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A B S T R A C T   

Urban thermal environment should be analyzed by considering the dynamic structural changes as cities grow 
both horizontally and vertically. Local Climate Zone (LCZ) scheme can describe built-up areas in detail, mainly 
based on density and height; however, the low overall accuracy of LCZ urban classes (OAurb) remains a notable 
limitation that requires improvement. This study proposes a hybrid analytical method considering bidirectional 
urban expansion and low OAurb. Temporal LCZ maps were constructed using a convolutional neural network to 
observe the dynamic urban growth between 2004 and 2021 in Suwon, South Korea. Unlike previous LCZ 
mapping studies, we utilized the additional information provided by deep learning through softmax-based 
probability maps. Random forest-based downscaling models were developed by combining various auxiliary 
variables related to the Land Surface Temperature (LST) to observe the detailed surface energy flux. A filtering 
method was then employed by eliminating areas where LCZs were identified with a low confidence level using 
extracted probability maps. Finally, thermal variability was investigated by overlaying the filtered LCZ maps and 
the corresponding LST. The produced LCZ maps and spatially downscaled LSTs accurately depicted dynamic 
urban form changes, with the LCZ maps exhibiting an average overall accuracy of approximately 90% and 
downscaled LSTs showing an average coefficient of determination of ~ 0.9 and a root mean square error of 
0.7 ◦C. Thermal variability occurring due to structural transitions varied in magnitude depending on the height 
and density of the buildings, while exhibiting a maximum and minimum value of 2.8 ◦C and − 2.2 ◦C, respec-
tively. By selecting reliably classified areas, the proposed filtering method produced more rational results than 
the original non-filtering method, resulting in higher variability from − 0.4 ◦C to 0.6 ◦C.   

1. Introduction 

Urbanization and population growth have led to the steady 
replacement of natural land cover with impervious surfaces that absorb 
large amounts of solar energy and inhibit convective cooling (Oke, 1995; 
Tomlinson et al., 2011). This causes an imbalance in the energy flow of a 
city and is associated with a range of localized urban climate issues such 
as heat waves, air pollution, and Urban Heat Islands (UHIs) (Guo et al., 
2022; Wang et al., 2019; Zhao et al., 2020). Densified regions and 
intensified populations further amplify the overall impact of the 
observed heat effects (Harlan et al., 2006; Sera et al., 2019). When 
examining urbanization at the city scale, city growth includes not only 
impermeable structures that expand horizontally but also urban renewal 

that becomes denser and/or extends vertically (Bounoua et al., 2018). 
Unfortunately, the seemingly inevitable march of urban redevelopment 
through the construction of high-rise and high-density buildings is 
currently the only viable option for countering the ever-increasing 
pressure on limited urban spaces (Reddy, 1996). Therefore, a study of 
the intra-urban transition is needed to fully understand the urban 
thermal environment as shaped by the urban configuration. 

Studying the atypical and dynamic evolution of urban morphology 
through urban growth can help maintain sustainable urban develop-
ment and reduce problems associated with urban expansion (Bhatta, 
2009). Previous studies have depicted or obtained land-cover maps to 
monitor and analyze urban thermal environments over time (Alqurashi 
et al., 2016; Feyisa et al., 2016; Zhang et al., 2013). However, existing 
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methodologies have clear limitations for generalization, as researchers 
are likely to choose non-comparable sources of land use/land cover 
(LULC) data with different levels of detail (Demuzere et al., 2019; Ver-
burg et al., 2011). In addition, most LULC data have only one category in 
heterogeneous urban areas (e.g., artificial surface or built-up areas), 
which makes it challenging to characterize urban climates with multiple 
surface details (Rwanga et al., 2017; Wang et al., 2019). To address this 
problem, Stewart and Oke (2012) developed a universally applicable 
Local Climate Zone (LCZ) classification scheme. The LCZ categorizes 
urban regions into 17 classes, 10 of which pertain to built-up environ-
ments, primarily determined by the density and height of buildings, 
whereas the remaining seven are related to the natural environment. 
Leveraging this strength to effectively analyze profound thermal envi-
ronments, it is now considered a standard for urban landscape classifi-
cation (Demuzere et al., 2022; Ma et al., 2021). 

