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ABSTRACT

Alterations made to the natural ground surface and the anthropogenic activity elevate the surface and air
temperature in the urban areas compared with the surrounding rural areas, known as urban heat island
effect. Thermal remote sensors measure the radiation emitted by ground objects, which can be used to
estimate the land surface temperature and are beneficial for studying urban heat island effects. The
present study investigates the spatial and temporal variations in the effects of urban heat island over
Tiruchirappalli city in India during the summer and winter seasons. The study also identifies hot spots
and cold spots within the study area. In this study, a significant land surface temperature difference was
observed between the urban and rural areas, predominantly at night, indicating the presence of urban
heat island at night. These diurnal land surface temperature fluctuations are also detected seasonally,
with a relatively higher temperature intensity during the summer. The trend line analysis shows that the
mean land surface temperature of the study area is increasing at a rate of 0.166 K/decade with p less than
0.01. By using the spatial autocorrelation method with the urban heat island index as the key parameter,
hot spots with a 99 percent confidence level and a 95 percent confidence level were found within the
urban area. A hot spot with 95 and 90 percent confidence level was identified outside the urban area.
This spike in temperature for a particular region in the rural area is due to industry and the associated
built-up area. The study also identified cold spots with a 90 percent confidence level within the rural
area. However, cold spots with a 95 and 99 percent confidence level were not identified within the study

area.
© 2022 Editorial office of Geodesy and Geodynamics. Publishing services by Elsevier B.V. on behalf of
KeAi Communications Co. Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. INTRODUTION

around the earth and drastically infect the world [1,2]. The infra-
structure of developing cities is being rapidly expanded, resulting

Urbanization has enhanced different facets of human situations.
However, the quality and comfort of urban life have adversely
influenced environmental concerns. Urbanization is one of the
foremost factors that cause abnormal changes in climate patterns
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in the change of natural ground surface into impermeable and
built-up regions. The changes may include replacing vegetation
cover and soil with concrete, asphalt surfaces and replacing rural
structures with composite urban structures; and agricultural ac-
tivities in the rural areas with large-scale industrial and commercial
activities in urban areas [3—7]. Asphalt, concrete, and brick absorb
more of the sun's radiation compared with the natural ground
surfaces, leading to increased air and surface temperatures [8].
Future global warming may cause urban land surface temperature
(LST) to rise faster than rural LST due to the greater concentration of
plant cover in rural regions [9]. The urban geometry influences
wind flow and direction, retains the sun's radiations by multiple
reflections, obstructs the reflection of radiations back to space, and
becomes large thermal masses [10—13]. This leads to higher tem-
peratures in urban areas compared with the surrounding suburban
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or rural areas, known as the urban heat island (UHI) effect [14]. The
replacement of vegetation with urban land cover substantially in-
creases the UHI intensity [15]. Especially during the nighttime, the
air above the urban centers is warmer than that over the sur-
rounding rural areas [ 16,17]. Analyzing the intensity of UHI spatially
and temporally is important to understand the thermal environ-
ment at the city scale [18].

In large cities, the unwelcome side effects of UHISs, like deteri-
orating air quality, increasing energy demand, and heat-related
illness, require extensive attention [19]. During summertime,
more energy is consumed for maintaining comfortable tempera-
ture, which strains the power grid during peak demand hours. For
each degree rise in temperature, the peak electric demand in-
creases by 0.5—8.5 percent [20]. Additionally, higher levels of air
pollution and greenhouse gas emissions result from increased en-
ergy usage. Currently, most of India's electricity is produced
through burning fossil fuels [21]. As a result, most power plants
emit pollutants such as nitrogen oxides (NOy), particulate matter
(PM), sulphur dioxide (SO;), carbon monoxide (CO), carbon dioxide
(CO,), and mercury (Hg). These pollutants threaten human health
and are a factor in complex problems with air quality, such as acid
rain. Furthermore, the emission of greenhouse gases like CO, im-
pacts the climate change phenomenon [22]. In addition to
increasing air emissions, higher temperatures also accelerate the
formation of ground-level ozone [22,23]. Surface urban heat island
affects the water quality and disturbs the balance of the aquatic
ecosystem as the temperature of the storm water runoff increases
when it flows over hot urban surfaces and discharges into water
bodies. The health effects of UHI can include general discomfort,
respiratory issues, heat cramps and fatigue, non-fatal heat stroke,
and heat-related death caused by higher daytime surface temper-
atures, lower nighttime cooling, and higher levels of air pollution
[24]. UHI can also make heatwaves worse, which are sweltering and
often humid. Vulnerable groups like children, the elderly, and
people with pre-existing medical conditions are at risk from these
situations.

