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A B S T R A C T   

Understanding the seasonal variations in surface urban heat island (SUHI) in different local 
climate zones (LCZs) is crucial to efforts to reduce the impacts of urban warming on local resi-
dents. However, such an understanding is constrained by the lack of land surface temperatures 
(LSTs) at both high spatial and temporal resolutions. This study created time series LSTs by fusing 
Landsat 8 satellite data and gap-filled MODIS products to further analyses of the SUHI seasonality 
in a semi-arid city, Xi'an, China. The results showed that LSTs of the open building types were 
generally lower than those of the compact building types. The highest SUHI intensity (7.17 ◦C) 
was found in ‘compact mid-rise buildings’ (LCZ2), whereas lowest (3.62 ◦C) was found in ‘open 
high-rise buildings’ (LCZ4) in July. The SUHI intensity peaked about 17–23 days later than the 
background LST. The annual SUHI hysteresis cycles exhibited an anti-clockwise concave-up 
pattern in the monsoon-influenced hot-summer humid continental climate (Dwa per Köppen- 
Geiger climate scheme). The SUHI intensity in autumn was higher than in spring under the same 
background LST. These results provide valuable information for developing heat mitigation 
strategies in different seasons.   

1. Introduction 

Urbanization transforms natural ecosystems into systems in which humans and nature are linked together, which inevitably 
changes the thermal environment in urban areas. As a well-documented consequence of urbanization (Oke, 1982), urban heat islands 
(UHIs) can affect water and air quality (Grimm et al., 2008), and increase energy consumption (Santamouris et al., 2015) and human 
health risks (Patz et al., 2005). Therefore, understanding the characteristics of UHIs can facilitate the design of mitigation plans for 
reducing the impacts of urban warming on local residents and environment, thereby contributing to the achievement of the Sustainable 
Development Goal 11, “Make cities and human settlements inclusive, safe, resilient, and sustainable” (United Nations, 2015). 

For many decades, the magnitude of the UHI effect has been quantified by simply calculating the difference in on-site temperature 
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measurements or remotely sensed surface temperature between ‘urban’ and ‘rural’ areas. However, this simple urban-rural difference 
can not reflect local climate variations within cities. In 2012, Stewart and Oke (2012) proposed the local climate zone (LCZ) framework 
to establish the relationship between different land surface types and the corresponding UHIs based on standardized descriptions. Each 
local climate zone corresponds to an area with uniform surface cover types, identical structure and material, and where human ac-
tivities carried out are alike. LCZ mapping methods can be divided into three types: manual sampling methods, geographic information 
system (GIS)-based classification methods and remote sensing classification methods (Quan and Bansal, 2021). The World Urban 
Database and Access Portal Tools (WUDAPT) is a database dedicated to developing detailed, open urban databases for major cities 
across the world (Bechtel et al., 2015). It adopted a classification method for mapping local climate zones with free and open data and 
software tools (Bechtel et al., 2019a). With the development and availability of high-resolution satellite sensors in recent years, LCZ 
maps with much finer spatial detail have been created in multiple cities (Kim et al., 2021; Liu and Shi, 2020). In addition, the 
application of multi-temporal high resolution remote sensing images showed great potential to improve the classification accuracy of 
LCZ maps. For example, the use of multi-seasonal Sentinel-2 images and a recurrent residual network obtained the overall classifi-
cation accuracy about 7% higher than single-seasonal images for LCZ mapping (Qiu et al., 2019). The convolutional neural networks 
with inputs of multi-temporal Sentinel-2 satellite data at 10 m spatial resolution yielded an overall classification accuracy of 86.5% for 
mapping LCZ (Rosentreter et al., 2020). 