Many studies have analyzed the urban thermal environment using 
the LCZ (Chen et al., 2017; Geletič et al., 2019; Kotharkar et al., 2018; 
Middel et al., 2014; Xia et al., 2022; Yang et al., 2020; Zhao et al., 2022). 
However, most of these studies have only investigated a single-time LCZ 
scene that could analyze the spatiotemporal thermal environment of the 
year under consideration (Bechtel et al., 2019; Zhao et al., 2020). A 
static, single-time LCZ is ineffective for analyzing the transformation of 
land cover and the altered intra-urban environment during urbaniza-
tion. Recently, a multi-temporal LCZ was applied to interpret the 
multifaceted impact of dynamic land-cover change (Fan et al., 2022; 
Wang et al., 2019). Despite this innovation, the LCZ classification still 
has significant shortcomings owing to its low accuracy for urban fea-
tures. Previous studies have examined historical land cover and thermal 
environment changes with a relatively low LCZ mapping accuracy (e.g., 
the Overall Accuracy (OA) is about 60–80%). Notably, the OA of the LCZ 
urban classes (OAurb) was significantly lower than that of the OA for all 
classes. Thus, the analyses of heat effects in these studies may have high 
uncertainty owing to many misclassified results. In addition, most pre-
vious studies considered only the horizontal development of cities. 
Other alterations in the urban thermal environment resulting from 
vertical or density growth within cities have not been sufficiently 
examined. 

The Land Surface Temperature (LST) represents the surface energy 
flux, making it an important factor in thermal studies (Li et al., 2013; 
Trigo et al., 2008; Weng and Lu, 2008; Mohammad and Goswami, 
2021). Satellite-derived LST data are widely used for spatiotemporal 
climate analysis because of the spatially continuous information deliv-
ered at regular intervals (Cao et al., 2022; Lee et al., 2021; Yoo et al., 
2022). Landsat regularly provides valuable LST data with a high spatial 
resolution (120 m for Landsat 5 and 100 m for Landsat 8 on a 16-day 
repeat cycle), making it one of the most useful satellites for urban 
climate researchers (Liu et al., 2011; Cheval et al., 2020). To date, 
Landsat satellites have been extensively utilized in urban thermal 
environment analysis to derive land cover maps (Fu and Weng, 2016; 
Yoo et al., 2019), monitor air temperature (Cho et al., 2020; Ho et al., 
2014), assess heat stress (Dugord et al., 2014; Liou et al., 2021), and 
investigate UHI effects (Lee et al., 2021; Xian et al., 2021). Furthermore, 
spatial downscaling studies of the LST have been conducted to capture 
the details of heat fluxes in heterogeneous urban areas (Bonafoni et al., 
2016; Zawadzka et al., 2020). 

Although previous studies have investigated the relationship be-
tween land cover alteration and LST, the strength of its association with 
dynamic horizontal and vertical urban configuration developments 
impacted by urban renewal has not yet been adequately examined. 
However, it is well known that urban regeneration is inevitable as part of 
the ongoing urbanization process and the associated urban policies 
designed for efficient land use in cramped city areas. Therefore, it is 
necessary to analyze the changes in the urban thermal environment and 
how they are influenced by urbanization-wide morphological trans-
formations. In this study, to analyze the changing thermal environment 
during urbanization for both horizontal and vertical transformation 

processes, we hypothesized that 1) a 30 m spatial resolution of LST finer 
than 100 m (120 m) of Landsat is necessary to determine the LST vari-
ation caused by urban renewal and 2) only regions known to have a low 
level of LCZ classification uncertainty should be used to examine the 
heat impact caused by morphological changes between different built- 
type LCZs. This study proposes the following new strategies to deal 
with the hypotheses:1) the retrieval of high spatial resolution LST using 
artificial intelligence (AI), and 2) a new method for change detection 
analysis based on a probabilistic deep learning approach. 

In this study, Suwon, South Korea was selected as the most suitable 
city for identifying the thermal impact of rapid urbanization. We sought 
to answer the following important research questions: (1) Can the newly 
generated 30 m LST represent the heterogeneous surface energy flux of 
urban areas? (2) If only areas with high classification accuracy are used 
for the analysis, is it possible to reliably identify the thermal environ-
ment caused by horizontal and vertical urbanization? 