UHI can develop during the daytime, nighttime, or any season in
any city. Surface urban heat island and atmospheric (i.e., air) urban
heat islands are two types of UHI [24]. The sluggish release of heat
from impervious surfaces causes the earth's surface temperatures
to vary more than air temperatures during the day, but these var-
iations are more noticeable after sunset. Surface urban heat islands
typically peak during the day when the sun is brightest. The Surface
urban heat island magnitude varies with the seasons, but it is
typically the largest in the summer [25,26]. Surface urban heat
islands are frequently measured by remote sensing in the thermal
infrared region of the electromagnetic spectrum. Atmospheric ur-
ban heat islands refer to effects in the canopy layer or boundary
layer. A canopy layer heat island is the layer of air from the surface
to treetops or rooftops, measured by in situ sensors mounted on
fixed meteorological stations or mobile traverses. Boundary layer
heat islands extend from treetops/rooftops to where urban land-
scapes no longer influence the atmosphere [14]. Boundary layer
heat islands is measured by tall towers, radiosondes, and aircraft.
Canopy layer heat island is useful in mitigating public health risks
since it is the best indicator of conditions experienced by people.
Due to limited monitoring stations, measured canopy layer heat
island provides insufficient spatial detail for urban planning [27,28].

The difference in LST between urban and non-urban areas is
represented by surface urban heat island, which can be measured
using satellite thermal remote sensing data. The satellite data is
available at various spatial (from local to global) and temporal
(diurnal, seasonal, and inter-annual) scales [29,30]; and provides
consistent and repeatable observations [31] of the earth's surface.
When incoming solar energy interacts with and heats the ground
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or the surface of the canopy in vegetated regions, LST detects the
emission of thermal radiation from the land surface [32,33]. LST is
sensitive to changing surface conditions due to this characteristic,
making it a good indicator of how energy is distributed at the land
surface—atmosphere interface [34—37]. Researchers can analyze
the temperature variability of the ground surface, and the effects of
natural and human-caused changes on surface temperatures by
using the LST retrieval from remotely sensed thermal infrared data
[38,39]. Daytime LST has a stronger correlation with the radiative
and thermodynamic properties of the earth's surface than typical
air temperature measurements. Additionally, LST is more respon-
sive to changes in vegetation density and collects more information
on the biophysical elements that influence surface temperature,
such as surface roughness and transpirational cooling [40,41].

UHI shows different characteristics both spatially and tempo-
rally. To understand these characteristics and analyze the UHI ef-
fects over a study area, indicators such as UHI intensity and UHljpqex
may be used. Studies have shown that the absolute magnitude of
UHI intensity is the most critical factor to examine in any study of
UHI impacts. The locations where maximum and minimum tem-
peratures are measured throughout the research zone are incon-
sistent. These locations can be found across the research area, and
their exact locations are immaterial. During different seasons, the
temperature range in every location changes substantially. Due to
seasonal and diurnal variations in the temperature range, the in-
tensity of UHI across the study area may fluctuate over time. Sur-
face urban heat island intensity over a city can be calculated using a
city's thermal infrared image by subtracting the greatest and least
LST values observed inside the study area [42]. Due to the fluctu-
ating intensity of UHI and the shift or change in the positions cor-
responding to the maximum and minimum LST values, comparing
UHI intensity over time is challenging. Additionally, there is no way
to compare the UHI impacts of other cities over the same or
different time frames [42].

The UHIjpgex can normalize the UHI intensity by bringing the
fluctuating LST range into a normal range. The UHIjngex, as opposed
to the actual UHI intensity, depicts the relative UHI effect in various
study areas. Because the UHljygex is @ normalized index with only
0 and 1 values, it can be used to compare the intensity of UHI across
various periods and seasons. The influence of remarkable events
noticed for any reason can be avoided using this strategy, making it
easier to conduct analyzes for seasonal and long-term effects.

The UHljpqex can identify the hot spots within study area. Hot
spots are regions of UHI that endure high temperatures and are
heat-stressed, heat-wave-prone, and sunburn-prone areas [43,44].
Cold spots are regions experiencing the lowest temperature within
UHL They are typically detected in vegetation and water bodies,
while hot spots are typically observed in built-up and bare ground
[45]. The identification of hot spots is an important step in miti-
gating of the UHI phenomenon [46].

