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A B S T R A C T   

Downscaling is a particularly needed process in many environmental, social and governance applications at the 
fine scale. The need for an automated and reliable very high spatial resolution downscaling approach is then 
required. In this paper, a fully-automated open-access downscaling approach was proposed, named HSR-LST. It is 
based on the High Spatial Resolution (HSR) Red, Green and Blue (RGB) bands collected from commercial and 
free-to-access satellite images, generating LST values lower than 2-m spatial resolutions. This is based on the 
Landsat-8 thermal datasets and while implementing a fully-automated Ordinary Least Squares (OLS) approach. 
HSR-LST was implemented over Beirut, Boston and Dubai between 2016 and 2018. In comparison to an airborne 
LST image captured over ElKhorn River in Nebraska, USA, HSR-LST showed an AME of 0.88 ◦C and a R-squared 
value of 86.33%. Main results showed the variability of LST based on the sensed land features’ type. Different 
LST distribution footprints (i.e., irregular in Beirut, intermitted in Boston, systematic in Dubai) were highlighted 
depicting a characteristic urban configuration in each city. This latter along buildings’ material, density and 
height appear also to show a different effect on the local and surrounding LST values. By implementing the 
automated HSR-LST model in cities around the Globe, urban planners, policy makers and inhabitants can acquire 
improved information to assess urban heat islands, to propose more adequate planning policies, but more 
importantly to tackle urban heat and thermal comfort at the finest scales. HST-LST will effectively address the 
low spatial resolution of thermal bands. As HSR-LST is both automated and dynamic, it can be portable to other 
urban areas with diverse climatic regions.   

Introduction 

Downscaling, disaggregation and spatial sharpening designate 
similar approaches aimed to increase the spatial resolution of an input 
image based on higher resolution auxiliary data [76,24,20,31,68]. The 
importance of downscaling lies in improving the understanding of our 
surroundings at the finest scale possible, particularly for products that 
are not suitable for regional applications [54]. This is particularly true 
where coarse scale satellite sensors can only measure a composite 
response from multiple available sub-classes. Thus, for instance, at the 
periphery zone between urban and vegetation areas, urban and non- 
urban sub-pixels can be seen as a single category pixel [1]. This is 
where the downscaling procedure is required to determine the fractions 
and the locations of each of the subcategories present in any coarse 
pixel. While downscaling approaches are being continuously developed 
and enhanced, Land Surface Temperature (LST) appears to be one of the 

most studied variables in the spatial sharpening studies, particularly due 
to inherited low spatial resolution and diverse applicability in many 
areas, including urban heat fluxes and configurations (e.g., [9,70]), 
urban heat islands (e.g., [64,33,2]), wildfires and forest health (e.g., 
[50,12,39], crop water consumptions and evapotranspiration rates (e.g., 
[47,45,5], droughts and desertification (e.g., [23,22,67], among many 
others. 

The successive launch of new satellite thermal sensors and improved 
image resolution have provided better assessment of LST values across 
diverse landscapes [20]. This did not halt initiatives to improve the 
current LST images, as spatial resolutions are still lagging behind the 
much-needed very high-resolution information. The process of 
improving the LST spatial resolution have begun with the usage of in-
formation available within the one-layer panchromatic band (e.g., 
[56,35]). Since then, related literature is dominated by two main LST 
downscaling approaches, namely the physical and the statistical 
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methods. The first includes the dual band method based on the subpixel 
thermal anomaly monitoring (e.g., [18,25], as well as the emissivity- 
based approach founded on the isothermal hypothesis (e.g., [38,77]). 
On the other hand, statistical downscaling aims at deriving a relation-
ship between LST and auxiliary data, mainly a satellite-based vegetation 
health. In the latter, the better spatial resolution red and near-infrared 
bands are used as predictors for the LST variations. More specifically, 
biophysical vegetation indices are used as predictors, including, but not 
limited to, the Normalized Difference Vegetation Index (NDVI), the 
Enhanced Vegetation Index (EVI), the Soil Adjusted Vegetation Index 
(SAVI), having usually a negative correlation with LST [76]. Here, it is 
important to note that the negative correlation between daytime LST 
and vegetation indices may be true for pixels corresponding to terrestrial 
areas. Under the presence of water or bare lands, the scatterplot appears 
to have a triangular shape as described by Carlson [11] and Tang et al. 
[65]. Anyhow, the most adequate vegetation index remains the Fraction 
of Vegetation Cover (FVC), generated from NDVI, yielding the smallest 
prediction errors for LST [4]. More recently, Unmanned Aerial Vehicles 
(UAVs), with its multiple bands and airborne thermal camera observa-
tions were used for more accurate thermal mapping and assessments 
over cities. More likely, a broadband thermal camera is mounted to an 
airplane (e.g., [63,55] or tethered to a balloon [10]. In comparison to 
MODerate resolution Imaging Spectroradiometer (MODIS) satellite LST 
data over a Canadian mining facility, the airborne thermal camera 
resulted in a median absolute error of 0.64 ◦C [10]. Furthermore, some 
previous studies have used the multiple spectral bands of the UAV to 
conduct a green infrastructure typology (GIT) or a local climate zone 
(LCZ), providing highly detailed and accurate two- and three- 
dimensional information much-needed for urban climate analyses at 
the local scale (e.g., [8,6]. Anyhow, the usage of airborne thermal data 
remains limited due to its high cost, long acquisition period and exten-
sive data processing requirements [16]. 