The surface urban heat island (SUHI) seasonality has been demonstrated in numerous studies based on remotely sensed land surface 
temperature (LST) observations (Deilami et al., 2018; Fu and Weng, 2018) and further supported by numerical simulations (Manoli 
et al., 2020). The MODIS LST was an extensively used dataset for examining the seasonality of SUHI intensity from local to global scales 
(Botje et al., 2022; Chakraborty and Lee, 2019; Dewan et al., 2021b; Eleftheriou et al., 2018; Wang et al., 2022). Since the coarse 
resolution MODIS data tends to underestimate SUHI intensity using LCZ scheme, remotely sensed thermal images with high spatial 
resolution was considered to be more suitable for thermal effect analysis of different LCZ types (Chen et al., 2020; Geletič et al., 2019; 
Xia et al., 2022). The seasonal nature of LST differences among various LCZs has been examined using Landsat LSTs in cities such as 
Szeged, Hungary (Gémes et al., 2016), English Bazar, India (Ziaul and Pal, 2018), and Shenyang, China (Zhao et al., 2021). Using 
cloud- and snow-free Landsat 8 data, Geletič et al. (2019) reported that the thermal behavior of urban local climates zones exhibited 
significant seasonal, diurnal and nocturnal differences in three central European cities. Previous studies also revealed that the SUHI 
presented a cyclic pattern over seasons, and such a pattern was mainly controlled by the time lags between the surface energy budget of 
cities and the energy/water fluxes in rural areas (Manoli et al., 2020). By quantifying the intensity of the SUHI in spring and fall for 

Fig. 1. Geographic location of the study area. (a) The location of Xi'an in China. (b) The spatial extent of the study area. (c) Meteorological stations 
in the study area. The underlying image is a true colour composite of Gaofen-1 acquired on July 2, 2020. 
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>130,000 city clusters in Europe, Zhou et al. (2013) revealed distinctive hysteretic patterns in the seasonality of SUHIs. Based on the 
MODIS daily LST product, Sismanidis et al. (2022) found that the seasonal hysteresis of the SUHIs differed across Köppen–Geiger 
climate classes. Their study also showed that the SUHI hysteresis was universally concave-up in wet climates, while more complex 
patterns were captured in dry climates. Since the SUHI hysteresis cycles differ considerably among cities in dry climates, further 
analysis can help enrich our knowledge of the SUHI seasonal characteristics in these areas. 

Due to the lack of time series of high resolution land surface temperature data, remotely sensed LST images acquired on typical days 
have been used to characterize the SUHI for different months or seasons to explore the seasonal thermal behavior of LCZs (Geletič et al., 
2019). This has led to large uncertainties in the analysis of temporal variations in urban thermal environment (Fu and Weng, 2016; Hu 
et al., 2020). The use of time series thermal remote sensing data to capture the seasonal changes of SUHI can remove some biases 
possibly introduced by the limited remote sensing scenes (Xian et al., 2022). Spatiotemporal data fusion methods provide a possible 
means of improving the resolution of remotely sensed LST data that will allow enhanced analysis of SUHIs (Gao et al., 2006). In 
particular, the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) increases the accuracy of predicted fine- 
resolution remote sensing data, especially in the case of heterogeneous landscapes, and allows spatial detail to be preserved (Zhu et al., 
2010). Compared with in-situ measurements, the ESTARFM was recognized as a practical data fusion method for LST data blending on 
clear days (Long et al., 2020). The implementation of gap-filling approaches further facilitated the generation of LST time series by 
making use of partly cloud-covered images (Knauer et al., 2016; Liu et al., 2020). 

Since 2000, Xi'an has grown in size significantly and become a mega city in the semi-arid region in the northwestern China. Several 
studies have investigated the intensifying urban heat island effect in the city (Bechtel et al., 2019b; Lu et al., 2020), and these efforts 
mainly focused on the inter-annual variation in urban thermal environment (Han et al., 2022; Liu et al., 2019). Although under-
standing SUHI seasonality is crucial for the development of cooling strategies in water-scarce regions, a comprehensive investigation of 
the seasonal variations of SUHI in Xi'an was still needed. To address these gaps, this study aims to examine the seasonality and 
hysteresis cycles of the SUHI intensity in Xi'an by using the local climate zone framework and enhanced land surface temperature data. 
The LCZs were mapped using a random forest classifier and bi-seasonal high-resolution Gaofen-6 satellite images. Time series LSTs in 
2020 were retrieved by fusing MODIS and Landsat data. The seasonal variability and hysteretic patterns of SUHIs in different LCZs 
were analyzed using statistical analysis and curve fitting. 

