [ ]· · ·

where the coarse resolution regression coefficients are applied to finer spatial resolution 
spectral indices, adding the residual error of the corresponding coarse resolution image to 
increase the accuracy. Multiple regressions comprising powers of predictors (a nth order 
polynomial regression) were also considered [Bonafoni, 2016], inserting the powers in a 
step-wise mode. Moreover other vegetation indices instead of NDVI [Bonafoni, 2015] were 
evaluated, but the results were quite similar. The lower root mean square error (RMSE) 
between estimates and aircraft LST was obtained by the model:

LST a b NDVI c NDVI d NDBI e NDBI f NDWI
30 30 30

2

30 30

2

30
= + ⋅ + ⋅ + + ⋅ + ⋅( ) ( )· (( )

( ) [ ]+ ⋅ +g NDWI DT
30

2

120
9
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The performance of this custom downscaling model was compared with the USGS cubic 
convolution method.

Results and discussion
Figure 2 reports the LST images of Florence study area retrieved by spaceborne and air-
borne sensors. For comparison purposes, the images were gridded with a resolution of 
30 m: however, the native 1 m resolution airborne images will be always considered to 
preserve the information content of the high resolution map. Besides the two individual 
Landsat images acquired on 10th and 26th of July 2010, their pixel-by-pixel average was 
also computed (Fig. 2d).
Overall, excluding some differences in detailing specific spatial features, the LST spatial 
patterns are similar: lower temperatures were registered in water bodies and vegetation 
areas, while higher values were observed in the central urbanized areas, as expected. Clear 
differences emerge in the detail definition due to the different native spatial resolution of the 
Landsat TM and airborne sensors. 

Figure 2 - a) LST [°C] full image from airborne data (18th July 2010) with 30 m averaged pixels; 
b) LST [°C] from Landsat (10th July 2010); c) LST [°C] from Landsat (26th July, 2010); d) LST 
[°C] from Landsat (average of 10th and 26th July). Landsat pixels are 30×30 m from the USGS. 
Lat/Lon are in UTM, 32 T zone.
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A detailed analysis for restricted sub-areas of the city containing different land cover types 
(S1 to S4, Fig. 1) was made: Figure 3a show the sub-area S1.

Figure 3 - Sub-area S1 (750×800 m). a) Visible image from aircraft; b) LST from airborne data 
with 1 m resolution; c) LST [°C] from airborne data with 30 m averaged pixels; d) LST [°C] 
from Landsat resampled by the USGS at 30 m; e) LST [°C] from Landsat downscaled at 30 m. 
The white circle refers to a strong heating of a roof among the vegetation, the black circles to 
vegetated/shadowed cold zones among the built-up area.

The pixels within the white circle of Figure 3, referred to a strong heating, lead to a 
difference (Landsat USGS-aircraft) around -10°C. This large negative difference is ascribed 
to the different spatial resolution of the sensor acquisitions, where the TM6 120 m footprint 
averages the hot spot with the surrounding colder vegetation. The pixels inside of the two 
black circles refer instead to large positive differences due to the inability of the Landsat 
TM to detect restricted vegetated or shadowed cold zones. Just on the right of the black 
circles, where a homogeneous area of terracotta tiled roofs is present (Fig. 3a), the LST 
difference decreases. It is important to point out how the airborne 30 m image (Fig 3c) clearly 
preserves these thermal discontinuities, if compared with the 1-m image (Fig. 3b). Figure 
3d demonstrates that the 30 m resample procedure of TM6 data performed by the USGS 
is not well capable to resolve spatial details. Even the use of the emissivity map generated 
employing native NDVI 30 m data does not improve this drawback. Figure 3e shows the 
new downscaled map for sub-areas S1. The downscaled image appears more detailed, well 
resolving tree foliage and vegetation canopy in the lower part of the scene, with colder 
LST pixels. In the USGS image (Fig. 3d) a more uniform pattern is present. Also the colder 
vegetated pixels (black circles in Fig. 3) are better recognized in the downscaled image. The 
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very warm single pixel inside the white circle is not recovered, since it represents a small 
size hot-spot not present in the data training of the regression scheme. The transition pixels 
of the Arno riverside present some problems, whilst the use of the water index NDWI in 
the regression produces a cooling of the water pixels with respect to the USGS ones, that 
overall improves the agreement with aircraft observations (Fig. 3c). 
Sub-area S2 is characterized by a large and hot roof surrounded by shadowed cooler areas 
(Fig. 4a and 4b). Those thermal differences are still detected in the 30 m averaged airborne 
image (Fig 4c) while they are almost dissolved in the satellite USGS images (Fig. 4d).

Figure 4 - Sub-area S2 (220×220 m). a) Visible image from aircraft; b) LST from airborne data 
with 1 m resolution; c) LST [°C] from airborne data with 30 m averaged pixels; d) LST [°C] from 
Landsat resampled by the USGS at 30 m; e) LST [°C] from Landsat downscaled at 30 m.

The downscaling (Fig. 4e) does not provide significant improvements, since the material 
of the heated roof is not associated to any variation of the three selected spectral indices.
Sub-area S3 is focused on the contrast between a cool urban water surface and an adjacent 
large hot roof (Fig. 5a and 5b), representing another example exhibiting large differences 
between satellite and airborne images. The Landsat USGS image (Fig. 5d) reveals the 
inability to detect hot and cold thermal peaks that are instead present in the 30 m airborne 
image (Fig. 5c). 
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Figure 5 - Sub-area S3 (240×240 m). a) Visible image from aircraft; b) LST from airborne data 
with 1 m resolution; c) LST [°C] from airborne data with 30 m averaged pixels; d) LST [°C] from 
Landsat resampled by the USGS at 30 m; e) LST [°C] from Landsat downscaled at 30 m.