Although widely used, there are limitations to the two dominant 
downscaling approaches found in the literature. In the physical method, 
limitations include the requirement of too many independent mea-
surements [18]), whereas, in the statistical approach, using only a bio-
physical index fails to explain variations in daytime LST at the sub-pixel 
level, particularly over a heterogeneous landscape [24]. In this context, 
further studies were conducted to improve these approaches by 
including the temperature difference between photosynthetically and 
non-photosynthetically active vegetation (e.g., [44,43]), land cover data 
(e.g., [66,69,52], fraction of Impervious Surface Area (ISA) (e.g., 
[75,60], soil water content index (e.g., [73,78], albedo (e.g., [17,72], 

and elevation data (e.g., [7,30]. Even with the said improvements at the 
fine scale, implementing these sophisticated approaches [30] as well as 
ease of transferability to varying regions and contexts [52] still pose 
challenges related to computation time and memory requirements. 
Therefore, several algorithms were proposed, based on the previous 
approaches found in the literature, to automate the downscaling pro-
cess, including disaggregation procedure for radiometric surface tem-
perature (DisTrad) [36], thermal sharpening (TsHARP) [4], pixel block 
intensity modulation (PBIM) algorithm [64], high-resolution urban 
thermal sharpener (HUTS) [17], and data mining sharpener (DMS) [24]. 

While each previous study attempted to present an innovation in one 
of the different aspects related to LST downscaling, the similarity in 
these studies lies in finding relationships between coarser-resolution 
thermal and other finer-resolution bands produced from the same sat-
ellite. More broadly, two directions were identified that define this 
relationship. The first is related to the use of red and near-infrared bands 
(e.g., [36,4,32,78] with coarser LST images, whereas the second direc-
tion compiles LST images with better spatial but lower temporal reso-
lution imagery for more frequent spatial observations (e.g., [30,27]. The 
unavailability of fine-scaled LST images, easy processes and models to 
downscale have resulted in a limited number of LST-based space borne 
studies (i.e., urban heat island and thermal comfort research) conducted 
at finer planning scales such as districts and neighborhoods [15]. 

This study proposes a new direction in the LST downscaling, based 
on HSR images in urban settings, surnamed HSR LST downscaling 
approach or HSR-LST. This latter is an adaptive, open-access, fully- 
automated LST downscaling approach, based on auxiliary data from a 
different sensor and from non-thermal bands. To our knowledge, no 
previous study has conducted similar much-needed research for a fine 
scale analysis. It is important to note, however, that HSR-LST is a fully- 
automated downscaling model not an LST retrieval model. Thus, it does 
not process raw L8 images to derive LST, and thus should be produced 
prior to the implementation of the model. 

The selected study area includes portions of three cities (i.e., Beirut, 
Boston and Dubai) with diverse climates. The newly generated HSR-LST 
data are based on Landsat-8 (L8) thermal bands, having the best 
spatially and freely available thermal bands. HSR-LST was developed 
using one of the most common programming languages (i.e., python), 
and could be implemented, and improved, when necessary, by any 
interested users to automatically derive reliable urban HSR LST values. 
It would largely assist urban planners and decision makers across a wide 
range of related disciplines to better assess urban heat and thermal 
comfort within the vicinity of cities. The next sections of this paper will 

Fig. 1. Location of the studied cities, including from left to right, (a) Boston, (b) Beirut and (c) Dubai; also included the Land Cover map over these regions based on 
the 100-Copernicus Global Land Cover Layers: CGLS-LC100 Collection 3 in 2019 (black squares refer to the selected study sites). 
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explain and implement the HSR-LST approach in Beirut, Boston and 
Dubai. It will be followed by a validation of the HSR-LST product against 
an airborne LST image captured in Nebraska, USA. 