2. Materials 

2.1. Study area 

Xi'an is a large inland city in the northwestern China (Fig. 1). According to the Köppen-Geiger climate zones (Beck et al., 2018), the 
majority of the study area belongs to the cold semi-arid climate (BSk), and a small part belongs to the monsoon-influenced humid 
subtropical climate (Cwa) and the monsoon-influenced hot-summer humid continental climate (Dwa). Winters are cold and dry; 
summers are hot and rainy. July has the highest average temperature. The study area included most parts of Xi'an along with the 
neighboring city of Xianyang and covered an area of about 3334.18 km2. As a result of rapid urban development, a large amount of 
previously cultivated lands has been converted to built-up, and this has exacerbated the local UHI effect (Xu et al., 2020). 

2.2. Datasets 

The data sources used for the LCZ mapping included two Gaofen-6(GF-6) scenes, impervious surface data, and building footprint 
data. Details of these datasets are shown in Table 1. 

Landsat, MODIS surface reflectance, and MODIS LST data were used as key inputs for the data fusion algorithm. The daily 
MOD09GA surface reflectance products (Vermote and Wolfe, 2015) containing red and near-infrared bands were obtained together 
with daily MOD11A1 LST data (Wan, 2014). The 8-day MODIS surface reflectance data (MOD09A1) (Vermote, 2015) and LST data 
(MOD11A2) (Wan et al., 2015) were also acquired. The MODIS products were downloaded from NASA's Land Processes Distributed 
Archive Center. Altogether, 4 Landsat and 100 MODIS image scenes were used (Table S1). The MODIS data products were re-projected 
to the geographic coordinate system of Landsat imagery and resampled to the spatial resolution of 30 m. Using the quality control 
layers from the MODIS LST products, clear sky pixels were selected for LST data fusion (Dewan et al., 2021a; Raj et al., 2020). 

3. Method 

The data processing required for the SUHI analysis consisted of several steps in this study (Fig. 2). First, a local climate zone map 

Table 1 
Datasets used for the LCZ classification.  

Data type Acquisition time Source Spatial resolution 

GF-6 July 2, 2020 Chinese Academy of Sciences Panchromatic 2 m; multispectral 8 m 
GF-6 November 2, 2020 Chinese Academy of Sciences Panchromatic 2 m; multispectral 8 m 
Building footprint data 2020 Baidu Maps Vector data 
Impervious surface data 2020 Tsinghua University 30 m  
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was produced for the study area. The missing MODIS LST values were filled in, and the ESTARFM algorithm was used to generate the 
red, NIR and TIR bands of Landsat-like images. Based on fused data, time series of Landsat-like LSTs were retrieved. Finally, the 
differences in LST between the LCZ types and the seasonality in the SUHI intensity were analyzed. 

3.1. Local climate zone classification 

The GF-6 satellite imagery was first preprocessed – this consisted of radiometric calibration, ortho-rectification, project conversion, 
resampling, and image fusion. NDVI values were also calculated using the original GF-6 data acquired on July 2, 2020. Then, typical 
areas for each LCZ type were delineated using polygons as training samples. The training samples were vectorized using Google Earth 
by interpreters based on Google Earth, Street View maps and field observations. Finally, the preprocessed remote sensing data, vector 
data, and selected training areas were loaded into a random forest classifier to generate the local climate zone map of the study area. 

3.2. Generation of Landsat-like land surface temperature data 

Since data gaps exist in MOD11A2 LST images acquired on several dates, a model that recovered the missing data based on known 
pixel values from the same scene was constructed for each missing pixel. The predictors were the known values of pixels that had been 
selected based on quality flags. The relationships between known and missing pixels can be approximated based on historical data and 
using machine learning methods. For most of these algorithms, several hundred images are used to train the model, which can be 
described as: 

Dijt = F(T11k,T21k,T12K ,T22k,…, Tnmk) (1)  

where Dijt is the temperature of the cloudy pixel in the ith row and jth column and t is the image acquisition time. Tijt is the temperature 
of a known pixel located in row i and column j; t = k indicates that information from the same image is used to estimate the value in the 
gap, and F is a function that can be estimated using machine learning algorithms (Sarafanov et al., 2020). 

