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A B S T R A C T   

Recent climate change (CC) scenarios from the Coupled Model Intercomparison Project Phase 6 
(CMIP6) have just been released in coarse resolution. Deep learning (DL) based on statistical 
downscaling has recently been used, but more research is needed, particularly in arid regions, 
because little is known about their suitability for extrapolating future CC scenarios. Here we 
analyzed this issue by downscaling maximum, and minimum temperature over the Egyptian 
domain based on one General Circulation Model (GCM) as CanESM5 and two shared socioeco-
nomic pathways (SSPs) as SSP4.5 and SSP8.5 from CMIP6 using Convolutional Neural Network 
(CNN) herein after called CNNSD. The downscaled maximum and minimum temperatures based 
CNNSD was able to reproduce the observed climate over historical and future periods at a finer 
resolution (0.1◦), reducing the biases exhibited by the original scenario. To the best of our 
knowledge, this is the first time CNN has been used to downscale CMIP6 scenarios, particularly in 
arid regions. The downscaled analysis showed that maximum and minimum temperatures are 
expected to rise by 4.8 ◦C and 4.0 ◦C, respectively, in the future (2015–2100), compared to the 
historical period, under the moderate scenario (SSP4.5). Meanwhile, under the Fossil-fueled 
Development scenario (SSP8.5), these values will rise by 6.3 ◦C and 4.2 ◦C, respectively as 
analyzed by the CNNSD. The developed approach could be used not only in Egypt but also in 
other developing countries, which are especially vulnerable to climate change and has a scarcity 
of related research. The established downscaled approach’s supply can be used to provide climate 
services, as a driver for impact studies and adaptation decisions, and as information for policy 
development. More research is needed, however, to include multi-GCMs to quantify the un-
certainties between GCMs and SSPs, improving the outputs for use in climate change impacts and 
adaptations for food and nutrition security.   

1. Introduction 

Climate change is harming global food and nutrition security, and it is expected to worsen [1–4]. We need to study recent climate 
scenarios at acceptable temporal and spatial resolutions to quantify the impacts of climate change [5], and governance of agricultural 
systems in changing climate conditions [6,7]. The latest Coupled Model Intercomparison Project (CMIP) scenarios are the fifth phase of 
CMIP (CMIP5) at 200 km spatial resolutions [8,9] and the sixth phase of CMIP (CMIP6) at 100 km spatial resolutions [10]. The CMIP 
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initiative uses general circulation models (GCMs) to periodically develop multi-model ensembles of centennial global climate pro-
jections under various scenarios [11]. 

CMIP has been widely used in global studies for instance change of monsoon [12], offshore wind energy resources [13], projections 
of crop yield [14], precipitation simulation [15–17], mean sea-level change and sea surface temperature [18,19], and simulation of 
land surface air temperature [20], projections portrayed the recently observed warming [21]. It is also widely used in regional and 
continental studies for example simulation of climatological temperature and precipitation for Southeast Asia [22], characteristics of 
future drought over South Asia [23], simulations of extreme precipitation over the USA [24], simulations of evapotranspiration across 
Africa [25]. However, the spatial resolution of CMIP’s latest phase is 100 km, which could fail to capture the detailed patterns, 
particularly on the national scale. Hence CMIP6 spatial resolution still need to be improved for better environmental studies, con-
firming the significance of the current study which for sure helps to achieve climate-related sustainable development goals [26,27]. 