The global urban population is projected to exceed five billion by
2030. As significant numbers move to metropolitan regions, land
areas will be severely affected. The change in land use mainly drives
the phenomenon of the UHI effect. So, studying the spatial and
temporal variation of UHI with the development of urban areas
gives researchers an idea to point out the location of high intensity
and to analyze the cause-and-effect relationships at that location
[47]. As urbanization is invading the country every day, the UHI
effect is a significant problem and cause of climate change. Statis-
tical research on meteorological data, remote sensing, and physical
modeling has demonstrated the diverse contribution of urbaniza-
tion to global warming [48]. So, in a developing country like India, it
is essential to conduct UHI studies for future urban planning and
development. In many references on the UHI effect, it is noticed
that the UHI effect has significant variations in temporal cycle.
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Therefore, it is essential to analyze the temporal UHI effects in
semi-arid Indian cities. Also, within the urban area, there are
patches of regions that experience intense UHI effects and patches
of regions that experience less intense UHI effects. Hence, it is
necessary to find the spatio-temporal patterns in the surface tem-
peratures. It is necessary to analyze the spatiotemporal variations
of UHI in the future in order to set an optimal control strategy for
UHL. The city of Tiruchirappalli in the Indian state of Tamil Nadu is
the focus of the current study, where no UHI study has been con-
ducted. It's the fourth largest and warmest city in the state with a
dry summer tropical savanna climate. Therefore, it is important to
identify the spatial thermal hot spots and comfort zones
throughout the city. The current study remotely examines the
spatial and temporal changes in the effect of UHI on Tiruchirappalli
city using satellite data without the help of any in-situ measure-
ments to support science-based sustainable urban planning. The
variation in the UHI characteristics along different directions
throughout the study area is demonstrated and analyzed. The hot
and cold regions within the study area are demarcated.

2. Study area

The present study investigates the spatial and temporal varia-
tions in the effect of UHI on Tiruchirappalli, also known as Trichy.
The geographic coordinates of Tiruchirappalli are 10° 48’ 18” N and
78° 41’ 8" E. It is a Tier-II city in Tamil Nadu, India, with a total area
of 167.2 km? [49], a population of 928772 inhabitants as of the 2021
census, with an increase in population by 9.56% as compared with
2011. According to the Tiruchirappalli (Trichy) City Municipal
Corporation-E-Services Portal, the city on the Deccan Plateau ex-
periences extremely hot, dry days and chilly night-time winds from
the southeast. Tiruchirappalli has a tropical savanna climate with
dry summers. There are four distinct seasons in its climate:
monsoon (June, July, and August), winter (December, January, and
February), summer (March, April, and May), and wind season
(September, October, and November). According to the Tiruchir-
appalli (Trichy) City Municipal Corporation-E-Services Portal, the
city has the hottest average temperatures in the state, averaging
28.9 °C annually and 25 °C—32 °C on a monthly basis [50]. Ac-
cording to the Government of India, Ministry of Water Resources
Central Ground Water Board South-eastern Coastal Region Chennai
- Technical Report Series, 2008, the average annual rainfall is
841.9 mm, less than the state average of 945 mm.

The Google Earth Engine and MCD12Q1 MODIS Land Cover Type
product are used to create the Tiruchirappalli urban area polygon.
In the north-south direction, the polygon is roughly 17.5 km long,
and in the east-west direction, it is approximately 16 km long. To
include the sufficient rural area in the study, a 7-km buffer has been
added to the urban area polygon's boundary (hereinafter referred
to as the urban boundary). The 687.4 km? study area properly en-
compasses rural and suburban areas as well as metropolitan sat-
ellite towns. Fig. 1 shows the study region of Tiruchirappalli city.

3. Land cover of Tiruchirappalli

The land cover classification of the study area is obtained from
the European Space Agency (ESA) World Cover. The land cover
product has a spatial resolution of 10 m and is based on both
Sentinel-1 and Sentinel-2 data. The product has 11 land cover
classes, i.e., trees, shrubland, grassland, cropland, built-up, barren/
sparse vegetation, snow and ice, open water, herbaceous wetland,
mangroves, and moss and lichen. The study area is covered by eight
land cover classes, as shown in Fig. 2. The central portion of the
study area is the core of the city, with dense built-up areas. The
presence of small towns can be seen in the figure with moderately
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built-up areas on the north and east sides of the study area. The
southeast region of the study area also consists of built-up areas
due to the presence of Bharat Heavy Electronics Limited (BHEL)
Tiruchirappalli township and its factory, with its high-pressure
boiling plant complex. The urban region in the study area con-
sists of a small stretch of the Cauvery River and the Kollidam River.
The rural region of the study area is mainly dominated by
croplands.

4. Methodology

The Aqua and Terra combined MODIS Land Cover Type product
(MCD12Q1) is used to demarcate the study area, the urban area of
Tiruchirappalli city, with a suitable rural area buffer. The terra
MODIS average 8-day per-pixel LST and Emissivity with a 1 km
spatial resolution in a 1200 by 1200 km grid product, MOD11A2, is
to retrieve the LST of the study area. The pre-processing of
MOD11A2 is done to bring the entire data into the same format and
at the same resolution. The specifications and pre-processing of the
product are provided in Table 1.

The brightness temperatures in MODIS bands 31 and 32 are
inputs to a generalized split window LST method, which produces
the MODIS level-2 products [51]. The generalized split window
algorithm is given in Eq. (1).