Support vector regression function was used to model the relationship between known and missing pixels in our study, and 
MOD11A2 LST images acquired between 2019 and 2021 as the historical images to fill the gaps. A gap filling example is illustrated in 
Fig. 3. The gap-filled MODIS LSTs were converted to TIR radiance at the effective wavelength of Landsat 8 band 10 using Planck's law. 

The ESTARFM algorithm was used to generate Landsat-like data at 8-day temporal resolution. First, two fine-resolution Landsat 
images are used to find pixels that have values similar to the central pixel of a search window. Then, the weights of all the similar pixels 

Fig. 2. Data processing workflow used in this study.  
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which represents the contribution of these pixels to the predicted change at the central pixel are calculated. Third, the conversion 
coefficient for the similar pixels within the coarse pixel is calculated using a linear regression model. Finally, the reflectance of the 
central pixel is obtained by combing the two predicted fine-resolution values. 

The ESTARFM algorithm was performed on red, near infrared and TIR bands of the MODIS data, respectively. Three pairs of could- 
free Landsat and MODIS images were used as the start and end image pairs of the ESTARFM algorithm. The 8-day MODIS surface 
reflectance and LST images from dates between the start and end image pairs were used to predict Landsat-like images at corre-
sponding dates. Using the Landsat-like data, a radiative transfer model was then used to retrieve the LSTs (Chatterjee et al., 2017). The 
thermal infrared radiance can be expressed as: 

Lλ = Bλ(Ts)ελτ0λ + L↑
0λ +(1 − ελ)L↓

0λτ0λ (2)  

where Lλ is the thermal infrared radiance at wavelength λ; Bλ(Ts) represents the Planck blackbody brightness temperature for a physical 
surface temperature of Ts; ελ is the emissivity at wavelength λ; τ0λ is the atmospheric transmission from the ground to the sensor; L0λ

↑ is 
the atmospheric upwelling radiation and L0λ

↓ is the atmospheric downwelling radiation. 
According to Eq. (2), Bλ(Ts) can be obtained as: 

Bλ(Ts) =
Lλ − L↑

0λ − τ0λ(1 − ελ)L↓
0λ

ελτ0λ
(3) 

The emissivity is calculated using NDVI. The brightness temperature can then be converted to the land surface temperature, Ts, 
using the following equation: 

Ts =
K2

ln
(

1 + k1
Bλ(Ts)

) − 273.15 (4) 

The units of Ts in this equation are Celsius degrees; K1 and K2 are constants. 

3.3. Surface heat island intensity calculation 

The surface heat island intensity (SUHII) can be calculated as the difference between the average temperature of different built LCZ 
types and that of low-vegetation LCZ (LCZD) (Stewart and Oke, 2012). In this study, the SUHII was calculated using the following 
equation: 

SUHIILCZX = LSTLCZX − LSTLCZD (5)  

where SUHIILCZX represents the urban heat island intensity of LCZX, LSTLCZX represents the average surface temperature of LCZX and 
LSTLCZD represents the average surface temperature of the LCZD. 

3.4. Statistical analysis 

Kolmogorov–Smirnov normality tests (K–S tests) were performed to test the assumption that the land surface temperature data in 
the LCZs had a normal distribution (Geletič et al., 2019; Koc et al., 2018). The K–S test results showed that the LST data in each scene 
had a normal distribution at the 0.05 significance level. One-way ANOVA tests were then used to test the significance of the differences 
in LST between LCZ types. Since the LST data could not pass the homogeneity of variance test, Tamhane's T2 test was used as a post-hoc 
comparison method to determine which pairs of LCZs had significant differences (Kayri, 2009). The changes of SUHII characterized by 
LCZ2 (built LCZ with the maximum SUHII) and LCZ3 (built LCZ with the largest area) was plotted against the background temperature 
or the surface temperature of LCZD to analyze the annual cycle of SUHI. The seasonal hysteresis of SUHI was approximated by piece- 
wise second-order polynomial functions. 