Materials and methods 

Study area 

The study area (Fig. 1) corresponds to three major cities with varied 
climates, urban morphology, and incident sun radiation. These cities 
were selected due to our possession of very high spatial resolution sat-
ellite images covering it, which also coincides with having different 
climates and urban configurations. More particularly, Beirut has a hot- 
summer Mediterranean climate (Csa), Boston has a hot-summer humid 
continental climate (Dfa) and Dubai has a hot desert climate (BWh), 
according to Koppen climate classification [53]. 

The latitude of Beirut is 33◦50′N with a population of 1.5 million and 
an average density of 6,200 inhabitants/km2 [21]. Altitudes range be-
tween 0 and 200 m above sea level. The hot season lasts for approxi-
mately four months with average air temperature of 29 ◦C and relative 
humidity over 70%. 

Municipal Boston, at a latitude of 42◦50′N, had an estimated 700,000 
inhabitants in 2018, according to the Consolidated Metropolitan Sta-
tistical Area (CMSA) of Boston, Massachusetts (MA). The average alti-
tude is 43 m above sea level. The warm season lasts between three and 
four months with average air temperature of 25 ◦C and relative humidity 
of 20%. 

The city of Dubai with a latitude of 25◦50′N is one of the most known 
cities in the United Arab Emirates with a staggering 3.3 million popu-
lation living within the city’s boundary. Dubai is roughly at sea level, 
with a maximum altitude of 16 m above sea level. The hot season lasts 
between four and five months with average air temperature of 39 ◦C and 
relative humidity over 70%. The regions studied in this research 
correspond to one random site but having multiple Land Cover types 
over each city with a buffer area of 1 km. 

Data background 

HSR images were retrieved from different sensors (Table 1). For 
Beirut, Digitalglobe WorldView-2 was collected between July and 
December 2017, having eight bands (i.e., coastal blue, blue, green, 
yellow, red, red-edge, near-infrared-1, and near-infrared-2) at an 
approximate spatial resolution of 2-m. For Boston, the 2018 1-m Na-
tional Agriculture Imagery Program (NAIP), with four bands (i.e., blue, 
green, red and near-infrared) was used. For Dubai, Pleiades-1A and 1B 
were collected between 2016 and 2017 with a spatial resolution up to 
0.5-m with four bands similar to the NAIP. 

Since its launch on February 11, 2013, Landsat-8 (L8) satellite has 
provided 30-m resolution images of the earth surface across different 
wavelengths every 16 days. The L8 is equipped with two 100-m reso-
lution thermal sensors to assess the earth skin temperatures or the LST. 
In this study, the readily-available 30-m L8 USGS Surface Reflectance 
along atmospherically-corrected LST Tier 1 Level 2 products are used. 
The atmospheric correction corresponds to the Land Surface Reflectance 
Code (LaSRC) algorithm. The LST datasets found in this product are 

created with a single-channel algorithm jointly created by the Rochester 
Institute of Technology (RIT) and National Aeronautics and Space 
Administration (NASA) Jet Propulsion Laboratory (JPL). Further details 
on the LST computation from L8 can be available in Faour et al. [23]. L8 
Datasets were freely downloaded from the USGS official website (i.e., 
https://earthexplorer.usgs.gov/). 

The timeframe for the study is the hot season in each city and within 
the same years of the collected HSR images as follows: for Beirut, the 
months from June to September of 2017; for Boston, between June and 
September of 2018; and for Dubai between May and September of 2016 
and 2017. The median value of the available images for each band of the 
RGB and in each region was produced. The median value in the hot 
season is considered as surrogate to the urban heat impact, and has no 
effect on the HSR-LST calculations and algorithms. The overpass dates of 
the used L8 LST images in each region is found in Table 2, with a local 
time of the day ranging between 9:30 a.m. and 10:30 a.m. 