1- €+b3A€) T31 + T3
2
T51 —Ts
2

e 2

1- e+ bﬁAe)

£ 82

Ts=bg + (b1+b2

+<b4+b5 (1)

where T is the LST and ¢ and Ae are the mean and the difference of
the emissivities in bands 31 and 32, respectively. The regression
coefficients by (0 < k < 6) depend on the viewing zenith angle,
surface air temperature (T,), and atmospheric column water vapor.

To improve the accuracy of the MODIS LST product, refined
MODIS general split window algorithm was used [52]. The algo-
rithm is given in Eq. (2).

TS:bo+(b1+b21_8+b3A_2€) Ti+Ts

€ € 2 )
1- 4 T31 — T
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A detailed description of the improvement in accuracy of MODIS
LST product can be found in Wan [52].

The level-3 daily MODIS LST data product MOD11A1 is obtained
from the MODIS level-2 LST data product by mapping all the valid
clear-sky LST values onto grids in the sinusoidal projection and
averaging the LST values of overlapping pixels. Each of the pixels in
the MOD11A2 data product is a simple average of the corre-
sponding pixels in the MOD11A1 data product within 8 days,
reducing the no-pixel values in the image to an extent. The LST of
the study area is obtained from the MOD11A2 data product by
multiplying the LST band with the corresponding scale factor and
extracting the data using the study area polygon. The MOD11A2
data product in the nighttime for 20 years (from 2001 to 2020) is
used in the present study to analyze the UHI effects. For the study
period of 20 years, the data were obtained for the summer season
(from March to May) and the winter season (from December to
February). The presence of clouds during the monsoon season
reduced the availability of the LST data product during this season.
Thus, UHI analysis could not be carried out during the monsoon
season. The temporal variations of UHI are analyzed using the
parameter UHI intensity, and the spatial variations of UHI are
analyzed using the UHIjgex parameter. The temperature difference



A. Badugu, K.S. Arunab, A. Mathew et al. Geodesy and Geodynamics 14 (2023) 275—291

A z Study Area
41 (Tiruchirappalli)
y N
I// \\
< i~ A
7 7

10°500°N
T
\
!
\
(Cax
1

: ' ¢ i
Tamil Nadu -, L\ ' o
< X ; P /
. 3 < y
\ =) /,
\\\ / /’
=Z \\‘ == //
o enee—
(=3
2 g
=
~ Urban Area 0 425 85
~ Rural Area . _Kilometlers
78°40'0"E 78°50'0"E

Fig. 1. The study region- Tiruchirappalli.

T T T

Land cover of Tiruchirappalli study area

10°50'0"N

Land cover classes
Rural Boundary

- Urban Boundary

Land cover classes

I Trees

["] shrubland

[ | Grassland

["] cropland

I Built-up

[[7] Barren / sparse vegetation

Lo 5 10 I Open water

—— Kilometers Il Herbaceous wetland

78°30'0"E 78°40'0"E 78°50'0"E
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Table 1
Specifications and pre-processing of the product.

Product MOD11A2 (from Terra)
Processing level Level-III

Collection level C6

Spatial resolution 1-km

Temporal resolution 8 days

Scientific data set LST-night

Reformat HDF-EOS to Geo-TIFF
Reproject Sinusoidal to UTM
Time period 01-01-2001 to 31-12-2020
One tile 1200 x 1200 grids
Grid size 0.928 x 0.928 km

between urban and rural areas is known as UHI intensity. UHI in-
tensity allows for the analysis of seasonal fluctuations as well as
variations in maximum and average UHI intensity in urban and
rural areas throughout the study period. The study area's maximum
and minimum temperature measurement sites are inconsistent.
These locations can be found across the research area, and their
exact locations are immaterial. During different seasons, the tem-
perature range in every location changes substantially. Due to
seasonal and diurnal variations in the temperature range, the in-
tensity of UHI across the study area may alter, i.e., it might not stay
consistent over time. Surface urban heat island intensity over a city
can be calculated using a city's thermal infrared image by sub-
tracting the greatest and least LST values observed inside the study
area. Due to the fluctuating intensity of UHI and the shift or change
in the positions corresponding to the maximum and minimum LST
values, comparing UHI intensity over time is challenging. Further-
more, it is impossible to compare the UHI effects of various cities
over the same or other time frames. Additionally, the UHI effect
over the study area cannot be integrated and analyzed using
distinct LST data views. The UHIjyqex programme was developed to
facilitate a more detailed examination of the UHI effect with many
images. Equation (3) calculates the UHIj,gex based on the LST values
found in any image [16].