Fig. 3. An example of MODIS LST gap filling: (a) MODIS LST data from October 15, 2020 with missing values and (b) the same data after gap filling 
using the support vector regression method. 
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4. Results 

4.1. Local climate zone classification 

A total of 16 LCZ types were recognized in the classified LCZ map (Fig. 4). The buildings outside the Xi'an Ring Expressway mainly 
belong to LCZ3 (compact low-rise). There are areas of dense forest (LCZA) and sparse forest (LCZB) in the east of the city. The LCZ types 
in the urban core mainly consist of LCZ1 and LCZ4 with other built LCZ types scattered throughout. Areas of vegetation are scattered 
throughout the urban core; this includes some large areas of vegetation, mainly in public parks. Water bodies account for 1.09% of the 
study area, and one major river – the Wei River – traverses the area. Woodland accounts for 12.03% of the study area, arable land 
42.00% and the built-up area 42.66%. 

Validation samples for various LCZ types were selected using high-resolution satellite imagery in Google Earth; at least 50 samples 
were selected for each LCZ type. The confusion matrix table can be found in Table S1. The overall classification accuracy is 92.99%, 
and the kappa coefficient is 0.91. The confusion matrix indicates that LCZ types with similar structures are prone to misclassification. 
In areas where the urban road network is not dense, LCZE (bare rock or paved cover) was misclassified as LCZ8 (large low-rise 
buildings). 

4.2. Land surface temperature retrieval 

Surface temperatures were measured hourly by in-situ instruments at the meteorological stations automatically (Fig. 1). The 
stations were set up in large and flat areas with homogenous surface covers. The 0 cm surface temperature records closest to the 
overpass time of Landsat 8 satellite were compared with the LSTs retrieved from remote sensing data (Coll et al., 2010; Xia et al., 2022). 
The mean absolute difference (MAD), root mean square error (RMSE) and Pearson's correlation coefficient (Pearson's r) were used to 
evaluate the accuracy of the retrieved LSTs. The MAD and RMSE between the predicted and observed LSTs were 1.17 ◦C and 2.75 ◦C, 
respectively. The value of Pearson's r was 0.98 with a significance level of 0.01, indicating a strong correlation between the remotely 
sensed and observed LSTs (Fig. 5). 

The LST data obtained from the Landsat image on April 9, 2020 was also used to evaluate the accuracy of the LST generated using 
the data fusion algorithm on the same date (Weng et al., 2014). At the significance level of 0.05, MAD and RMSE were 0.62 ◦C and 
1.31 ◦C, respectively, and Pearson's r value was 0.84. These results indicated that there was a strong correlation between the predicted 
and observed LST (Fig. 6). 

4.3. Surface urban heat island intensity differences between LCZs 

The monthly variations in the SUHII of the different LCZ types were illustrated using a heat map (Fig. 7). The difference between the 
SUHII of the built types (especially LCZ1–LCZ5) and the natural types (LCZA–LCZD) is greater in June, July, and August than in the 
other months. Within the built LCZ types, the compact LCZs (LCZ1–LCZ3) with sparse vegetation exhibit a stronger heat island effect 
than the open LCZs (LCZ4–LCZ6) with dense green coverage. The high surface temperature of LCZ8 (large low-rise buildings) is related 
to the difficulty of dissipating heat from large buildings and the large amount of paving. LCZA (dense trees), one of the ‘vegetation’ LCZ 

Fig. 4. Local climate zone map of Xi'an in 2020.  
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Fig. 5. Validation of the retrieved surface temperature data using in situ data collected from meteorological stations.  

Fig. 6. The scatter plot between the estimated and the observed Landsat land surface temperature data.  

Fig. 7. Heat map of the SUHII for all LCZs in each month of 2020. Red indicates high intensity, and blue indicates low intensity. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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types, has the lowest surface temperature, which indicates that there is a greater cooling effect associated with this LCZ than with 
LCZB, LCZC and LCZD. In all seasons, the LSTs of LCZE (bare rock or paved) and LCZF (bare soil or sand) are similar to those of the built 
LCZs. 

The results of pairwise comparisons of the LST data for different groups of LCZs are shown in Fig. 8. The results of the one-way 
ANOVA indicated that there were significant differences between the mean LSTs of selected LCZs (0.05 significance level). Based 
on our analysis, 94.17% of the LCZ pairs exhibited a significant difference in winter(Fig. 8(d)). In the other three seasons (Fig. 8(a-c)), 
the proportion was 96.67%. 