Section 2 describes the study area and dataset used in this study. 
Section 3 elaborates on the specific principles and methodology 
employed in this research. Section 4 presents the outcomes of the work 
described in Section 3 as well as LST variation by dynamic structure 
changes in built-up areas. The last two sections expound on comparing 
our findings with previous studies, suitability of hypotheses, application 
of the proposed approach, study limitations, and future directions. 

2. Study area and data 

2.1. Study area 

The study area was Suwon (37◦N, 127◦E), which is located approx-
imately 35 km south of Seoul, the capital of South Korea (Fig. 1). Suwon 
has an area of 121 km2 and a population of 1.2 million, which is the 
largest population among the basic local government units in South 
Korea. Since the 1950 s, South Korea has experienced rapid urbanization 
nationwide (Chen et al., 2020). Suwon is one of the cities experiencing 
extreme urbanization and population growth (from approximately 0.3 
million population in 1980 to 1 million in 2000) (Lee et al., 2007). This 
has led to extensive land cover changes, with impervious materials 
expanding both horizontally and vertically. These factors made Suwon 
an ideal candidate for exploring our hypotheses. 

2.2. Satellite observation data 

Landsat and Shuttle Radar Topography Mission (SRTM) data were 
used in this study. Landsat 5 Thematic Mapper data consisted of six 
spectral bands with a spatial resolution of 30 m (band 1–5 and 7) and 
one thermal band (band 6) at 120 m. Landsat 8 Operational Land 
Imager/Thermal Infrared Sensor (OLI/TIRS) data consisted of seven 
spectral bands with a spatial resolution of 30 m (band 1–7) and two 
thermal bands (band 10–11) at 100 m. Thermal products from both 
Landsat satellites were resampled to 30 m using a cubic convolutional 
method. The revisit cycle of both Landsat 5 and 8 was 16 d, and the 
overpass time of Suwon was approximately 11:00 local time. In this 
study, considering data quality, availability, and comparability, two 
scenes per year for each task (LCZ classification and LST spatial down-
scaling described in Section 3.1-3.2) were used as spectral reflectance 
(each band) and spectral indices (Normalized Difference Vegetation 
Index (NDVI) and Normalized Difference Built-up Index (NDBI)) in 2004 
(Tables 1, 2). 

SRTM was launched by NASA in an attempt to acquire elevation data 
worldwide in 2000. The SRTM digital elevation model (DEM) was used 
for extracting topographic (elevation, slope, aspect, and solar radiation) 
and geometry variables (latitude and longitude) at a resolution of 30 m 
(Table 2). All of the datasets mentioned above were downloaded from 
https://earthexplorer.usgs.gov. 
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2.3. Land cover map data 

Since 1998, the Ministry of Environment of South Korea has pro-
duced nationwide land-cover maps using optical satellites (mainly 
Landsat and Korean multipurpose satellites) and aerial images. National 
land-cover maps have been used in various research applications and 
environmental management. Depending on the resolution, the land 
cover map was divided into major categories (resolution of 30 m with 
seven items), middle category (resolution of 5 m with 22 items), and 
subcategory (resolution of 1 m with 41 items). In this study, land cover 
data at 30 m resolution with seven items covering the study area were 
downloaded from https://egis.me.go.kr/. Although the study area con-
tained seven land-cover classes in the major categories, some had a small 
proportion. Therefore, considering the features of cover distribution and 
proportion in the study area, four classes–urbanized areas (code 100), 
agricultural areas (code 200), forest areas (code 300), and water bodies 
(code 700)–were extracted from the major category. Land cover data 
produced in 2001 and 2019, which were the closest to the study period, 
were applied as auxiliary variables to generate a fine spatial resolution 
of LST (Table 2). 

2.4. Local climate zones reference data 

The remote sensing-based LCZ mapping followed the World Urban 
Database and Access Portal Tools (WUDAPT) workflow suggested by 
Bechtel et al. (2015). To ensure the accurate mapping of multitemporal 

Fig. 1. Study area with the Local Climate Zone (LCZ) reference data. The administrative border is represented by a black line. Shuttle Radar Topography Mission 
(SRTM) digital elevation model (DEM) with 30 m spatial resolution is used to derive elevation. The background images are from Bing Maps on ArcGIS. 