LST; — LST iy,

UHlingex =g ~— LST min

3)

LSTmax and LSTpi, are the locations or pixels in the study area
where the maximum and minimum LSTs are detected, and LST; is
the LST of the ith location or pixel in the same image. This technique
determines the UHIj,qex for each pixel in an image that corresponds
to a location in the study area. As the UHIjpgex iS @ normalized index
with only 0 and 1 values, it can be used to compare the intensity of
UHI across various periods and seasons. The LST range was variable,
and the UHI intensity was as well, so the variable LST range was
normalized using the UHljpqex. This range represents the relative
UHI impact over the study area, not its actual intensity. The influ-
ence of remarkable events noticed for any reason can be avoided
using this strategy, making it easier to conduct analyzes for sea-
sonal effects as well as long-term effects, as attempted in this study.
Hot spots are determined based on the pixels with the maximum
UHlipgex and the influence of the neighboring pixels. The cluster of
pixels posing higher temperatures is called a hot spot. But only a
significant number of those pixels are considered hot spot areas or
zones, posing statistical significance. To identify the hot spots for-
mation pattern and the significance of the hot spots, spatial auto-
correlation analysis (Moran's index) is done.

The UHI effect causes a temperature gradient that may be seen
from the hot spots to the outside perimeter of the study area. On
the other hand, the gradient might change in various ways. Draw-
ing transects to the research area boundary and using the
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maximum UHI pixel as the center point allows for the analysis of
stack profiles, which measure the temperature gradient. The rise in
the UHI effect over the study area was ascertained using the
UHljpgex and transect techniques. N—S, E-W, and two 45° transects
have been drawn to assess the temperature gradient in eight di-
rections. The graphical abstract of the methodology is provided in
Fig. 3.

5. Results and discussions

The present study analyzes the UHI effects of Tiruchirappalli city
during the night-time as UHI is prominent during this time. Sea-
sonal analysis of LST and mean annual LST of Tiruchirappalli city has
been done for twenty years (2001—2020) by considering the winter
and summer seasons in a year. The distribution of LST is observed to
be consistent with previous research [15,16,53], with high LST in
highly built-up areas and low LST in non-built-up areas. A similar
pattern is observed in the LST distribution during the winter and
summer seasons, as shown in Figs. 4 and 5. However, the temper-
ature of a given location is higher during the summer season, with
an average increment of 3.38 K. The temperatures vary from
296.65 K to 301.85 K in the summer, 293.42 K—297.34 K in the
winter, and 295.44 K—298.92 K on the yearly average. The central
part, the entire southwest, south, and southeast of the study area,
shows higher LST as depicted in Figs. 4—6. Whereas the area sur-
rounding the central region shows medium LST values. The central
portion is the main urban area, constituting highly developed,
high-density urban structures such as residential and commercial
buildings; educational and industrial complexes; long road net-
works; bridges; and railway junctions. The rural regions in the
southwest and southern regions of the study area consist of a
medium level of development and residential settlements owing to
a higher LST value than the remaining rural areas. The southeast
region of the study area shows a similar LST range to that of the
urban area, as this area is highly developed and consists of BHEL
Tiruchirappalli township and its factory, with its high-pressure
boiling plant complex. This entire territory is collectively called
BHEL Nagar, contributing significant warmth to the land surface. A
few more towns, like Navalpattu and Kumaramangalam, are also
situated in this region. The northeast and northwest regions of the
study area show the lowest temperatures compared to all other
regions. The Cauvery River passes through the northeast and
northwest regions of the study area, and this area is mainly
comprised of natural ground and vegetation. However, the north-
ern region shows a higher temperature in the summer than in the
winter. The lower levels of water in the Cauvery River and the
reduction in vegetation may be the reasons for this.

20-year mean LST for summer and winter and 20 years of mean
annual LST are given in Fig. 7. The maximum temperature for the
20-year mean summer LST is 300.69 K, the mean winter LST is
296.99 K, and the mean annual LST is 298.71 K for Tiruchirappalli.
While minimum temperatures are 297.65 K, 293.55 K, and 295.88 K
for summer, winter, and annual mean temperatures.

A time series plot is drawn with mean annual LST values, and its
trend line is shown in Fig. 8. The plot shows an upward trend,
indicating an increase in LST of 0.166 K/decade.

The maximum annual average temperature recorded for the
study period is 299.63 K, and the minimum temperature is
294.30 K, as shown in Fig. 9. The trend line analysis for both the
maximum and minimum temperatures shows an upward trend,
indicating a rise in the LST. The rise in the LST leads to an increase in
the ambient temperature and the UHI effect, and its allied prob-
lems. The study area is a water-stressed region, and the rising trend
of LST will likely induce more stress on the existing water sources.
The rising trend in the LST indicates that the study area may be
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Fig. 3. Graphical abstract of methodology.

2001 2005

' 300.34 K

596,65 K

9776 K

w 300.92 K

085K

2010

30135 K
M9k

10 5 0 10 Kilometers

[:] URBAN BOUNDARY

[ ] RURAL BOUNDARY
N

30045 K

M )9734K

Fig. 4. Mean LST (K) for summer season.