Spatiotemporal statistical downscaling is an effective way to obtain fine-resolution data. This method is based on building a 
correlation faction between a predictand (e.g., temperature) and environmental variables (predictors), and then using the finer pre-
dictors as input to downscale the predictand from coarse resolution to fine resolution [28–30]. Previous studies have proved that the 
downscaled products affected the environmental model when forced with the downscaled data [e.g., 31, 32, 33. Herein, the correlation 
function can be built using multiple linear regression [34,35], machine learning [28,36], and deep learning [37,38]. Recently, the 
magnitude of the maximum and minimum temperatures for the near and middle decades was predicted using the statistical down-
scaling climate projection model (SimCLIM) [7,39,40]. Similar studies were conducted over Asia to downscale temperatures [41] and 
precipitation [42,43] using different linear regression models. Deep learning methods should be studied further because they can find 
patterns in massive unstructured data sets using highly complicated neural networks that imitate the way the human brain functions. 
In this situation, deep learning can assure complicated nonlinear relationships and solve problems that regular machine learning 
models cannot. Deep learning based on convolutional neural networks (CNN) has recently been used among these techniques [44,45], 
because of its capacity to automatically choose predictors in the form of data-riven spatial features [46]. However, the application of 
these methods, particularly deep learning with CMIP6 scenarios, has received less attention thus far, especially in arid regions. 
Therefore, this study is focusing on the spatiotemporal statistical downscaling of temperature from CMIP6 over Egypt using deep 
learning for the first time. To our knowledge, this is the first national-scale temperature dataset produced using deep learning 
downscaling methods in the study area. The results of this study could help achieve climate-related sustainable development goals. 

Fig. 1. Map of the study region with digital elevation model (m) and weather stations for the observed dataset.  
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2. Dataset and methods 

2.1. Study region 

The research was carried out in Egypt, which has a land area of 1,002,450 km2 and is the world’s 29th largest country (Fig. 1). 
Egypt’s coordinates are between latitudes 22◦ and 31◦ North, which means that the cancer orbit passes through the country’s southern 
part, passing through Aswan city, and between longitudes 24◦ and 37◦ East of Greenwich. Egypt, a largely desert and hyper-arid 
region, is in one of the world’s most environmentally vulnerable areas. In the context of global warming, the country became a 
hotspot for climatic extremes and aridity change [47]. We, therefore, selected maximum and minimum temperatures in CMIP6 sce-
narios for downscaling from coarse (200 km) to fine resolution (10 km). 

2.2. Dataset 

Observed climatic data of daily maximum and minimum temperatures (1980–2014) were collected from NASA power at 1◦ res-
olution and corrected from some energy balance stations in Egypt (Supplementary Fig. 1). This dataset was spatially interpolated to a 
finer resolution of 10 km and used as predictands in training the CNN model. In addition to the observed dataset, the CNN model was 
trained over the historical period (1980–2014) using the ERA5 global reanalysis (50 km) [48], following the perfect prognosis 
approach [49]. This entails finding empirical correlations between reanalysis parameters of interest for surface weather at high spatial 
resolution, such as circulation fields, temperature, and humidity. The learned model is directly transferable to different driving GCMs, 
which is the key benefit of perfect prognosis. This is predicated on the perfect prognosis supposition that the statistical traits and 
associations produced from reanalysis fields during the training stage are a good approximation of those out-of-sample traits and 
connections (i.e., provided by other driving GCMs). The predictors used in model training and their units included air temperature (k), 
specific humidity (g kg− 1), geopotential height (m), meridional wind velocity (m s− 1), zonal wind velocity (m s− 1), and vertical wind 
velocity (m s− 1) at 850 hPa creating a total of 6 variables per grid box. Daily climatic data for selected variables in the historical 
(1980–2014) were downloaded from ERA 5 reanalysis, while future GCM at near-term (2015–2050), mid-term (2050–2075), and 
late-term time series (2075–2100) were downloaded from ESGF. Under one Global Climate model (GCM), Canadian Center for Climate 
Modeling and Analysis (CanESM5) include two shared socioeconomic pathways (SSPs) such as moderate scenario (SSP4.5) and a 
business-as-usual scenario (SSP8.5) were chosen. 