4.4. Seasonality of the surface urban heat island 

The seasonal distribution of the SUHII shows large spatial variations in the study area (Fig. 9). Inside the inner ring highway, in 
areas to the north of this highway and along the Wei River, the SUHII begins to increase in spring. In summer, the SUHII is between 3 ◦C 
and 5 ◦C (except LCZ9) for the built LCZs, with the areas having the greatest SUHII (> 5 ◦C) being mostly downtown areas corre-
sponding to LCZ2 (compact mid-rise) and LCZ5 (open mid-rise). The areas with a low SUHII (i.e., the areas in green in Fig. 9) consist 
mainly of rural areas outside the Ring Expressway and correspond to LCZA, LCZB and LCZD. Autumn appears to be a turning point in 
the SUHII patterns and that the SUHII decreases significantly from then onward. In winter, cold ‘islands’ appear in parts of the main 
urban area. The SUHII for LCZG (water body) and LCZA (dense forest), found in the east of the study area, is <0 ◦C throughout the year, 
and these areas thus provide a cooling effect in all seasons. 

Based on the LCZ map and monthly LST data, the annual cycle of background LST represented by LST of LCZD and SUHI and 
resulted seasonal hysteresis were further investigated (Fig. 10). The phase shift between SUHI intensity and background temperature 
(Fig. 10(a)) demonstrates the existence of seasonal hysteresis (Zhou et al., 2013). The annual intensity of SUHI of LCZ2 and LCZ3 peaks 
17 and 23 days later than the peak of background temperature, respectively. The diurnal SUHI hysteresis cycles (Fig. 10(b)) exhibited 
an anti-clockwise concave-up pattern. Given the same background temperature, higher values in SUHI occur in October and November 
compared to those in March and April. 

5. Discussion 

5.1. Land surface temperature differences between LCZs 

The application of the WUDAPT method has previously achieved an OA of 52% for LCZ mapping in Xi'an (He et al., 2018). OAs 
higher than 80% have been reported for studies in Europe (Verdonck et al., 2017) and North America (Wang et al., 2018), where urban 
forms are generally more homogenous. The overall accuracy of the results obtained by this study is 92.99%, which outperforms most 
previous studies that used medium-resolution remote sensing data. To reduce confusion between different LCZ types, a vector building 

Fig. 8. Significance of the differences between the LSTs of LCZ pairs in each season calculated using Tamhane's T2 test for (a) spring, (b) summer, 
(c) autumn and (d) winter. A yellow cell indicates no significant difference between the LSTs of the LCZs(p-value>0.05). A blank cell represents 
significant difference between the LCZs (p-value≤0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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height map was also used. Due to the strong ability of capturing and learning contextual information, deep neural networks are very 
suitable to predict the highly context-based LCZs over a large area (Rosentreter et al., 2020; Yoo et al., 2019). Sophisticated network 
architectures have been developed to produce LCZ maps using Sentinel-2 data for Asian (Kim et al., 2021), European (Qiu et al., 2019) 
and global cities (Zhu et al., 2022). Deep learning methods can be tested to further optimize the LCZ map in future studies. 

In this study, urban landscapes consisting of compact buildings (LCZ1–LCZ3), among which LCZ2 had the highest SUHII at 7.17 ◦C 
in July, generally had a greater heat island intensity than areas of open buildings (LCZ4–LCZ6). LCZs with high building densities have 
less space for ventilation and cooling and are associated with higher surface temperatures. Our results also indicate that the SUHII of 
LCZ4(open high-rise) is the lowest among the built LCZ types, because this LCZ type includes more green space than the low-rise 
building types and is well ventilated. Among the natural LCZs, LCZG had the lowest SUHII at − 6.02 ◦C, which indicates that water 
bodies can effectively reduce the LST. Dense trees (LCZA) provide better cooling effects than sparse trees, shrubs and grasses. 

Fig. 9. Spatial distribution of the SUHII in the study area in (a) spring, (b) summer, (c) autumn and (d) winter.  

