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a b s t r a c t 

A gridded maximum and minimum (Tx and Tn) daily tem- 

perature dataset derived by spatial downscaling and bias 

correction of the ERA5-Land (ERA5L) for the period 1981–

2010 is presented. Observed daily Tx and Tn at 154 sta- 

tions in Ethiopia covering record lengths of 5–30 years were 

used as a reference. The statistics that define the Gaus- 

sian distribution (mean and standard deviation) of Tx and 

Tn from the station observations were interpolated in space 

to create a monthly climatology and interannual statistics 

at 0.05 ° × 0.05 ° resolution using a hybrid interpolation 

approach that combines linear regression with topographic 

and location attributes, and non-Euclidean inverse distance 

weighting interpolation. The interpolated monthly and inter- 

annual statistics were then used to debias the ERA5L Tx and 

Tn using a quantile mapping approach. Leave-one-out cross- 

validation showed that the mean absolute errors in the cor- 

rected and downscaled daily temperatures are about 0.7 °C 
for Tx and 1.1 °C for Tn, reducing the statistical biases in the 

ERA5L Tx and Tn by 68% and 25% respectively. For monthly 

climatology, 40–64% of the biases were removed for Tx while 

for Tn the reductions range from 19% to 32%. The correction 
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also improved commonly used indices for extremes like the 

probability of warm days, cold days, and warm nights, but 

overestimated the probability of cold nights. The presented 

open-access Tx and Tn dataset is a substantial improvement 

over existing gridded temperature datasets for Ethiopia, such 

as ERA5L and the Climate Hazards Infrared Temperature with 

Station (CHIRTS), and we suggest it is suitable for a wide 

range of environmental applications, e.g. in the fields of hy- 

drology, agriculture, and ecology. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

S
pecifications table 

Subject Earth and planetary science 

Specific subject area Climate science, meteorology, hydrology, agriculture, forestry, and human and 

environmental-related subjects 

Type of data Raw 

Analyzed 

Derived 

How the data were acquired (1) Spatial downscaling of the raw ERA5-Land (ERA5L) maximum (Tx) and 

minimum (Tn) temperature from 0.1 ° × 0.1 ° to 0.05 ° × 0.05 ° using bilinear 

interpolation; (2) Spatial interpolation of the observed Tx and Tn statistics (mean 

and standard deviation) at 154 stations using an inverse generalized distance 

weighting technique; (3) Quantile mapping to adjust the statistical biases in the 

downscaled ERA5L Tx and Tn using the transfer function constructed from the 

observed temperature field; and (4) Evaluation of the dataset using the 

Leave-One-Out Cross-Validation method. 

Data format Figure 

Table 

Image 

NetCDF 

Description of data collection The daily temperature records for Ethiopia used as a reference for bias correction 

and spatial downscaling were obtained from 154 In-situ OBServed (IOBS) climate 

stations with record lengths ranging from 5 to 30 years between the period 

1981–2010. The raw daily ERA5L Tx and Tn were retrieved from the hourly ERA5L 

2-m air temperature. 

Data source location Raw ERA5L Tx and Tn dataset source: 

• Institution: European Center for Medium-Range Weather Forecast (ECMWF) 

• Data center: Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 

• Website: https: 

//cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis- era5- land?tab=form 

Observed Tx and Tn data source for stations in Ethiopia: 

• Institution: National Meteorological Service Agency of Ethiopia 

• City: Addis Ababa 

• Country: Ethiopia 

Observed Tx and Tn data source for stations in the neighboring countries: 

• Institution: National Oceanic and Atmospheric Administration (NOAA) 

• Dataset: Global Historical Climatology Network (GHCN) daily 

• Website: https://www.ncei.noaa.gov/products/land- based- station/ 

global- historical- climatology- network- daily 

Data accessibility Dataset file name: BCE5.zip 

Repository name: ETH Zurich Research Collection 

Data identification number: 10.3929/ethz-b-0 0 0546574 

Direct permanent URL to data: https://doi.org/10.3929/ethz- b- 0 0 0546574 . 

http://creativecommons.org/licenses/by/4.0/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://doi.org/10.3929/ethz-b-000546574
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Value of the Data 

• The Bias-Corrected ERA5-Land (hereafter BCE5) temperature data is downscaled to a spatial

resolution that matches common gridded precipitation products (such as the CHIRPS rainfall).