To validate the generated product, high-resolution aerial LST images 
over the lower ElKhorn River and adjacent urban area in Nebraska, USA 
are used [29]. This dataset includes a georeferenced mosaic of images, 
presented as a gridded raster image in GeoTiff format. The final image is 
a 0.5 by 0.5-m grid of corrected surface temperatures (Fig. 2). The 
dataset encompasses a 16-Km reach of the river, from 0.64-Km upstream 
from USGS streamflow-gaging station 06800500, Elkhorn River at Wa-
terloo, Nebraska, to 2.9-Km downstream from USGS site 06800800, 
Elkhorn River at Q St Bridge near Venice, Nebraska. The original usage 
of these datasets was to interpret groundwater discharge patterns. It was 
captured on December 15, 2017. 

Method 

The principle behind the downscaling method used in this study is to 
build the multiple regression relationship between a dependent variable 
(i.e., high spatial resolution LST datasets) and independent variables (i. 
e., Red, Green and Blue (RGB) bands from the very high spatial reso-
lution WorldView-2, NAIP, and Pleiades-1A and 1B images as well as 
LST images from Landsat 8). It is based on defining probabilities at the 
sub-pixel level, similar to what was produced in Mhawej et al. [49]. This 
later research successfully downscaled coarse resolution AMSR-E snow 
water equivalent from 25-km spatial scale to 500-m using a sub-pixel 
probability factor based on the frequency of snow days per year, 
retrieved from the snow cover datasets acquired from 500-m combined 
MODIS Terra and Aqua satellites. To our knowledge, none of the pre-
vious algorithms or studies were developed to include only RGB bands. 
As such, the HSR-LST is proposed. This is particularly needed because 
commercial satellites provide these three band types as essential bands 
while additional bands are provided at additional fees. But also, a 
prompt and fully-automated downscaling approach dedicated to users 
from related disciplines is much required for a fine scale assessment and 
the advancement of related studies. The HSR-LST simplified flowchart is 
found in Fig. 3. 

Table 1 
HSR images data sources and sensing dates in Beirut, Boston and Dubai.  

Location HSR Image Source Spatial 
resolution 

Sensing Date 

Beirut Digitalglobe WorldView-2 2-m July-December 2017 
Boston National Agriculture 

Imagery Program (NAIP) 
1-m 2018 

Dubai Pleiades-1A and 1B 0.5-m April, May, September 
2016 and March 2017  

Table 2 
WRS path/row, scene ID and overpass dates of the L8 in Beirut, Boston and 
Dubai.  

Location WRS Path/Row and Scene ID L8 Sensing Dates 

Beirut 174/36 
LC8174036YYYYDDDLGN00 

13-Jun-17, 29-Jun-17, 15-Jul-17, 31- 
Jul-17, 16-Aug-17, 1-Sep-17 

Boston 12/30 
LC8112030YYYYDDDLGN00 

16-Jun-18, 2-Jul-18, 18-Jul-18, 3-Aug- 
18, 19-Aug-18, 4-Sep-18, 20-Sep-18 

Dubai 160/42 
LC8160042YYYYDDDLGN00 

7-May-16, 23-May-16, 8-Jun-16, 24- 
Jun-16, 10-Jul-16, 26-Jul-16, 11-Aug- 
16, 27-Aug-16, 12-Sep-16, 28-Sep-16, 
7-Mar-17, 23-Mar-17, 8-Apr-17, 24- 
Apr-17, 10-May-17, 26-May-17, 11- 
Jun-17, 27-Jun-17, 13-Jul-17, 29-Jul- 
17, 14-Aug-17, 30-Aug-17, 15-Sep-17  
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Preprocessing approach 
Very high spatial resolution images were collected over the study 

regions, namely 2-m RGB images in Beirut, a 1-m RGB image in Boston 
and 0.5-m RGB images in Dubai. L8 Level 2 images were also down-
loaded for the same time periods for each city. Median RGB bands (i.e., 
bands 2, 3 and 4) from L8 were retrieved in each region and within the 
hot season. A further processing, not included within HSR-LST, was 
needed to retrieve the median values within the hot season in each of the 
three regions. 