Fig. 10. Annual cycles of SUHII and background temperature (a) and resulting hysteretic curves (b) in the study area.  
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5.2. Seasonality of the surface urban heat island 

Although Zhou et al. (2013) reported that cities usually showed a concave down curve with peak SUHI in spring in dry regions in 
Europe, Sismanidis et al. (2022) found that the diurnal SUHII and rural LST for semi-arid cities was generally strongest in July/August. 
According to Sismanidis et al. (2022), the SUHII and rural LSTs of cities in the Dwa climate became maximum almost simultaneously in 
July/August, while the daytime SUHII of cities in the Cwa climate reached maximum in August/September. Our study demonstrate 
that the maximum of background temperature appeared in June, while the SUHI intensity peaked in July in the study area. The 
hysteresis cycles of diurnal SUHI in cities in the BSk climate varied with geographic location and could take the form of concave-down, 
flat, twisted, and triangle-like loops (Sismanidis et al., 2022). The anti-clockwise upward concave curve in this study agreed well with 
the average diurnal SUHII hysteresis loops in the Dwa continental climates captured using MODIS data (Sismanidis et al., 2022). 
Therefore, the seasonality of SUHI in the study area in the Dwa was mainly characterized. 

5.3. Limitations and prospects 

The fused remote sensing data with 30 m resolution was used to explore the seasonality of SUHI in the study area. The observed 
SUHI seasonality improved our knowledge on seasonal hysteresis of SUHI in a semi-arid city. However, the surface cover in urban areas 
is highly heterogeneous. Due to the limited spatial resolution of remote sensing data, the landscape components within a single pixel 
are usually complicated and mixed. This may lead to uncertainties in the evaluation results. Satellite or airborne remote sensing data 
with a higher spatial resolution can be obtained to capture more accurate SUHI variations (Koc et al., 2018). Secondly, the proposed 
methodologies should be applied to more cities to derive a more generalized insight on the hysteretic patterns of SUHI in dry climates 
(Lu et al., 2019). Finally, a comprehensive analysis of the impacts of natural and anthropogenic factors on SUHI may provide insights to 
develop effective thermal mitigation strategies in the study area. 

6. Conclusions 

Time series LSTs were generated by fusing Landsat 8 and MODIS data for each month of 2020. High-resolution GF-6 remote sensing 
images, impervious surface products and building footprint data were used to create a highly accurate LCZ map. Using the LCZ 
classification map and enhanced LST data, the seasonality of the SUHI in Xi'an, a mega city in semi-arid climate region, were 
investigated. The close correlation between the estimated and observed LSTs demonstrates the feasibility of using gap-filling and the 
ESTARFM algorithm to retrieve LSTs with a high spatial and temporal resolution. Among the built LCZs, the surface temperatures of 
the open building types were generally lower than those of the compact building types. LCZ2 was found to have the highest SUHII of 
7.17 ◦C in summer; the SUHII of LCZ4 was lowest (3.62 ◦C). The maximum intensity of SUHI appears about 17–23 days later than the 
maximum background temperature, and the hysteresis cycles of SUHI exhibited an anti-clockwise concave-up pattern. The seasonal 
hysteresis of SUHI in the study area matched the urban climatology of cities in the Dwa climate. Compared with temporally 
discontinuous data, the enhance LSTs captured the variations of SUHI more accurately. These results provide useful information to 
urban planners for improving urban thermal environment and mitigating the negative effects of heat islands. 
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Bechtel, B., Alexander, P.J., Beck, C., Böhner, J., Brousse, O., Ching, J., Demuzere, M., Fonte, C., Gál, T., Hidalgo, J., Hoffmann, P., Middel, A., Mills, G., Ren, C., 
See, L., Sismanidis, P., Verdonck, M.-L., Xu, G., Xu, Y., 2019a. Generating WUDAPT level 0 data – current status of production and evaluation. Urban Clim. 27, 
24–45. https://doi.org/10.1016/j.uclim.2018.10.001. 

Bechtel, B., Demuzere, M., Mills, G., Zhan, W., Sismanidis, P., Small, C., Voogt, J., 2019b. SUHI analysis using local climate zones—a comparison of 50 cities. Urban 
Clim. 28, 100451 https://doi.org/10.1016/j.uclim.2019.01.005. 

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F., 2018. Present and future Köppen-Geiger climate classification maps at 1-km 
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