Thus, it is highly convenient for use in combination with these datasets in a wide range of

applications at national, regional, catchment and local scales. 

• Compared to the raw ERA5L, BCE5 has an improved accuracy that is assimilated from the lo-

cal temperature gradient at 154 ground observation stations, because the temperature statis-

tics from the stations provide an unprecedented local temperature space-time variation for

Ethiopia not incorporated in other gridded temperature datasets. 

• The mean absolute errors in the BCE5 daily climatology are about 0.7 °C for Tx and 1.1 °C
for Tn, reducing the statistical biases in the ERA5L Tx and Tn by 68% and 25% respectively.

For monthly climatology, 40–64% of the biases were removed for Tx and while for Tn the

reductions range from 19% to 32%. 

• The BCE5 dataset is useful for researchers, practitioners, planners and decision-makers in var-

ious disciplines, for instance, agriculture, hydrology, and ecology, where weather and climate

data are crucial. 

• In particular, it can be used in climate impact assessment, heatwave and drought assessment,

catchment hydrological modeling, crop growth modeling and monitoring, agricultural water

management, water resources planning, ecological system monitoring, and understanding the

complex water-energy-food-environment nexus in Ethiopia. 

1. Data Description 

1.1. The bias-corrected dataset 

The bias-corrected temperature dataset presented in this paper has a spatial resolution of

0.05 ° × 0.05 °. It is available at daily time steps for the period 1981–2010 covering Ethiopia and

areas within 20–30 km (i.e., 4–6 grids) outside the boundary of Ethiopia. The data raster has

a geographic coordinate system (WGS 84). The data files are stored in NetCDF format – a self-

describing file format with an extension .nc that can be read and written using programming

languages (Python, MATLAB, R, Ruby, IDL and Perl), programming interfaces (C, C ++ , Java, and

Fortran), and graphical user interfaces like GIS. The dataset file is named “BCE5.nc” (stands for

‘Bias-Corrected ERA5-Land’) and has two climatic variables, the maximum and minimum daily

temperature in °C. The variables of the BCE5.nc file are as follows: 

• “Lat” is latitude in decimal degrees with a dimension of 260 ×1. 

• “Lon” is longitude in decimal degrees with a dimension of 340 ×1. 

• “Time” is a time variable in days from 1981 to 2010 with a dimension of 10957 ×1. 

• “Tmax” is the maximum daily temperature in °C with a dimension of 260 ×340 ×10957. 

• “Tmin” is the minimum daily temperature in °C with a dimension of 260 ×340 ×10957. 

1.2. Input datasets 

The input data used in the derivation of BCE5 are: the raw daily ERA5L Tx and Tn, the IOBS

Tx and Tn statistics, and the Shuttle Radar Topography Mission (SRTM) digital elevation data.

ERA5L [1] is a high-resolution reanalysis global dataset of several land variables governing the

water and energy cycles. It is produced by re-running the land component of the European Cen-

ter for Medium-Range Weather Forecast (ECMWF) ERA5 climate model on an enhanced grid res-

olution (0.1 ° × 0.1 °) at hourly time steps using the atmospheric forcing from ERA5 [2] as inputs,

covering the period from 1950 to 2–3 months before the present time. The period 1981–2010
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Fig. 1. The observed temperature station network used in this study and data record lengths in years (shown by the 

colors of the circles) from 1981 to 2010. The background feature is the SRTM digital elevation model ( https://cgiarcsi. 

community/ last accessed in July 2021). The dashed lines show the approximate position of the Great East African Rift 

Valley in Ethiopia. 
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as considered for the derivation of the BCE5 dataset. The IOBS data at 146 stations were ob-

ained from the National Meteorological Service Agency (NMSA) of Ethiopia, while the data for

dditional 8 stations in Eritrea, Kenya, South Sudan, and Sudan were collected from the Global

istorical Climatology Network (GHCN) daily dataset [3] . 

Fig. 1 shows the digital terrain model of Ethiopia and the neighboring countries, and the

patial distribution of the IOBS stations. The IOBS datasets have enormous data gaps, which un-

ermine the temporal continuity and overlapping of the time series. For this reason, the deriva-

ion of the BCE5 dataset was based on the first and second-order temperature statistics, rather

han the complete IOBS temperature time series. The temperature data at the stations where

he record is available for 5–30 years in the period 1981–2010 were used for the computation

f the temperature statistics. The record length at the stations is indicated by the colors of the

ircles in Fig. 1 . The IOBS temperature datasets follow closely a Gaussian distribution. This is

llustrated in Fig. 2a and b , which indicate the probability density of the daily maximum and

inimum temperatures respectively, at each station in Ethiopia. Fig. 2c reveals the estimates of

ncertainties in the mean annual Tx and Tn temperature that is associated with the differences

n record length. 