A. Badugu, K.S. Arunab, A. Mathew et al. Geodesy and Geodynamics 14 (2023) 275—291

2001 1 , 2005 ) ‘ 2010

 297.06 K ‘o 2973 K

9342 K M,0373K B3k
10 5 0 10 Kilometers

2015 \ 2020
' ; : D URBAN BOUNDARY

D RURAL BOUNDARY

N

29734 K w 29731 K

o039k 412K

Fig. 5. Mean LST (K) for winter season.

2001 2005 2010

m 298.14 K 29881 K Y g 298.72K

M543 295,95 K M 255K
10 5 0 10 Kilometers
2015 , = 2020
) [_] URBAN BOUNDARY
[_]RURAL BOUNDARY
N
W E
m29UK N\ m298.92K
M 0613k M 296.12 K S

Fig. 6. Mean LST (K) for 20 years.

281



A. Badugu, K.S. Arunab, A. Mathew et al.

SUMMER

wm 300.68 K

59765 K

0 5

10
oy |

20 Kilometers

:' URBAN BOUNDARY
|:| RURAL BOUNDARY

WINTER

Geodesy and Geodynamics 14 (2023) 275—291

ANNUAL

296,97 K m 298.72K

59355 K 59587 K

Fig. 7. Mean seasonal and yearly LST (K).

297.6
297.4
297.2

297
296.8
296.6
296.4
296.2

296
2000

y =0.0166x+263.39
R?=0.0823

Mean LST (K)

2005 2010

Year

2015 2020

Fig. 8. Annual mean LST (K) for 20 years.

prone to severely high indoor and outdoor temperatures, leading to
health issues for the inhabitants. An in-depth analysis of the LST
and the UHI variations is presented in the subsequent sections,
which will be helpful in framing science-based sustainable urban
planning goals.

Different maximum temperatures recorded for summer and
winter throughout the study period are shown in Table 2. The year
2017 shows a maximum temperature of 301.82 K for the summer
average and with an average variation of 0.507 K difference every
year, and the year 2008 shows a maximum temperature of 297.48 K
for the winter average and with an average variation of 0.398 K
difference.

The urban and rural areas were separated, and the mean LST for
both areas for the study period is plotted in the graph as shown in
Fig. 10. The maximum mean urban temperature was 300.42 K for
2017, and the lowest was recorded in 2018 at 298.58 K with 0.32 K
variations. It is also observed that the highest temperatures prevail
only in urban regions, with an average difference of 0.8 K between
urban and rural boundaries. The average mean LST for urban areas
is 297.28 K and 296.48 K in rural areas.

The time series plot with maximum annual UHI intensity shows
random variations, as shown in Fig. 11. The maximum annual UHI
intensity varies from 3.7 K as the lowest to 4.78 K as the highest and
0.345 K as the average overall variation of UHI intensity.
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The night-time maximum UHI intensity for summer varies from
3.41 K as the lowest to 5.26 K as the highest, and 0.534 K as the
average summer variation of UHI intensity. The graph plotted
shows random variations, as shown in Fig. 12. For winter, the
maximum UHI intensity varies from 3.33 K to 4.90 K. The difference
in maximum UHI between both seasons is found to be 0.53 K.

The mean urban UHI varies from 0.52 K to 1.03 K during the
summer season, with a 20-year average UHI of 0.74 K. Similarly,
during the winter season, the mean daily UHI varies from 0.62 K to
1.05 K, with an overall mean UHI of 0.85 K, as shown in Fig. 13. This
indicates that night-time UHI of low intensity exists over the study
area during the summer and winter seasons. However, the overall
mean UHI intensity is relatively higher during the summer. This
pattern in UHI behavior is comparable to the findings of Hung et al.
[54].

The mean UHljpgex over the study area for the summer and
winter seasons of a seasonal average of 20-year and 20-year annual
averages is shown in Figs. 14—16. It is observed that the UHI index
value is maximum at the center of the urban area and decreases
towards the boundary. A UHIjpqex Of greater than 0.90 is observed at
the center of the urban boundary. These pixels are surrounded by
other high-temperature pixels. The average UHliygex of 17 pixels
within urban limits is more significant than 0.90, indicating that
high LST is standard on these pixels, making them probable UHI hot
spots. The hot spots serve as the focal point of Tiruchirappalli UHI,
with other high-temperature pixels clustered around it. Only pixels
with a high temperature are seen in the urban area. As the distance
from hot spots increases, LST drops. The overall temperature trend
is identical to that of UHI intensity, and the UHIj,gex can be used to
compare UHI intensity at a specific place over time or at multiple
locations over time.

Further 20-year summer UHI derived from summer LST average
images and 20-year winter UHI derived from winter LST average
images, along with mean annual 20-year UHI, are presented in
Fig. 17.