The HSR-LST approach 
The following steps are automatically produced within the HSR-LST 

model. More particularly, a bandpass adjustment is applied to calibrate 
HSR RGB and L8 RGB bands as suggested in Claverie et al. [13]. It was 

based on a linear fit relationship between the red band from an HSR 
image, for instance, the 1-m NAIP, and the red band from the LSR/L8 
image. The same applies for the green and blue bands for each consid-
ered city. The linear equations between same band types generated the 
required slope and intercept to transform the HSR red to LSR/L8 red 
values, green HSR to green LSR/L8 and blue HSR to blue LSR/L8. Re-
ports were produced to highlight the adjusted R-squared values gener-
ated in each of the three linear fit relationships among other accuracy- 
related tests. Therefore, a new HSR image with updated RGB values is 
created. It is important to note that an internal processing was made to 
transform HSR RGB pixel sizes (i.e., being 2-m in Beirut, 1-m in Boston 
and 0.5-m in Dubai) to the 30-m L8 RGB pixel size using a simple median 
aggregation technique. Pixel depth type in each HSR image was also 
changed to correspond to the L8 8-bit unsigned depth type. These fully- 

Fig. 2. The lower ElKhorn river airborne LST image used for HSR-LST validation.  
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automated processes were important to derive relationships at the same 
spatial scales and over the same pixels’ boundaries. 

A median aggregation with a cell factor of 30 for the L8 LST images, 
in each region, is made generating Very Low Spatial Resolution (VLSR) 
LST images with a spatial resolution of 900-m. This cell factor was used 
as a surrogate to the ratio between HSR and L8 spatial resolutions. Users 
have the ability to alter this factor over their regions and check whether 
this will improve the total accuracy or not. 

The Ordinary Least Square (OLS) method is used to estimate the 
unknown parameters in the linear regression model. L8 RGB bands along 
the VLSR LST are the independent variables, whereas the L8 LST is the 
dependent variable. The general equation is as follows: 

Y = βx + β’x’ + β”x” + etc. + ε. 

Where Y is the dependent variable; 
β, β’, β’’ are the independent variables; 
x, x’, x’’ are the generated weights; 
ε is the interception value. 

More particularly, transforming L8 LST into HSR has passed by two 
intermediary steps; the first is to identify the relationship between L8 
LST and a coarse-resolution LST data, namely the VLSR. The second step 
includes the inverse application of the previously found relationship on 
HSR and now the coarse-resolution LST datasets, namely the L8 LST. 
This was done by randomly choosing 3000 points within each city to 
verify the relationship between the dependent and independent vari-
ables, and to determine the level of accuracy. These random points were 
selected with a minimum distance of 100-m between any two points 
representing the pixel size of L8 thermal bands. RGB, LST and VLSR LST 
values were extracted at these points. An OLS test was made between the 
dependent (i.e., LST) and independent (i.e., red, green, blue, VLSR LST) 
variables. The coefficients or weights for each independent variable are 
produced along an interception value. Also, a report highlighting the 
accuracy of such model is generated based on the adjusted R-squared, 
Akaike’s Information Criterion, Jarque-Bera p-value, Koenker (BP) 
Statistic p-value, Max Variance Inflation Factor, Global Moran’s I p- 
value tests. Users may adjust values when the produced report shows 
low accuracy levels by, for instance, changing the cell factor aggregation 
value in the VLSR LST assessment, increasing the number of randomly 
selected points in large areas or by eliminating cloudy pixels and then 

reconduct the OLS assessment. 
In the second intermediary step and based on the weighting values 

retrieved from the previous step, an HSR LST is produced depicting the 
LST values during the same overpass time of the corresponding L8 im-
ages. This latter is considered as the L8/LSR LST in the previously 
retrieved equation and thus, the dependent variable. The independent 
variables were the L8/LSR LST and HSR RGB bands. While the scale used 
in the previous step is 900-m, in this step, the used scale is related to the 
pixel size of the HSR images, being 2-m in Beirut, 1-m in Boston and 0.5- 
m in Dubai. For instance, in Beirut, 2500 (i.e., the ratio between 100-m 
and 2-m in each of the two directions) HSR pixels have the same L8/LSR 
LST value. What does alter the values of these 2500 sub-pixels is the red, 
green and blue values collected from the HSR images. In all these tests, 
the difference in spatial resolution was managed through a resampling 
towards the higher spatial resolution in each step, even when multiple 
pixels would have the same value for the coarse resolution images. A 
registration was followed by aligning pixels from different datasets. All 
related statistical analysis used are based on the OLS-related tools over 
ArcMap 10.8 (i.e., Exploratory Regression and Ordinary Least Squares 
(OLS)). 

It is important to note that these steps are fully-automated and are 
produced under the commonly known python programming language, 
where user only needs to specify the RGB bands from HSR and LSR 
images as well as the LST layer from the LSR image. The only required 
library is the arcpy. The open-access full script is available in Annex I. 