Fig. 2. Preprocessing method workflow and steps for downscaling CMIP6 scenarios using convolutional neural network algorithm.  
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2.3. Data preprocessing and statistical downscaling based on the CNN model 

Deep learning (DL) is an improved version of an artificial neural network inspired by the human brain that effectively analyses 
massive volumes of data to uncover patterns and characteristics. Recently, the performance of DL models in imaging areas has been 
demonstrated, and Convolutional Neural Network (CNN) is extensively used deep learning models [50,51]. To discover the features of 
the data, CNN multiplies by sliding the kernel at the position of the input data, totaling the values, and summarizing them into a single 
value [52,53]. This procedure is used to extract the data’s elements. The CNN models are typically applied to two-dimensional arrays 
such as image data. However, CNN can also be used to analyze regression data. In this case, we use a one-dimensional convolutional 
network to reshape the input data. The Keras as a high-level neural network library that runs on top of TensorFlow, includes the 
Conv1D class, which allows you to add a one-dimensional convolutional layer to your model [54]. We developed CNN after [37,38], 
which was trained over the period 1980–2014 using daily predictors at 50 km resolution from ERA5, and predictands at 10 km res-
olution (Fig. 2). Three layers of convolutions (50:25:10), each constructed by three 3 × 3 spatial kernels, are fed by an input layer (with 
stacked spatial predictors) in CNN. Using linear transformations, the final convolution is fully connected to the output layer (observed 
dataset). Given the predictors, the networks are trained to learn conditional daily distributions of maximum and minimum temper-
atures (minimizing the mean square error, MSE); in other words, the network is compelled to estimate the corresponding parameters to 
the distributions indicated. We reduce the MSE, which is like reducing the conditional mean’s negative log-likelihood from a Gaussian 
distribution. 

The effective handling of intricate spatial elements is where CNN topologies’ potential lies. These models can handle high- 
dimensional predictor spaces while downscaling the climate, choosing the variables and geographic domains that affect each spe-
cific site automatically [55,56]. This is important since modern SD approaches, like well-established generalized linear models (GLMs), 
cannot handle this high dimensionality without overfitting, necessitating, in most cases, some sort of human-guided feature selection 
(with the ensuing loss of pertinent information). 

In this study, we tested the CNN model using a high-dimensional input grid and various predictors like those examined by Refs. [37, 
55]. We trained the CNN model using predictors from the historical period and the observed dataset of maximum and minimum 
temperatures at the same time at high resolution (10 km) (Fig. 2). The projections from these scenarios were then downscaled for the 
historical (1980–2014) and SSPs (2015–2100) periods using our trained models. We prepared bias adjustment and standardization for 
the future predictors with the corresponding reanalysis values to assure they reasonably resemble the historical variables used to train 
the CNNSD model. In addition, we used a change-preserving technique to prevent adding unnatural trends or changes to future 
scenarios [57]. We employ a distributional downscaling strategy, just like Bao-Medina et al. (2020), and employ the network to es-
timate daily predictor-conditioned Gaussian distributions. To do early stopping and halt training when the test error stops dropping 
after 25 epochs, we create a test set by randomly selecting 20% of the data. 

Fig. 3. Regression correlation with statistics between observed and downscaled values of maximum temperature (A), and minimum temperature (B) 
during the historical period. 
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3. Results and discussion 

The regression correlation between the observed and downscaled maximum and temperature values is strong (R2 = 0.71), with p 
values of <0.01 (Fig. 3). Fig. 4 compares the observed, original GCM, and downscaled CNNSD maximum and minimum temperature 
distributions over the historical period (1980–2014). CNNSD-downscaled temperatures showed less bias across the entire distribution, 
confirming the significance of climate downscaling-based deep learning. This indicates that the CNNSD model produced acceptable 
results in terms of representing observed values and the possibility of downscaling future climate change scenarios. Data in Figs. 5 and 
6 show the mean daily downscaled maximum and minimum temperatures over the historical period (1980–2014), and future periods 
(2015–2100) for two SSPs and one GCM (CanESM5). The CNNSD model displayed a smooth spatial pattern of maximum and minimum 
temperatures over historical and future periods, in contrast to the original GCM values, which failed to capture local variability and 
overestimated temperature values (Supplementary Fig. 2). The CNNSD model exhibits a robust and unbiased spatial pattern of 
maximum and minimum temperature in Egypt, due to the direct training with observations. Similar findings in Europe demonstrated 
that statistical downscaling based on deep learning produces mostly smooth and unbiased spatial patterns that can be interpreted using 
the training process [58]. However, more research is needed to determine whether the difference between the original GCM and 
downscaled is due to the added value of downscaling or a model flaw. In terms of climate change in Egypt, based on downscaled 
temperatures under two SSPs over different periods, temperatures are expected to rise by the late century in SSP8.5 and SSP4.5 
compared to the historical period. 