.3. Performance of the dataset 

The performances of the bias correction are indicated using error statistics – the mean abso-

ute error (MAE) and root mean squared error (RMSE), temperature extreme indices and Pear-

https://cgiarcsi.community/
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Fig. 2. Kernel densities of standardized a) maximum daily temperature (Tx) and b) minimum daily temperature (Tn) at 

146 IOBS stations over the period 1981–2010. The thick blue kernels correspond to a standardized normally distributed 

set of random numbers with a sample size equal to the record length of a 30-year daily temperature dataset ( n = 10957). 

c) The estimated errors (sampling uncertainties) arising from the differences in record length based on the annual mean 

Tx and Tn. 

Table 1 

MAE and RMSE of the bias-corrected ERA5L (BCE5), cross-validation (LOOCV), raw ERA5L, and CHIRTS compared for daily 

climatology of mean and standard deviation from all IOBS locations. 

Tx Tn 

Mean Std Mean Std 

Dataset MAE ( °C) RMSE ( °C) MAE ( °C) RMSE ( °C) MAE ( °C) RMSE ( °C) MAE ( °C) RMSE ( °C) 

BCE5 0.05 0.07 0.07 0.11 0.01 0.02 0.08 0.10 

LOOCV 0.68 0.91 0.27 0.37 1.07 1.27 0.48 0.63 

ERA5L 2.14 2.55 0.26 0.33 1.43 1.77 0.64 0.86 

CHIRTS 1.30 1.64 0.40 0.50 2.53 2.94 0.56 0.73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

son correlation coefficient. Table 1 presents the comparison of the error statistics for the daily

climatologies of the derived BCE5 Tx and Tn datasets, the validation dataset that is based on

the Leave-One-Out Cross Validation (LOOCV), the raw ERA5L, and the Climate Hazards group

Infrared Temperature with Station (CHIRTS) – an independent gridded temperature dataset of 

similar temporal and spatial resolution [4] . The error statistics (MAE) for the monthly climatolo-

gies of BCE5, LOOCV, ERA5L and CHIRTS datasets are displayed in Fig. 3 whereas the MAE for

the annual Tx and Tn over the period 1981–2010 is depicted in Fig. 4 . Furthermore, the compar-

ison of the extreme temperature indices, namely the probabilities of warm days (Prob[Tx > 90 th 

percentile of Tx]), warm nights (Prob[Tn > 90 th percentile of Tn]), cold days (Prob[Tx < 10 th 

percentile of Tx]), and cold nights (Prob[Tx < 10 th percentile of Tx]) [5 , 6] among BCE5, LOOCV,

ERA5L, and CHIRTS datasets are presented in Fig. 5 . The maps in Fig. 6 shows the differences be-

tween the new BCE5 and the original ERA5L datasets on the climatological time scale. In Fig. 7 ,

the correlation between the IOBS and BCE5 temperatures at various aggregation timescales has

been illustrated using the Pearson correlation coefficient at Addis Ababa and Dire Dawa stations.

2. Experimental Design, Materials and Methods 

The BCE5 dataset was derived by downscaling the ERA5L to a higher spatial resolution of

0.05 °, i.e. ∼5 km, and adjusting its statistical biases using observed temperature at ground sta-

tions as a reference. The bias adjustment was made using quantile mapping (QM) where the

transfer function was parameterized by the first and second-order temperature statistics sum-

marized at the IOBS stations in Ethiopia and a few stations along the borders of the neighboring

countries as discussed in Section 1 . 
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Fig. 3. Comparison of the mean absolute errors ( °C) in the monthly climatology of the BCE5 and LOOCV with ERA5L 

and CHIRTS for Tx (panel a) and Tn (panel b) for the period 1981–2010. 

Fig. 4. Comparison of the mean absolute errors in the annual mean BCE5 and LOOCV with ERA5L and CHIRTS for Tx 

(panel a) and Tn (panel b) at 146 ground stations in Ethiopia. 