HSR-LST validation 
To validate the generated product, an HSR-LST image was produced 

for December 2017 over ElKhorn River based on L8 bands, including the 
surface temperature band, along the NAIP product. It was compared to 
an airborne LST image captured over ElKhorn River. As the acquisition 
date is not the same between the L8 LST and the airborne LST, a 
normalization approach was produced as found in Pu and Bonafoni [57]. 
More particularly and following a spatial co-registration between the 
two products, the average 30-m airborne-based LST is computed from 
the 0.5-m airborne pixels contained in the 30-m L8 LST. It was followed 
by the generation of the pixel-based LST difference, named dT, sub-
tracting the 30-m airborne LST from the 30-m L8 LST. At a later stage, 
the dT image was added to the HSR-LST and the average 1-m airborne- 
based LST was computed from the 0.5-m airborne pixels contained in the 

Fig. 3. A simplified flowchart of the HSR-LST method.  
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1-m HSR-LST. 
Over 25,000 points were randomly selected above ElKhorn River. 

The selected points have a minimum distance of 20-m between any two 
points. An extraction of the 1-m HSR-LST, with the dT included, and the 
1-m airborne LST values were made at these randomly created points. R- 
squared values, Root Mean Square Error (RMSE) and Absolute Mean 
Error (AME) were retrieved from the below equations as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Xi − Yi)2

√

AME =
1
n
∑n

i=1
|Xi − Yi|

Where n is the total number of observations, Xi is the ith observed data 
and Yi is the ith estimated data. 

Results 

Cross-Evaluation 

A comparison between HSR LST and L8 LST values showed very 
promising RMSE, AME and R-squared values (Table 3). The lowest 
RMSE, AME and R-squared values were seen in Dubai, with 0.33 Kelvin, 
0.38 Kelvin and 97.21%, respectively. Boston, on the other hand, 
showed the largest error with a RMSE of 0.8 Kelvin, an AME of 0.61 
Kelvin and an R-squared value of 88.8%. The average AME and R- 
Squared values in these selected cities are low (i.e. an AME of 0.38 
Kelvin and a R-squared value of 92.8%). Fig. 4 highlights a scatter plot 
based on the HSR-LST approach in these different cities, along a 1:1 line 
signaling a 100% correlation. The majority of the values appear to exist 
in proximity to that line. It is important to note that this scatter plot was 
established on a large area in each city to capture any variability in 

values and land cover types. 
As shown in Fig. 5, areas of LST values in L8 and HSR images over 

Beirut, Boston and Dubai were highly overlapped. More particularly, the 
considered LST values in both data type coincided in 94.88% (i.e. 2839 
of 2992 pixels) in Beirut, 94.27% (i.e. 276,503 of 293,294 pixels) in 
Boston, and 91.33% (i.e. 121,676 of 133,216 pixels) in Dubai. 

HSR-LST validation 

A comparison between 1-m HSR-LST and 1-m airborne LST values 
showed very good RMSE (i.e., 1.3 ◦C), AME (i.e., 0.88 ◦C) and R-squared 
values (i.e., 86.33%) (Fig. 6). 

HSR-LST implemented in Beirut, Boston and Dubai 

Very dense urban areas in Beirut along some tree-covered lands 
showed one of the least LST, with values around 43 ◦C in the hot season 
(Fig. 7, top). Clear high-resolution images showing the patterns of the 
urban settings can be found in Fig. 8. The highest temperatures were 
visible in bare and grass lands, where LST values exceeded 45 ◦C. A 
vehicular round-about showed an increase of over 1 ◦C in comparison to 
its surrounding. Furthermore, the distribution of LST values appears to 
be irregular. For example, over a swimming pool located at the western 
part of the city, LST values were the lowest (i.e., less than 38 ◦C). 

In Boston, some of the conclusions are similar to Beirut. More 
particularly, bare lands showed the highest LST values with over 41 ◦C 
in the hot season. A small lake showed the lowest values around 33 ◦C. 
The existence of trees, intermitted with houses, enabled a patch-like 
distribution of LST. The lowest-temperature regions existed far from 
the main road (Fig. 7, middle). 

Dubai showed well-preserved shapes with dominance of LST values 
over 45 ◦C in the hot season (Fig. 7, bottom). Bare lands represented very 
high temperatures of over 53 ◦C, whereas, houses and their surroundings 
showed values around 50 ◦C. Asphalt roads presented less LST values 
than from bare lands, with values around 52 ◦C. It was also noticeable 
the LST values change in terms of different rooftop materials, particu-
larly highlighted in the southern part of the study area. 