Instead, in the right part of the scene an improvement in the downscaled image is clearly 
observed (Fig. 5e).
Sub-area S4 represents a homogeneous vegetated land (Fig. 6a). As expected, in such 
conditions the LST difference between Landsat and airborne becomes low even for USGS 
resample (Fig. 6b).

Figure 6 - Sub-area S4 (180×120 m). a) visible image from aircraft; b) LST [°C] difference 
(Landsat USGS average-aircraft).
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Besides the visual inspection, the benefit to employ a custom downscaling method was 
evaluated from a quantitative standpoint considering the whole image. The RMSE with 
respect to aircraft LST improves from 3.3°C (USGS) to 3.0°C (downscaled). In Figure 7 the 
distribution of LST difference for both USGS and downscaled images is shown.

Figure 7 - Distribution of LST difference [°C] between aircraft and Landsat images (downscaled, 
red, and from USGS, blue).

Mean (m) and standard deviation (σ) of the error distribution are:
m =1.25°C; σ =3.02°C for USGS-aircraft LST comparison;
m =1.03°C; σ = 2.86°C for downscaling-aircraft LST comparison.

Some pixels with high errors persist in the downscaled image, but the improvement in some 
areas is appreciable as qualitatively shown in the above sub-areas. To explore the downscal-
ing performance in relation to the urban texture, the RMSE for pixels belonging to different 
land cover classes was evaluated. Three classes (built-up, vegetation and open water) were 
selected using the NDVI, NDBI and NDWI indices, settling a conservative index threshold 
based also on a visual inspection. An additional class of “mixed” pixels, not belonging to 
the previous three classes, was considered. Table 2 reports the RMSE comparing USGS and 
downscaled LST with respect to aircraft data.

Table 2 - RMSE [°C] of USGS and downscaled LST with respect to aircraft LST for the 
four land cover classes (built-up area, vegetation, water, mixed).

Class Index threshold RMSE [°C]
(USGS) 

RMSE [°C]
downscaling 

built-up area NDBI > 0.0 3.12 3.11

vegetation NDVI > 0.6 3.11 2.77

water NDWI >- 0.1 3.82 3.25

mixed complementary pixels 3.64 3.09

The results point out the noticeable improvement of the downscaled LST for the mixed, 
water and vegetation classes. An assessment of the custom method accuracy with respect 
to statistical downscaling techniques based on regression and frequently used in literature 
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is proposed. The DisTrad method [Kustas et al., 2003], using only NDVI as independent 
variable, the TsHARP method [Agam et al., 2007] using the fractional vegetation cover 
(fc), and the HUTS method [Dominguez et al., 2011], including albedo as independent 
variable, were considered for comparison purpose. Table 3 summarizes the results in terms 
of RMS error with respect to aircraft LST.

Table 3 - LST RMSE [°C] with respect to aircraft image of the 
proposed method and other statistical downscaling methods.

Method RMSE (°C)

DisTrad: a +b·NDVI+ c·(NDVI)2 3.20

TsHARP: a +b·fc 3.19

HUTS: function(NDVI, albedo) 3.42

Custom method (Eq. 9) 3.01

The proposed approach shows superior performance since the selected independent 
variables are more suitable to explain heterogeneous urban features. Therefore, a custom 
selection of predictors in the multiple regression scheme can improve the sharpening 
accuracy of a specific area.
As a further analysis, Pearson correlation coefficient (r) was adopted as a performance 
metric to compare custom and USGS sharpening schemes against airborne images across 
a range of spatial resolutions (Fig. 8). The custom downscaled image exhibits a better 
correlation with the aircraft image than the USGS one until 120 m. Both curves, after a 
sharp increase from 30 m to 150 m resolution, basically level off to an average value r = 
0.95 approaching the 420 m resolutions.

Figure 8 - Pearson correlation coefficient between aircraft and Landsat images 
(downscaled, red curve, and from USGS, blue curve). For each sample resolution the 
images were block-averaged to reach the same pixel size, ranging from 30 m to 420 m.
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Our results confirm that even the use of resolved surface properties to classify urban regions 
cannot improve the satellite capability to resolve some thermal details. Nevertheless, the 
custom downscaling procedure provides an additional value by improving the overall 
RMSE with respect to the USGS image and to other regressive downscaling techniques.

Conclusions 
In this work we retrieved LST from Landsat TM over the city of Florence, developed 
a custom downscaling framework, and analyzed its performances using high-resolution 
LST airborne imagery. Landsat thermal observations prove to be effective to provide a 
global pattern of LST over a city area, but its native spatial resolution is not adequate to 
identify thermal details over a complex texture, calling for the development of adequate 
downscaling schemes. The proposed sharpening method improves the overall RMSE with 
respect to other regressive downscaling approaches, pointing out the impact of the predictor 
selection in a heterogeneous urban texture. However, this method is not always capable 
of resolving specific thermal details, showing that the image sharpening topic is still an 
open issue. These results have been assessed thanks to the availability of a high resolution 
airborne image. Such data ‘bridge a gap’ between ground truth measurements and satellite 
observations, since the latter could not be directly compared with in situ measurements 
in heterogeneous urban landscapes. High resolution thermal images, in the next future 
provided also by small unmanned aerial platforms, will be a resource to build effective 
downscaling frameworks for satellite observations of SUHI effects. 
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