For further analysis of downscaled scenarios and observation of maximum and minimum temperatures, Taylor diagrams were used 
(Fig. 7). This analysis is crucial for creating accurate future estimates [59,60]. In the case of maximum temperature (Fig. 7A), it was 
found that there are good correlations between observed values and SSP4.5 at the late period (R2 = 0.75), SSP4.5 and SSP8.5 at the 
near time (R2 = 0.55), while there was a weak correlation with SSP8.5 at the end of the century (R2 = 0.3). In addition, the centered 
RMSE increased with SSP8.5 in the mid and late periods. The same trend was noticed with minimum temperature in all scenarios 

Fig. 4. Probability density distribution of observed, original GCM without downscaling, and downscaled by CNNSD maximum temperature (A) and 
minimum temperature (B) during the historical period (1980–2014). 
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(Fig. 7B). Although there are some correlations between observed and downscaled temperatures at various scenarios and periods (R2 

= 0.3–0.75), they appear to be not strong, which may be due to the use of a single GCM with different SSPs. Furthermore, CanESM5 has 
a significantly higher equilibrium climate sensitivity than its predecessor [61]. More GCMs may result in higher correlations than a 
single GCM, necessitating further research into the use of multi-GCMs in the region. Various studies have shown that combining 
different GCMs is much better because it reduces uncertainty [62,63]. Furthermore, GCMs are regarded as a major source for 
investigating climate complexity and providing quantitative estimates of future climate change. 

Boxplots in S. Fig. 5A showed that the average maximum temperature will increase from 25 ◦C in the historical period to 32 ◦C and 
35 ◦C for SSP4.5 and SSP8.5 respectively. The same trend was found in the minimum temperature, which was expected to rise from 
7 ◦C in the historical period to 18 ◦C in the case of SSP4.5, and 21 ◦C in the case of SSP8.5 (S. Fig. 5B). The uncertainty appears to be 
higher in SSP8.5 than in SSP4.5 and historical, as well as in the late century as opposed to the mid and near. This is because SSP4.5 
(Middle of the Road) represents moderate challenges to both mitigation and adaptation, whereas SSP8.5 (Fossil-fueled Development) 
represents high mitigation challenges and low adaptation challenges. Both scenarios showed an increase in the expected future 
maximum and minimum temperatures relative to the historical period (Fig. 8). The maximum temperature increase is projected to be 
4.2, 4.0, and 6.1 ◦C under SSP4.5; 6.3, 6.1, and 6.5 with SSP8.5 for near, mid, and late periods respectively (Fig. 8A). Meanwhile, the 
minimum temperature is expected to increase by 3.7, 4.1, and 4.2 ◦C under SSP4.6, and 4.3, 4.1, and 4.4 ◦C under SSP8.5 for near, mid, 
and late periods respectively. This increase is also consistent with what is described in the IPCC’s sixth assessment report (AR6) when 
the CanSM5 model is used. 

The CNN model’s downscaling of maximum and minimum temperatures in Egypt produced consistent results across periods, 
scenarios, and with a single GCM. However, more research is needed to include multi-GCMs to improve the outputs for use in climate 
change impacts and adaptations for food security. This will enable deploying multi-climate models [64], and multi-scenario analysis in 
arid to semi-arid climatic conditions Furthermore, another significant variable for predicting crop growth in a certain climate is ra-
diation use efficiency [65], which is a vital element of radiation-based crop growth models and should be incorporated alongside 
temperatures in future downscaling. The developed approach could be used not only in Egypt but also in the MENA region, which is 
particularly vulnerable to climate change and suffers from a lack of related research. 