Furthermore, HSR-LST can be seen refining L8 LST values, related to 
the HSR images’ spatial resolution used. For instance, with the 0.5-m 
HSR image in Dubai, an unrepresented whole urban area in Landsat is 
now visible and clearly highlighted. Other spatial improvements were 
even directly recognized when assessing HSR-LST over Boston, where 

Table 3 
RMSE, AME and R-squared HSR LST values compared to L8 LST in Beirut, Boston 
and Dubai.   

Beirut Boston Dubai Average 

RMSE (Kelvin)  0.38  0.8  0.33  0.5 
AME (Kelvin)  0.28  0.61  0.25  0.38 
R-squared (%)  92.39  88.8  97.21  92.8  

Fig. 4. A scatter plot showing the relationship between the HSR LST and L8 LST values in the three major cities.  
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the urban agglomeration configuration and water bodies are accurately 
represented. 

Discussion 

When validating against an airborne LST image, HSR-LST showed a 
very promising accuracy which is around the reported 1 ◦C bias in 
previous studies (e.g., [59,74,19,37,14,42]. This accuracy was hardly 
obtained by some previous studies (e.g., [7,24,76,30,72,27]. More 

recently, Mhawej and Abunnasr [46] and Abunnasr and Mhawej [3] 
proposed the 10-m Ten-ST-GEE systems, both daily and monthly, and 
having a better temporal coverage of the suggested HSR-LST system. The 
reported bias is around 2.3 ◦C though. A combination between these two 
systems would enable an improved spatial and temporal resolutions and 
this would be possible as both Ten-ST-GEE and HSR-LST systems are 
fully-automated and dynamic. 

Anyhow, the results showed some similar characteristics in the 
selected cities, having diverse climatic regions. More particularly, dense 

Fig. 5. Areas of LST values’ frequency based on L8 and HSR images over Beirut, Boston and Dubai.  
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urban fabric showed improved LST values in comparison to their sur-
roundings, which could be related to the blocking of solar radiation due 
to building density and height as previously suggested by Guo et al. [26]. 
Tree-covered lands presented a similar outcome, with trees intercepting 
incoming solar radiation while creating a cooling effect in their lower 
canopy and understory layers [58,41]. In addition, and as expected, 
private pools and other water bodies, such as lakes, depicted the lowest 
LST values in the three cities, where the available water is reducing 
temperatures through the decrease of sensible heat flux which generates 
an increase in the evaporation rates ([48,45,5] and therefore reducing 
LST values. 

The highest LST values were seen in bare and grass lands, including 
vehicular round-about of unplanted lands, where low water content in 
the upper soil layers and reduced evapotranspiration rates due to the 
limited vegetation cover are usually observed (e.g., [79,68]. These areas 
showed an increase of 7 ◦C in Beirut and 8 ◦C in Boston in comparison to 
water body LST values. These temperatures appear to be dissipating to 
their surroundings. Further assessments should be made to retrieve its 
impact at each distance from their centers, and if its total area could 
present any significant change to the nearby LST values. The same goes 
for the rooftop materials, where LST values differed largely and affected 
their surroundings which is particularly visible in Dubai. 

The different LST distribution footprints (i.e., irregular in Beirut, 
intermittent in Boston, systematic in Dubai), depicted the existing urban 
configuration, enabling an accurate representation of urban heating at 
the neighborhood and city scales. More particularly, few "cold" areas 
were observed in some part of the selected locations, mainly visible in 
Boston, enabling later a more in-depth analysis of the LST variations at 
finer scales. This could not be produced using the 30-m Landsat-8 LST 
datasets as shown in Fig. 7, where the whole region could be under- or 
over-estimated. 

It is important to note, however, that the proposed approach relies on 
Landsat-8 images, which can in some cases be partially or fully missing, 
due to local climate conditions, including clouds. In that case, a data 
imputation technique could be used such as the Mean Attribute, Most 
Common Attribute value and k-nearest neighbor imputation [51]. 
Furthermore, including other LST sensors, such as MODIS, Landsat-9 
and Sentinel-3, would largely reduce the reliability on Landsat 8. Still, 
this would require further analysis to improve the proposed approach 
and check its validity. Another improvement would include LST data 
from multiple seasons which should not affect the applicability of the 
proposed fully automated system but may provide improved accuracy 
which should be further verified. 