Table 1 
Selected Landsat images and sensors for LCZ classification and LST retrieval.  

Year Landsat Scene Identifier Date Acquired 
(YY/MM/DD) 

Usage 

2004 LT51160342004027BJC00 
LT51160342004155BJC02 

2004/01/27 
2004/06/03 

LCZ classification 

2021 LC81160342020343LGN00 
LC81160342021153LGN00 

2020/12/08 
2021/06/02 

2004 LT51160342004091BJC00 
LT51160342004155BJC02 

2004/03/31 
2004/06/03 

LST retrieval 

2021 LC81160342021105LGN00 
LC81160342021153LGN00 

2021/04/15 
2021/06/02  

Table 2 
Data information and their usages.  

Source Variables Spatial 
(Temporal) 
resolution 

Usage 

Landsat 5 Multispectral band 
(band 1–5, 7), 
Normalized Difference 
Vegetation Index 
(NDVI), Normalized 
Difference Built-up 
Index (NDBI), 

30 m 
(16 d)  

1) LST 
downscaling  

2) LCZ 
classification 

Thermal band (band 6) 120 m 
(16 d) 

Landsat 8 Multispectral band 
(band 1–7), Normalized 
Difference Vegetation 
Index (NDVI), 
Normalized Difference 
Built-up Index (NDBI), 

30 m 
(16 d)  

1) LST 
downscaling  

2) LCZ 
classification 

Thermal bands (band 
10, 11) 

100 m 
(16 d) 

SRTM Elevation, Slope, 
Aspect, Solar radiation, 
Latitude, Longitude 

30 m 
( − ) 

LST downscaling 

Ministry of 
Environment 
Land Cover 
Map 

Percentage of urbanized 
area, Percentage of 
forest area, Percentage 
of agricultural area, 
Percentage of 
waterbody 

30 m 
( − ) 

LST downscaling  
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LCZ scenes, Demuzere et al. (2020) advised the careful selection of 
reference data for areas that remained unchanged over the long-term 
study period. Therefore, we generated polygonal LCZ reference data 
from the representative regions with the same LCZ classes for 2004 and 
2021. These reference data were used to develop and evaluate a high- 
resolution temporal LCZ classification model in accordance with the 
methodologies suggested by Bechtel et al. (2015) and Demuzere et al. 
(2020). Eight urban-type LCZs (LCZ1-6, − 8, and − 9) and four natural- 
type LCZs (LCZA, B, D, and G) were identified in Suwon (Fig. 1). The 
reference polygons of each LCZ class were randomly divided into 60% 
and 40% polygons for model training and evaluation, respectively. 
Because LCZ1 (compact high-rise) has a relatively small area (i.e., a 
small sample size) compared to other LCZ classes in Suwon, the LCZ1 
pixels, labeled ‘red-star’ as in Yoo et al. (2019), were randomly divided 
into 60% and 40% for model training and validation, respectively, 
instead of dividing the polygons (Table 3). Considering the recommen-
dations for the LCZ mapping scale (30–500 m) (Bechtel et al., 2015; 
Verdonck et al., 2017) and the need to characterize urbanization with a 
fine spatial resolution (Bounoua et al., 2018), we selected a 30 m scale 
for LCZ mapping. 

3. Methodology 

The overall flow for exploring the thermal impact of dynamically 
changing the intra-urban configuration consists of three main parts: 1) 
LCZ classification, 2) LST downscaling, and 3) thermal variation analysis 
by LCZ transformation (Fig. 2). In the first part, not only the temporal 
LCZ maps, but also the deep-learning-based probability maps proposed 
in this study were extracted. Subsequently, using the kernel-driven 
approach, the Landsat LST at 100–120 m resolution was downscaled 
to 30 m resolution in order to observe the surface energy flow for each 
LCZ type. Finally, after filtering out the LCZs classified with low prob-
ability using probability maps, the downscaled LSTs were overlaid to 
measure the amount of LST change triggered by the LCZ transformation. 