2

 

t  

c  
.1. Data quality control 

Prior to the computation of the statistics from the IOBS, quality control measures were taken

o fix the data quality issues such as outliers and homogeneity. The outliers in the datasets were

hecked and removed using a z-score based approach, where z-scores were computed based on
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Fig. 5. Comparison of temperature extreme probabilities in the corrected BCE5, cross-validation LOOCV, ERA5L, and 

CHIRTS datasets. a) warm day probability defined as Prob[Tx > 90 th percentile(Tx)], b) cold day probability – Prob[Tx < 

10 th percentile(Tx)], c) probability of warm night – Prob[Tn > 90 th percentile(Tn)], d) probability of cold night – Prob[Tx 

< 10 th percentile(Tn)], all computed for 24 stations with continuous records of at least 25 years during 1983–2010 (cho- 

sen to match the start of CHIRTS dataset). The green dashed line shows the threshold probability of 0.1 corresponding 

to the frequencies computed from the IOBS data. 

Fig. 6. Comparison of climatological means of the bias-corrected ERA5L (BCE5) and the original ERA5L Tx (a and b) and 

Tn (d and e), and their differences (c and f). The insets in c and f are the histograms of the differences between BCE5 

and ERA5L Tx (c) and Tn (f). The circles show the climatological means of IOBS at each of the 146 stations considered 

in this study. 
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Fig. 7. Illustrations of correlation coefficients (r) between the observed and corrected Tx and Tn datasets at different 

aggregation times at Addis Ababa (a and b) and Dire Dawa (c and d) stations. 
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c  
he mean and standard deviation of every 30-day window, and a data point with six times or

reater standard deviation from the mean over the window was considered as an outlier [7] .

nhomogeneity detections and treatments were based on manual methods [8] , as automated

ests were barely suitable for the detection of inhomogeneities due to the presence of signifi-

antly large and irregular data gaps in the IOBS time series. Through visual inspection of the

emperature time series, three types of possible inhomogeneities were identified in Tx and Tn

t some of the IOBS stations, namely: abrupt jumps in the mean, abrupt changes in the spread,

nd simultaneous jumps in the mean and the spread of the data. Inhomogeneities due to the

brupt jumps in the mean were corrected by shifting the arithmetic mean of the offset segment

owards the mean of the time series before and after the offset segment. In the cases where

he inhomogeneity involved a change in the spread of the data, the segments with the offset

tandard deviation were removed from the time series because the cause of these random fluc-

uations is difficult to determine with confidence. The removal of the segments will certainly

ncrease the data gaps in the time series, but the effect on the statistics that are computed from

he time series is minimal as illustrated in see Fig. 2c . 

.2. Computation of the IOBS temperature statistics 

The temperature statistics (mean and standard deviation) were computed from the quality-

ontrolled IOBS data. For the computation of the statistics and thus, the derivation of the BCE5
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dataset, only the period 1981–2010, for which relatively sufficient IOBS data is available for this

particular work was considered. Moreover, this period is also a standard climate period for var-

ious climate analyses, as recommended by the World Meteorological Organization (WMO) [9] .

Keeping in mind the possible biases (sampling uncertainties) that could result from the differ-

ences in the record length, the climatological monthly statistics were computed from the Tx and

Tn of all days of the month over the entire record length during the period 1981–2010. Similarly,

the annual statistics were calculated from all days of the year in which records are available for

at least 50% of the days of the year. This minimum record threshold for the annual statistics was

imposed to reduce biases in the annual statistics that could arise from the temperature season-

ality. This implies that for the years with no or insufficient records, the computation leaves gaps

in the annual statistics. The missing values in the annual statistics were filled using a linear re-

gression (LR) model combined with inverse generalized distance weighting interpolation [10] of

four closest stations (details in Section 2.3 ). Note that the differences between the mean of the

statistics before and after the filling result in systematic errors associated with the short records,

which are also manifested in the monthly statistics. Therefore, the computed errors were added

to the monthly statistics to account for some of the uncertainties that could arise from shorter

record lengths. 