A stack profile of the UHI index with 4 transects covering 8 di-
rections is passed through the pixel having maximum LST to
analyze the LST gradient along these directions, as shown in Fig. 18.
In Fig. 19, the origin passes through the point of maximum UHI
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Table 2
Maximum mean LST (K) for summer and winter for 20 years.
Max. LST 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Summer 300.34 300.25 301.21 300.97 300.92 300.88 300.37 300.38 300.72 301.35
Winter 296.77 296.70 296.93 297.03 297.07 296.65 296.86 297.48 297.13 297.30
Max. LST 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Summer 300.59 300.78 301.21 301.22 301.08 300.56 301.82 299.76 300.80 300.44
Winter 296.82 297.65 296.67 296.56 297.34 297.21 297.02 296.32 297.08 297.31
301 300
(a) (b)
446 3=10.0029x +293.45 ) y=-0.0097x +318.09
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Fig. 10. Mean LST (K) for (a) Urban area and (b) Rural area.

index. The distance from the origin towards the west, north, north-
west, and south-west directions is negative, and the distance from
the origin towards the east, south, southeast, and northeast di-
rections is shown as positive. In summer, the northeast portion
shows the lowest LST values as compared to all the directions
throughout the study period, followed by the N—W region and the
eastern region, whereas the southern part shows maximum tem-
perature values. The temperature drops from the transect origin
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towards the study area boundary, as shown in Fig. 19. The winter
season also follows the same LST variations as the summer season,
with a decrease in temperature.

Stack profile analysis is also done for yearly, summer, and winter
mean LST and is presented below, along with stack profile analysis
graphs in Figs. 20 and 21. For the summer season, the temperature
attained at the peak varies from 300 K to 302 K and the lowest
temperature is attained on SW to NE transect, which is



A. Badugu, K.S. Arunab, A. Mathew et al.

Geodesy and Geodynamics 14 (2023) 275—291

y=0.0137x +4.1653
4.70 R*=0.0844
E _____
=430 | N f \ o fee DN
Z -
-
3.90
3.50
2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
Year
Fig. 11. Maximum UHI for yearly mean LST (K).
6.00 5.50
(a) (b)
y=0.0375x - 71.147
g =10.0205x - 36.788 K=03215
= 5.00 R?=0.081 s
:
g =
2 :
= >
4.00 §
— SUMMER — WINTER
3.00 2.50
2001 2005 2009 2013 2017 2001 2005 2009 2013 2017
Year Year
Fig. 12. Maximum UHI for (a) summer and (b) winter.
1.20 1.20 ( b)
(a ) y=0.0158x + 0.5787 y=0.0059x + 0.7893
1.00 R*=0.4354 1.00 R =0.1106
z
= 080 E 0.80
oo aaet &0
= =
0.60 0.60
’ Summer Winter
0.40 0.40
: 2001 2005 2009 2013 2017
2001 2005 2009 2013 2017
Year Year
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296 K—298 K. In winter, the temperature attained at the peak varies
from 296.5 K to 297.5 K and the lowest temperature is attained on
NW to SE transect, which is 293.5 K—294.5 K. In the graphs for both
seasons, a sudden depression is found in the south-to-north di-
rection of the transect. This is due to higher temperatures on the
extreme north side of the study area at the rural boundary in both
seasons and comparatively lower temperatures at the Cauvery and
Kollidam rivers in the northern part of the urban area.

As presented in Tables 3 and 4, spatial autocorrelation is done
on the UHI index raster data set of 5-year intervals of yearly
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averages (for 20 years from 2001 to 2020) for summer, winter,
and annual data sets. For the summer average, Moran's index
came as 0.9421, and the expected index is the same for all the
images as —0.001250 and variance as 0.000649 and Z-score, and
P-value are 37.234 and 0. This indicates that a good correlation
exists.

For the winter season average, the Moran index came as 0.947,
and the expected index is the same for all the images as —0.001250
and variance as 0.000648 and Z-score, and P-value are 37.734 and 0.
This indicates that a good correlation exists.
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Fig. 19. Stack profile graph for overall UHI index.

Moran's index, expected index, variance, Z-score, and P-value
for summer, winter, and annual averages are presented in
Table 5. The Morons index value produced from auto correlation
analysis is positive, indicating a clustering tendency. Thus, the
formation of hot spots or cold spots is statistically significant as
the absolute values of the Z-score are enormous, and the P-value
is significantly smaller.