3.1. LCZ mapping using convolutional neural Networks 

Methods that use Geographic Information Systems (GIS) (Unger 
et al., 2014) and satellite data-based machine learning (random forest; 
RF) (Bechtel et al., 2015) techniques have become mainstream for 
generating LCZs. Later research demonstrated that Convolutional Neu-
ral Networks (CNN), an image-based deep learning algorithm, was su-
perior to RF for LCZ classification (Yoo et al., 2019; Rosentreter et al., 
2020; Qiu et al., 2020). Thus, the satellite-based CNN approach was 
adopted to delineate temporal LCZ maps in this work. Unlike other 
conventional machine learning-based classification models, a CNN was 
designed to learn the spatial information of an image by exploiting 
convolutional filters (Kattenborn et al., 2021). Because of their ability to 
capture spatial patterns, CNN have been frequently employed in clas-
sification applications, demonstrating excellent performance (Alhichri 
et al., 2021; Boulila et al., 2021; Kim et al., 2018; Yoo et al., 2019). 

Typically, CNN consist of convolutional, pooled, and fully connected 
layers. Convolutional layers are instrumental in extracting the features 
of the input images using moving filters (or kernels). Pooling layers 
reduce the size (width and height) of the feature map in the process of 
describing the representative values (i.e., mean or maximum) of the 
given moving filter but help prevent overfitting. In this study, max 
pooling, which is commonly used in image categorization, was 
employed (Guidici et al., 2017; Masolele et al., 2021; Yoo et al., 2019). A 
fully connected layer converts the lastly extracted two-dimensional 
feature maps into one-dimensional vector via flattening. 

Keras, an open-source software library, was used to implement the 
CNN. Fig. 3 shows the architectures of the CNN models employed in this 
study. The optimal structure and hyperparameter tuning are employed 
using typical heuristic processes. Specifically, the constructed CNN 
model comprises two large convolutional units with three convolutional 
layers, two max-pooling layers, and a fully connected layer. All con-
volutional layers have 3 × 3 kernel sizes, and each side of the input is 
zero-padded by one pixel during convolution to maintain a constant size 
of the feature maps. Furthermore, a rectified linear unit (ReLU) with the 
advantage of efficient computational characteristics was used as the 
activation function for each convolutional layer. Maximum pooling 
layers of size 2 × 2 are applied after the third and sixth convolutional 
layers. A fully connected layer with 256 nodes is placed at the end. To 
classify the LCZ type, a softmax function was used to assign the output of 
the fully connected layer with the highest probability to the final class 
(Equation (1)). To reduce the error function, an adaptive moment esti-
mation (ADAM) optimizer is applied, which is frequently employed in 
neural networks, particularly in classification problems. Model training 
with batch sizes of 256 and 1000 epochs was accelerated using a 
graphics processing unit (GPU) of Nvidia GTX 1080Ti with 11 GB of 
memory. In this study, unlike most existing LCZ classification studies, a 
probability map comprising the highest probability of each pixel was 
also extracted as another output. The probability map was then 
employed to filter out LCZ pixels with low confidence in our LCZ maps so 
that they would not be included in the thermal variation analysis by LCZ 
transformation. 

Table 3 
Training and test datasets of each LCZ class for Suwon. The values in the training 
and test columns indicate the number of polygons and the corresponding pixels 
at 30 m resolution shown in the parentheses. * is allocated to the red-star class, 
which occupies relatively few small areas of the LCZ classes. The LCZ figures in 
the first column are taken from Stewart and Oke (2012).  

LCZ Suwon 

Training Test 

LCZ1 
Compact high-rise 

9 (146) * 

LCZ2 
Compact midrise 

9 (275) 8 (207) 

LCZ3 
Compact low-rise 

7 (281) 7 (215) 

LCZ4 
Open high-rise 

5 (706) 4 (527) 

LCZ5 
Open midrise 

6 (306) 5 (253) 

LCZ6 
Open low-rise 

5 (160) 5 (121) 

LCZ7 
Lightweight low-rise 

– – 

LCZ8 
Large low-rise 

5 (548) 6 (434) 

LCZ9 
Sparsely built 

4 (469) 4 (479) 

LCZ10 
Heavy industry 

– – 

LCZA 
Dense trees 

6 (2455) 5 (1884) 

LCZB 
Scattered trees 

5 (741) 6 (526) 

LCZC 
Bush, scrub 

– – 

LCZD 
Low plants 

5 (1156) 5 (930) 

LCZE 
Bare rock or paved 

– – 

LCZF 
Bare soil or sand 

– – 

LCZG 
Water 

5 (1030) 5 (991)  
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Softmax(yi) =
eyi

∑K
i=1eyi

(1)  

where yi is the probability of the output layer of each LCZ class and K is 
the total number of LCZ classes in Suwon. 