2.3. Spatial interpolation of the IOBS temperature statistics 

The stationary monthly and non-stationary annual temperature statistics at IOBS stations

were interpolated in space onto 0.05 ° × 0.05 ° grid cells using the hybrid interpolation ap-

proach proposed by Frei [10] that combines regression and deterministic interpolation tech-

niques in two separate steps. In the first step, the background fields of the temperature statis-

tics were determined at every grid based on a multivariate LR model of the monthly and

annual temperature statistics with elevation ( z ), and longitudinal ( x ) and latitudinal ( y ) lo-

cations as predictor variables. Accordingly, the background temperature mean μb at a target

grid cell ( x,y ) was modelled as a function of z and y using μb ( x, y ) = β0 + β1 z( x, y ) + β2 y ( x, y )

while the background standard deviation σb was determined as a function of z, y, and x using

μb ( x, y ) = β0 + β1 z( x, y ) + β2 y ( x, y ) + β3 x ( x, y ) , where β0 is the intercept, β1 , β2 , β3 are the

multivariate LR model slopes, in particular β1 defines the lapse rate ( °C/m) whereas β2 and β3 

are longitudinal and latitudinal location coefficients and the models were applied to determine

the background Tx and Tn monthly and annual statistics. In Ethiopia, the temperature is strongly

correlated with elevation and thus the predictive power of the temperature-elevation LR model

is solid, making the hybrid interpolation a better approach. The coefficient of determination (R 

2 )

of the multivariate LR model for every month is given in Table 2 . 

In the second step, the residuals of the modelled temperature statistics were computed at ev-

ery station and interpolated in space using the Inverse Generalized Distance Weighting (IGDW)

approach to determine the residual fields. The residual mean ( μr ) and standard deviation ( σr )

at a station s are the deviations of the observed mean ( μo ) and standard deviation ( σo ) from

the modelled background temperature statistics and these are given as μr (s ) = μb (s ) − μo (s )

for residual mean and σr (s ) = σb (s ) − σo (s ) for residual standard deviation. 

The IGDW interpolation approach follows the same principles of the classical Inverse Distance

Weighting (IDW) interpolation but considers a non-Euclidean distance to assign weights to the

stations. This is an important consideration, particularly in the context of Ethiopia to account

for the effects of topographic barriers on horizontal air mass transfer between two locations in

the mountainous regions. IDGW accounts for this effect to determine terrain-adjusted distance

weights by penalizing the Euclidean distance between two locations L 1 and L 2 depending on

their elevation difference. The penalized Euclidean distance is termed as a generalized distance

and is computed as [10] : D λ, ( L 1 → L 2 ) 
= 

√ 

( x 1 − x 2 ) 
2 + ( y 1 − y 2 ) 

2 + ( λ. ( z 1 − z 2 ) ) 
2 
, where D λ is

the generalized distance between two points, x 1 - x 2 are the longitudinal distances, y 1 - y 2 are

the latitudinal distances, z 1 - z 2 are the elevation differences between the two locations, and
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Table 2 

R 2 of the linear regression model of the mean ( μ) and standard deviation ( σ) of Tx and Tn versus elevation (z), longitude 

(x), and latitude (y) based on the 154 IOBS stations. 

Maximum temperature Minimum temperature 

Month μT x = f ( y, z ) σT x = f ( x, y, z ) μT n = f ( y, z ) σT n = f ( x, y, z ) 

Jan 0.87 0.17 0.78 0.13 

Feb 0.89 0.17 0.81 0.12 

Mar 0.91 0.10 0.88 0.17 

Apr 0.93 0.21 0.92 0.31 

May 0.93 0.32 0.93 0.24 

Jun 0.86 0.15 0.94 0.21 

Jul 0.87 0.13 0.95 0.17 

Aug 0.90 0.14 0.95 0.09 

Sep 0.93 0.20 0.94 0.12 

Oct 0.94 0.24 0.90 0.18 

Nov 0.92 0.10 0.81 0.08 

Dec 0.89 0.14 0.77 0.10 

Fig. 8. Selection of the layering coefficient λ. a) Mean cross-validation RMSE of monthly Tx and Tn (Txm and Tnm) and 

annual Tx and Tn (Txa and Tna) for a set of λ considering all stations. b) Mean cross-validation RMSE at highly sensitive 

stations, i.e., stations at which RMSE is reduced by 0.5 °C or more at λ = 100 compared to the RMSE at λ = 0. The 

optimum value (indicated by the green dashed line) used for the interpolation of the residual fields was chosen to be 

λ = 100. 

λ  

t

 

s  

f  

s

[m/m] is a layering coefficient, i.e. a predefined free parameter that imposes an additional dis-

ance penalty per unit increase in elevation difference between the locations. 