Fig. 22 represents the hot spots calculated from the UHI index
maps for the 20-year average UHI Index of summer, winter, and the
annual average of LST means. Each hot spot is shown in Fig. 22 and
represented by confidence levels starting from 90% confident hot
spots to 99% confident hot spots or 90% confident cold spots to 99%
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confident cold spots. From the results generated, it is evident that
pixels with greater UHI are the same hot spots with higher confi-
dence levels. A Global Moran's Index value is also interpolated as
inverse distance weighted maps and is added as a lower layer to
show the hot spots zone. The red-colored inverse distance
weighted map is of higher significance G.I, and the surrounding
orange is of lower significance G.I. The rest of the area is non-
significant, which means it may possess random behavior
depending on many factors. And only cold spots cold spots of 90%
confidence exists, and no cold spots of 99% confidence is found in
the calculation. The NE part shows a G.I of —0.1 to —0.2, which is at
90% confidence level cold spots.
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Table 3

Spatial correlation analysis result for summer mean LST.
Summer 2001 2005 2010 2015 2020
Moran's index 0.936517 0.959460 0.960770 0.927823 0.926284
Expected index —0.001250 —0.001250 —0.001250 —0.001250 —0.001250
Variance 0.000649 0.000648 0.000648 0.000649 0.000649
Z-score 36.815586 37.172351 37.267322 36.481008 36.421750
P-value 0 0 0 0 0

Table 4

Spatial correlation analysis result for winter mean LST.
Winter 2001 2005 2010 2015 2020
Moran's index 0.943921 0.952319 0.959896 0.949520 0.953494
Expected index —0.001250 —0.001250 —0.001250 —0.001250 —0.001250
Variance 0.000649 0.000648 0.000648 0.000648 0.000648
Z-score 37.118689 37.449960 37.737340 37.337187 37.496351
P-value 0 0 0 0 0

Table 5 6. Conclusions

Spatial correlation analysis results for summer, winter average LST.
For 20 years Summer avg. LST Winter avg. LST Total avg. LST The central portion of the urban area with high-density built-up

area (consisting of the district collector's office, the railway station,

Moran's index 0.955869 0.959460 0.96077 ey

Expected index —0.001250 —0.001250 —0.001250 the central bus stand, the cantonment post office and district court,

Variance 0.000648 0.000648 0.000648 Periyar Nagar, the Airport, the Wireless Station, the District Forest

Z-score 37.585045 37.73918 37.792425 Officer's Office, etc.), is experiencing the maximum LST of 298.71 K

P-value 0.0000 0.0000 0.0000 on an average, annually. In the outer rural area, the southeast
portion consisting of BHEL Tiruchirappalli and towns like Naval-
pattu and Kumaramangalam, is experiencing a similar range of LST

Average 20 year Summer Average 20 year Winter

Average 20 year Annual

Legend
[] URBAN BOUNDARY
[ Jrurav BouNDARY
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. 0102
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Fig. 22. Hot spot analysis for summer, winter mean LST.
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values as that of the central urban portion due to high-density of
built-up areas. The trend line analysis shows that the mean LST of
the study area is increasing at a rate of 0.166 K/decade. The
maximum UHI intensity of the Tiruchirappalli city during the
summer and winter seasons is 4.5 K and 4.16 K, respectively. The
maximum UHI intensity for both seasons for the past 20 years is
4.3 K. In contrast, the average UHI intensity in the research area
during the summer and winter is 1.03 K and 1.05 K, respectively.
The average UHI intensity for the past 20 years is 0.74 K in the
summer and 0.85 K in the winter. A trend analysis was conducted
on the graphs plotted, and it concluded that all the graphs show a
significant upward trend. Kendall's Tau value is more than 0, indi-
cating that a relationship may exist between both the parameters,
UHI and time. According to the findings, several locations in Tir-
uchirappalli, including the district collector's office, the railway
station, the central bus stand, the cantonment post office and dis-
trict court, and the Periyar College of Pharmaceuticals, are hot spots
of 99 percent confidence with relatively high temperatures. Periyar
Nagar, the Airport, St. Joseph's College, the Wireless Station, and the
District Forest Officer's Office are hot spots with a 95 percent
confidence level. Sundaram Hospital, Oxford Engineering College,
and the Shri-Raja-Rajeswari Temple area are within regions of hot
spots with a 90 percent confidence level. BHEL has noticed 95 and
90 percent significant hot spots outside the metropolitan area. The
regions of cold spots with 90 percent significance include Shri-
Boolaganatha Swami temple, Thirumangalam, and Arulmiga Mad-
hura Kaliyamman temple area.

The present study uses MOD11A2 LST product with 1000 m
coarse spatial resolution to analyze the spatial variation of LST and
UHI effects. Hence, smaller agglomerations like BHEL could not be
analyzed in finer detail. To better understand microclimate UHI
studies, further studies can be performed using high-resolution or
downscaled data. The current study concentrated on the temporal
analysis of LST and UHI impacts for the study area throughout the
summer and winter seasons. However, it was unable to do so
during the monsoon season. The investigation was limited during
the monsoon season due to the scarcity of high-quality pixels due
to cloud contamination. In future research, these limitations may be
overcome spatially and temporally.
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