Fig. 5. Daily historical (A), and future downscaled maximum temperature as obtained from the GCM (CanESM5) downscaled the CNNSD algorithm. 
The future periods are near-term (B and E), mid-term (C and F), and late-term (D and G) under SSP4.5 (B,C, and D), and business as usual, SSP8.5 (E, 
F, and G) scenarios. 
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4. Conclusion 

Due to their capacity to predict complicated non-linear patterns from climate data, deep learning topologies are being investigated 
for downscaling purposes more and more. These tests show promising outcomes in the current environment. Yet, there are still 

Fig. 6. Daily historical (A), and future downscaled minimum temperature as obtained from the GCM (CanESM5) downscaled by the CNNSD al-
gorithm. The future periods are near-term (B and E), mid-term (C and F), and late-term (D and G) under SSP4.5 (B, C, and D), and business as usual, 
SSP8.5 (E,F, and G) scenarios. 

Fig. 7. Taylor diagram of downscaled maximum temperature (A), and minimum temperature (B) for observed (historical) and each SSP scenario 
under CanESM5 (future) in three time periods (2050, 2075, and 2100). 
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numerous unanswered questions about how well these models can be generalized to climate scenarios in coarse resolution, particularly 
in arid regions. We used the CNNSD model to downscale maximum and minimum temperatures over Egypt in historical (1980–2014) 
and future (2050, 2075, and 2100) periods using one GCM and two SSPs (SSP4.5 and SSP8.5). The downscaled maximum and min-
imum temperature-based CNN was able to reproduce the observed climate at a distributional level over historical and future periods, 
reducing the biases exhibited by the GCM. Although this is the first study using statistical downscaling-based deep learning in Egypt as 
an arid region, further research is needed to use multi-GCMs in the CNN model to quantify the uncertainties between GCMs and SSPs. 
This will increase the potential of using downscaled variables in crop models not only in Egypt but also in similar arid environments 
throughout the MENA region and developing countries. 
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[33] P. López López, et al., Spatial downscaling of satellite-based precipitation and its impact on discharge simulations in the magdalena river basin in Colombia, 

Front. Earth Sci. 6 (68) (2018). 
[34] S. Jia, et al., A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China, Rem. Sens. Environ. 115 

(12) (2011) 3069–3079. 
[35] J. Fang, et al., Spatial downscaling of TRMM precipitation data based on the orographical effect and meteorological conditions in a mountainous area, Adv. 

Water Resour. 61 (2013) 42–50. 
[36] W. Jing, et al., A comparison of different regression algorithms for downscaling monthly satellite-based precipitation over North China, Rem. Sens. 8 (10) (2016) 

835. 
[37] J. Baño-Medina, et al., Downscaling multi-model climate projection ensembles with deep learning (DeepESD): contribution to CORDEX EUR-44. Geosci, Model Dev. 15 

(17) (2022) 6747–6758. 
[38] N. Rampal, et al., High-resolution downscaling with interpretable deep learning: rainfall extremes over New Zealand, Weather Clim. Extrem. 38 (2022), 100525. 
[39] A. Amin, et al., Evaluation and analysis of temperature for historical (1996–2015) and projected (2030–2060) climates in Pakistan using SimCLIM climate 

model: ensemble application, Atmos. Res. 213 (2018) 422–436. 
[40] W. Nasim, et al., Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan, 

Atmos. Res. 205 (2018) 118–133. 
[41] Ojha, M.K.G.a.C.S.P, Robust weighted regression as a downscaling tool in temperature projections, Int. J. Glob. Warming 2 (3) (2010) 234–251. 
[42] C.S.P.O. Manish Kumar Goyal, Evaluation of various linear regression methods for downscaling of mean monthly precipitation in arid pichola watershed, Nat. 

Resour. 1 (2010) 11–18. 
[43] M.K. Goyal, C.S.P. Ojha, Downscaling of precipitation on a lake basin: evaluation of rule and decision tree induction algorithms, Nord. Hydrol 43 (3) (2012) 

215–230. 
[44] W.T. Anna Vaughan, J. Scott Hosking, Richard E. Turner, Convolutional conditional neural processes for local climate downscaling, Geosci. Model Dev. (GMD) 

(2021), https://doi.org/10.5194/gmd-2020-420. 
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