While some limitations might appear when implementing a similar 

approach, this study proposed to retrieve the median value in the hot 
season in different cities with diverse climates and therefore overcoming 
the impact of different overpassing periods of the used satellite sensors. 
Furthermore, the usage of HSR images from diverse sources, having 
different bands and sensors’ characteristics, was important to enable 
users to implement the proposed approach using any available HSR 
images, particularly where internal OLS regression reports as well as the 
final accuracy reports are already embedded in the system. 

Anyhow, the proposed HSR-LST provides a new direction in LST 
downscaling based on HSR RGB images with several contributions to the 
field allowing for easy use and applicability. The procedure is simple, 
easy-to-use and freely-available through an automated and open-access 
python scripting language algorithm. In addition, another importance of 
this study was to use minimal bands’ number to produce reliable high 
spatial resolution LST. This would be greatly needed for many large- 
scale studies, as the commercial HSR images come with a limited 
number of bands, on one hand, and on the other hand, where in some 
cases the addition of bands would result in staggering data costs. Urban 
designers, city planners and policy makers would benefit from the 
generated data to prioritize and develop responsive strategies reducing 
urban heating at the urban block and neighborhood scales and thus, 
allowing the possibility to address human comfort at a finer scale rather 
than the city scale. Furthermore, understanding the current distribution 
and variations of LST in urban settings will allow the prioritization of 
urban environmental policies and investments, especially when 
impacting vulnerable communities. This would also allow the recom-
mendation of specific solutions in specific locations to curb the LST 
impacts. These may include measures such as changing rooftop material, 
increasing vegetated cover in urban landscapes, and the redesign of 
urban configurations in new urban developments or retrofit existing 
urban neighborhoods. The HSR-LST provides a useful, easy-to-use tool 
that could steer current and future urban planning and design projects 
while better integrating urban climates and their dynamics. 

Conclusion 

Establishing an open-source fully-automated downscaling LST algo-
rithm is a much-needed tool, as LST enters in many environmental and 
social aspects of everyday human life. The HSR-LST approach has the 
capability to downscale LST values to an unprecedented very fine spatial 
resolution, using the RGB bands from HSR images. HSR-LST validation 
yielded a very reliable accuracy with an AME of 0.88 ◦C. 

HSR-LST showed very high spatial resolution LST values, which is 
largely based on the retrieval and access to costly HSR images. Further 

Fig. 6. A scatter plot showing the relationship between the 1-m HSR-LST and 1-m airborne LST values Elkhorn river, Nebraska, USA.  
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open-source policies should be established to improve the sharing pro-
cess of these HSR images for science and educational purposes. Of 
course, acquiring a larger number of HSR images would enable a better 
assessment of HSR-LST, particularly when considering different viewing 
angles or cloud-covered pixels. Future studies should focus on imple-
menting such an approach in different cities with diverse climates across 
the Globe while providing more in-depth analysis of the findings. 
Sensitivity analysis can be conducted as well to check whether the me-
dian HSR image can be applicable for another few years. More impor-
tantly, as this study provides LST for the hot season based on the 
instantaneous thermal values captured by the L8 satellite at around 
10:00 a.m. local time, applying HSR-LST using a geostationary satellite 
(e.g., [7,71]) or an unmanned aerial vehicle (e.g., [40,62]) would enable 
LSTs’ hourly assessment and offer more advanced findings and recom-
mendations. Furthermore, including other bands, such as the ShortWave 
InfraRed (SWIR), when available in high spatial resolution images, will 
enable further assessment of thermal properties for the different 
materials. 

This study has demonstrated the variability of LST based on land 

cover and physical features resulting in LST increase or reduction based 
on specific urban features, which would not be apparent using the L8 
LST. For example, the cooling effect of water and trees has decreased 
LST values, whereas, bare and grass lands showed an inverse impact. 
Urban configuration and buildings’ material, density and height appear 
also to exhibit an effect on the local and surrounding LST values. Further 
studies should be conducted in that direction, especially with the 
availability of the reliable and automated HSR-LST downscaling system. 
Fine resolution data generated by the HSR-LST will provide community 
from policy makers to citizens with the necessary information to address 
rising temperatures in urban settings [28] and thus reducing the overall 
urban heat footprint while improving thermal comfort [34,61]. 
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