The layering coefficient λ was determined based on leave-one-out cross-validation [10 , 11] . A

et of predefined values of λ ∈ [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200] were evaluated

or the monthly and annual mean, and an optimal λ was chosen based on minimal root mean

quared error (RMSE) as shown in Fig. 8 . 



M.T. Wakjira, N. Peleg and P. Burlando et al. / Data in Brief 46 (2023) 108844 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once the optimal layering coefficient was identified, the IGDW interpolation scheme was im-

plemented to determine the residual fields at every grid: μr ( x, y ) = 

∑ n 
i =1 ( D 

−q 
λ,i 

μr,i ) 
∑ n 

i =1 D 
−q 
λ,i 

where i is a

station and n is the total number of stations accounted for in the estimation of the residuals

at grid ( x,y ). Four nearby stations ( n = 4) were considered optimal given the rather low station

network density in the study area. An exponent of distance weight q = 2 was used. Note that

the above equation is an IGDW scheme for the residuals of temperature mean ( μr ). The same

equation, but with λ = 0 (the classical IDW interpolation) was applied to the residuals of tem-

perature standard deviation ( σr ) considering the weak correlation between elevation and the

temperature variance. Finally, the gridded monthly and annual IOBS statistics that are needed to

define the transfer function for the QM were obtained by adding the background and residual

fields of the temperature statistics. 

2.4. Quantile mapping 

The fundamental principle of QM is to transform the distribution of a modelled variable (in

our case ERA5L temperature, T m 

) to the distribution of the corresponding observed variable T o ,

and the concept can be formulated as T o = F −1 
o ( F m 

( T m 

) ) where F o is the cumulative distribution

function (CDF) of T o , which serves as a transfer function, and F m 

is the CDF of T m 

to be trans-

formed. In our application, the CDF of T o is described by the interpolated statistics derived from

IOBS stations as discussed in Section 2.3 , and the QM bias correction is applied to T m 

, which

is derived from ERA5L Tx and Tn at every grid. Before the implementation of QM, the ERA5L

Tx and Tn were downscaled from their original spatial resolution of 0.1 ° × 0.1 ° to the target

resolution of 0.05 ° x 0.05 ° using a bilinear interpolation. 

The corrections of the ERA5L Tx and Tn were performed in two steps to quantify separately

the effect of de-biasing on a seasonal basis and account for nonstationarity in time. First, the

temperature datasets were corrected at every grid for monthly climatology assuming stationar-

ity, by sampling the ERA5L temperature of all days in month m over the entire period (1981–

2010), determining the Gaussian CDF of the sub-sample (containing 847, 900, or 930 data values

depending on the month), and mapping it to the CDF of the observed temperature, which is

defined by the monthly statistics of the IOBS. Second, the temperature time series that was

corrected for monthly climatology was additionally corrected for every year using annual sub-

samples of the time series from the first step (the number of data values is 365 or 366), and the

annual IOBS statistics. This step is targeted to reproduce the IOBS-based interannual variability

in the bias-corrected ERA5L 2-m air temperature (hereafter BCE5). 

The QM-based corrections applied to the annual sub-samples combined with the corrections

for monthly climatology (QMASS) in the derivation of this data yield similar results to the QM

that is applied to seasonal sub-samples (QMSSS) by others, e.g., [12–15] as demonstrated in

Fig. 9 . The advantage of the procedure presented here is that it allows the use of quality-

controlled first and second-order statistics instead of a complete time series for the observed

variables in the cases where data availability is limited. This is particularly vital for enhancing

the quality of the gridded climate datasets for local applications in data-scarce regions. 

2.5. Evaluation of the dataset 

The final corrected dataset BCE5 variables Tx and Tn were evaluated using the leave-one-

out cross-validation (LOOCV) approach. The evaluation was undertaken at all IOBS stations in

Ethiopia which were considered in this application, using root mean squared error (RMSE) and

mean absolute error (MAE) as evaluation statistics. The performance of BCE5 corresponding to

the LOOCV was compared to the raw ERA5L and CHIRTS datasets for daily, monthly, annual

statistics, and four extreme temperature indices – warm day, warm night, cold day and cold

night probabilities, as described in Section 1.3 . 
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Fig. 9. Performance comparison of sub-sampling-based QM – annual sub-samples combined with monthly climatology 