Detailed, high-accuracy LCZ maps are required to investigate the 
thermal impact of the modified built-type LCZs. Therefore, methods that 
consider the surrounding area of a focus pixel (Yoo et al., 2019) and the 
phenology of vegetation (Bechtel et al., 2015) and expand spectral 
indices as input values (Demuzere et al., 2019) have been used to 
improve classification accuracy. To consider the surrounding area of a 
focus pixel, we retrieved 10 × 10 window size features of 30 m resolu-
tion Landsat images and fed them into the CNN classifier. Two clear-sky 
Landsat images obtained during the summer and winter seasons of each 
year were used to account for vegetation phenology (Table 1). The 
spectral indices, NDVI and NDBI, were calculated from Landsat satellite 
spectral band composite data (Equations (2), (3)). We used features 
created from 18 bands (nine bands for one scene) from Landsat 5 and 22 

bands (11 bands for one scene) from Landsat 8 to generate the 2004 and 
2021 LCZ maps, respectively (Table 2). An accuracy assessment was 
conducted using independent validation samples for OA, OAurb, which is 
the accuracy of the built-up LCZ types (LCZs 1–10), and OAnat, which is 
the accuracy of the natural LCZ types (LCZs A-G). 

NDVI =
NIR − RED
NIR + RED

(2)  

NDBI =
SWIR − NIR
SWIR + NIR

(3)  

3.2. Spatial downscaling of Landsat LST 

In urban climate studies that require detailed resolution, an LST 
resolution finer than 100 m is suitable for approaching typical building 
widths and blocks (Bechtel et al., 2012). To quantify the rate of change 
in impervious surfaces and model their effects on the energy cycle, it is 
crucial to have a high level of detail to detect changes in building type 

Fig. 2. Illustration of the proposed hybrid AI approach for urban thermal environmental analysis. The procedures are divided into three sections: Local Climate Zone 
(LCZ) mapping, Land Surface Temperature (LST) downscaling, and thermal variation analysis by LCZ transformation. 

Fig. 3. Architecture of the Convolutional Neural Networks model used in this study.  
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within a single building block (Bounoua et al., 2018). Considering the 
demand for fine resolution, the target spatial resolution of the down-
scaled LST was determined to be 30 m to observe changes in built-up 
LCZs and to examine the effects of urban renewal on the thermal envi-
ronment. To enhance the spatial resolution of LST, statistical down-
scaling is often applied using the relationship between multiple highly 
related input variables, such as surface reflectance, band indexes, and 
other factors. Among the various downscaling approaches, the kernel- 
driven method, in which the input variables are called kernels, is 
considered the most efficient approach for deriving a finer LST in urban 
areas (Yoo et al., 2020). 

RF regression models were implemented to generate a 30 m spatial 
resolution LST. RF, which comprises multiple decision trees to prevent 
overfitting and increase accuracy, is a prominent machine learning 
model for regression and classification (Breiman, 2001). For regression 
tasks, the combination of multiple decision trees plays a role in 
decreasing errors owing to the use of bootstrap aggregation or bagging. 
Owing to its high generalization capability and stable fitting ability in 
modeling, RF is a preferred machine-learning method for enhancing the 
spatial resolution of LST (Hutengs and Vohland, 2016; Peng et al., 
2021). 