(QMASS, this study) and seasonal sub-samples (QMSSS, others) to IOBS and ERA5L. a) Empirical cumulative distributions, 

b) monthly climatology, c) interannual variability of ERA5L, IOBS, and corrected Tx, an example at Addis Ababa station 

for the period 1981–2010. 
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In principle, QM corrects the biases in the distribution parameters, i.e. mean and standard

eviation, but not the biases in the temporal sequence of the individual daily values [14] . Con-

equently, uncertainties are expected in the daily data. These uncertainties however sharply de-

rease at coarser aggregation times, for instance at pentadal (5-day) scale and coarser as illus-

rated in Fig. 7 Therefore, users can choose the aggregation time at which the bias-corrected

ataset can be reliably used for desired applications. 

thics Statements 

No human subjects, animal experiments, or data collected from social media platforms were

nvolved in the derivation of the dataset presented in this paper. 
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The BCE5 daily maximum and minimum temperature dataset at 0.05 ° × 0.05 ° grid resolution

or the period 1981–2010, covering Ethiopia and areas within 20–30 km (i.e., 4–6 grids) out-

ide the boundary of Ethiopia, is freely available for scientific, commercial and non-commercial

se. The dataset [16] is stored in a single NetCDF file in an open-access format and can be ac-

essed at the ETH Zurich research collection through a permanent link ( https://doi.org/10.3929/

thz- b- 0 0 0546574 ). 

eclaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal rela-

ionships that could have appeared to influence the work reported in this paper. 

ata Availability 

Bias-corrected and downscaled ERA5- Land 2- m air temperature dataset for Ethiopia for the

eriod 1981-2010 (Original data) (ETH Zurich Research Collection). 

https://doi.org/10.3929/ethz-b-000546574
https://doi.org/10.3929/ethz-b-000546574


M.T. Wakjira, N. Peleg and P. Burlando et al. / Data in Brief 46 (2023) 108844 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRediT Author Statement 

Mosisa Tujuba Wakjira: Conceptualization, Data curation, Methodology, Writing – original 

draft; Nadav Peleg: Methodology, Writing – review & editing; Paolo Burlando: Writing – review

& editing; Peter Molnar: Methodology, Writing – review & editing, Supervision. 

Acknowledgments 

This research is funded by the Engineering for Development E4D Doctoral Scholarship Pro-

gram of ETH for Development (ETH4D), ETH Zurich, as part of the research project ‘Rainfed agri-

culture in Ethiopia: climate vulnerability and adaptation’. The authors would like to thank the

National Meteorological Service Agency of Ethiopia for the observed temperature data, and the

authors of the ERA5-Land for making the dataset freely available. 

References 

[1] J. Muñoz-Sabater, E. Dutra, A. Agustí-Panareda, C. Albergel, G. Arduini, G. Balsamo, S. Boussetta, M. Choulga, S. Har-

rigan, H. Hersbach, B. Martens, D. Miralles, M. Piles, N. Rodríguez-Fernández, E. Zsoter, C. Buontempo, J.-N. Thépaut,
ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data 13. (2021) 4349–

4383. doi: 10.5194/essd- 13- 4349- 2021 . 

[2] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schep-
ers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara,

P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy,
R.J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum,

F. Vamborg, S. Villaume, J.N. Thépaut, The ERA5 global reanalysis, Q. J. R. Meteorol. Soc. 146 (2020) 1999–2049,
doi: 10.1002/qj.3803 . 

[3] M.J. Menne, I. Durre, R.S. Vose, B.E. Gleason, T.G. Houston, An overview of the global historical climatology network-

daily database, J. Atmos. Ocean. Technol. 29 (2012) 897–910, doi: 10.1175/JTECH- D- 11- 00103.1 . 
[4] A. Verdin, C. Funk, P. Peterson, M. Landsfeld, C. Tuholske, K. Grace, Development and validation of the CHIRTS-daily

quasi-global high-resolution daily temperature data set, Sci. Data 7 (2020) 1–14, doi: 10.1038/s41597- 020- 00643- 7 . 
[5] M.G. Donat, L.V. Alexander, H. Yang, I. Durre, R. Vose, R.J.H. Dunn, K.M. Willett, E. Aguilar, M. Brunet, J. Caesar,

B. Hewitson, C. Jack, A.M.G. Klein Tank, A.C. Kruger, J. Marengo, T.C. Peterson, M. Renom, C. Oria Rojas, M. Rusticucci,
J. Salinger, A.S. Elrayah, S.S. Sekele, A.K. Srivastava, B. Trewin, C. Villarroel, L.A. Vincent, P. Zhai, X. Zhang, S. Kitching,

Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century:

the HadEX2 dataset, J. Geophys. Res. Atmos. 118 (2013) 2098–2118, doi: 10.1002/jgrd.50150 . 
[6] H. YIN, Y. SUN, Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices,

Adv. Clim. Chang. Res. 9 (2018) 218–226, doi: 10.1016/j.accre.2019.01.001 . 
[7] I. Durre, M.J. Menne, B.E. Gleason, T.G. Houston, R.S. Vose, Comprehensive automated quality assurance of daily

surface observations, J. Appl. Meteorol. Climatol. 49 (2010) 1615–1633, doi: 10.1175/2010JAMC2375.1 . 
[8] Guidelines on Homogenization, WMO, Geneva, 2020 https://library.wmo.int/doc _ num.php?explnum _ id=10352 . 

[9] Guidelines on the Calculation of Climate Normals, WMO, Geneva, 2017 https://library.wmo.int/doc _ num.php?
explnum _ id=4166 . 

[10] C. Frei, Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances,

Int. J. Climatol. 34 (2014) 1585–1605, doi: 10.1002/joc.3786 . 
[11] J. Hiebl, C. Frei, Daily temperature grids for Austria since 1961—concept, creation and applicability, Theor. Appl.

Climatol. 124 (2016) 161–178, doi: 10.10 07/s0 0704- 015- 1411- 4 . 
[12] D. Maraun, Bias correction, quantile mapping, and downscaling: revisiting the inflation issue, J. Clim. 26 (2013)

2137–2143, doi: 10.1175/JCLI- D- 12- 00821.1 . 
[13] D.W. Pierce, D.R. Cayan, E.P. Maurer, J.T. Abatzoglou, K.C. Hegewisch, Improved bias correction techniques for hydro-

logical simulations of climate change, J. Hydrometeorol. 16 (2015) 2421–2442, doi: 10.1175/JHM- D- 14- 0236.1 . 

[14] J. Rajczak, S. Kotlarski, C. Schär, Does quantile mapping of simulated precipitation correct for biases in transition
probabilities and spell lengths? J. Clim. 29 (2016) 1605–1615, doi: 10.1175/JCLI- D- 15- 0162.1 . 

[15] J. Ruffault, N.K. Martin-StPaul, C. Duffet, F. Goge, F. Mouillot, Projecting future drought in Mediterranean forests: bias
correction of climate models matters!, Theor. Appl. Climatol. 117 (2013) 113–122, doi: 10.10 07/s0 0704- 013- 0992- z . 

[16] M.T. Wakjira, N. Peleg, P. Molnar, P. Burlando, Bias-corrected and downscaled ERA5-Land 2-m air tempera-
ture dataset for Ethiopia for the period 1981-2010, ETH Zurich Research Collection (May 2022). doi: 10.3929/

ethz- b- 0 0 0546574 . 

https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JTECH-D-11-00103.1
https://doi.org/10.1038/s41597-020-00643-7
https://doi.org/10.1002/jgrd.50150
https://doi.org/10.1016/j.accre.2019.01.001
https://doi.org/10.1175/2010JAMC2375.1
https://library.wmo.int/doc_num.php?explnum_id=10352
https://library.wmo.int/doc_num.php?explnum_id=4166
https://doi.org/10.1002/joc.3786
https://doi.org/10.1007/s00704-015-1411-4
https://doi.org/10.1175/JCLI-D-12-00821.1
https://doi.org/10.1175/JHM-D-14-0236.1
https://doi.org/10.1175/JCLI-D-15-0162.1
https://doi.org/10.1007/s00704-013-0992-z
https://doi.org/10.3929/ethz-b-000546574

	Gridded daily 2-m air temperature dataset for Ethiopia derived by debiasing and downscaling ERA5-Land for the period 1981-2010
	Value of the Data
	1 Data Description
	1.1 The bias-corrected dataset
	1.2 Input datasets
	1.3 Performance of the dataset

	2 Experimental Design, Materials and Methods
	2.1 Data quality control
	2.2 Computation of the IOBS temperature statistics
	2.3 Spatial interpolation of the IOBS temperature statistics
	2.4 Quantile mapping
	2.5 Evaluation of the dataset

	Ethics Statements
	Data availability
	Declaration of Competing Interest
	Data Availability
	CRediT Author Statement
	Acknowledgments

	References