Reflectance-based kernels (satellite spectral reflectance data and 
spectral indices) from Landsat satellites, SRTM DEM-based kernels 
(topographic and geometric products), and land cover-based kernels 
from the Ministry of Environment Land Cover map were selected as 
input kernels to generate a 30 m spatial resolution of LST. All the 
selected input kernels have been frequently employed in LST down-
scaling in heterogeneous urban areas (Bonafoni et al., 2016; Peng et al., 
2021; Yoo et al., 2022). Including reflectance indices (i.e., NDVI and 
NDBI), nine reflectance variables and 11 reflectance-based data were 
extracted from the Landsat 5 and Landsat 8 satellites, respectively. Four 
topographic kernels (aspect, elevation, slope, and solar radiation) and 
two geometric kernels (latitude and longitude) were derived from the 
SRTM DEM with a 30 m spatial resolution using the Spatial Analyst 
toolbox in ArcGIS. A total of 19 (nine reflectance-based kernels from 
Landsat 5, four land-cover-based kernels, and six STRM DEM-based 
kernels) and 21 kernels (11 reflectance-based kernels from Landsat 8, 
four land-cover-based kernels, and six SRTM DEM-based kernels) were 
employed to model the relationship between the input kernels and the 
target Landsat LSTs. 

Landsat LSTs were derived from thermal infrared (TIR) data based on 
a single-channel (SC) algorithm (Jimenez-Munoz et al., 2008) (Table 2). 
Typically, the SC algorithm requires only one TIR band, resulting in a 
root mean squared error (RMSE) within 1.5 K compared to the ground 
truth (Jimenez-Munoz et al., 2014; Sobrino et al., 2004). To generate the 
downscaled LST (DLST), all 30 m input kernels were aggregated to 100 
m and 120 m, which have the same resolution as the original Landsat 
thermal bands for 2004 and 2021. 

3.3. Thermal environment analysis strategy 

In this study, we developed an integrated approach to explore the 
urban thermal environment through urban renewal in Suwon by 
observing LULC changes during the study period using LCZ maps and 
their impact on surface temperature. In the temporal LCZ maps, only the 
built-types of LCZs were extracted to determine the intra-urban 
morphology transition impact on the thermal environment. To reduce 
the uncertainty caused by LCZ misclassification, we utilized probability 
maps obtained from the softmax function to filter out pixels with low 
probabilities. The threshold of the probability value was set when the 
OAurb reached a target of 85%, which is required for satellite-based 
remote sensing classification studies (Anderson 1976; Li et al 2022; 
McNairn et al., 2009). 

To quantitatively identify land transformation due to rapid urbani-
zation in Suwon, a land-cover transformation matrix was generated. 
Matrix indicates the LCZ types and area conversion over the study period 

(Equation (4)). This research involved the division of two distinct 
groups, namely the proposed filtering method and the original non- 
filtering method, for comparison. 

LCZij =

⎡

⎢
⎢
⎣

LCZ11 LCZ12 ⋯ LCZ1n
LCZ21 LCZ22 ⋯ LCZ2n

⋯ ⋯ ⋯ ⋯
LCZn1 LCZn2 ⋯ LCZnn

⎤

⎥
⎥
⎦ (4)  

where n is the total number of LCZ classes in Suwon, and i and j indicate 
the LCZ types for 2004 and 2021, respectively. The values in each row 
represent the areas converted from LCZ type i to the other LCZ types. The 
values in all the columns reveal that the area transformed from other 
LCZ types to LCZ type j. 

Although LST was derived from Landsat images captured during the 
same climate season and time of day to eliminate the adverse effects of 
different times, it may be subject to annual fluctuations in different 
years. Herein, to exclude annual LST variation and analyze the dynamic 
evolution of the thermal environment in different LCZs, the LST differ-
ence in the unchanged LCZ class between the LCZ map in 2004 and 2021 
was assumed to be caused by interannual climate variation (Fig. 4). As 
for annual LST fluctuation, LST difference for the same LCZ class was 
normalized against all other LST differences using the following steps:1) 
calculating LST difference between LCZ class in past and LCZ class in 
present, 2) evaluating LST difference for the same LCZ class during the 
study period (called basic change; Δ), and 3) subtracting the LST dif-
ference due to LCZ change from basic change (Equations (5), (6) and 
(7)). The LST normalization procedure was applied consistently to both 
the filtering and non-filtering approaches. 

ΔLSTij = LSTi(2021) − LSTj(2004) (5)  

ΔLSTi = LSTi(2021) − LSTi(2004) (6)  

NLST = ΔLSTij − ΔLSTi (7) 

In summary, we formulated a three-step procedure to investigate the 
influence of dynamic LULC changes on the surface thermal behavior. 
First, LCZ and probability maps with 30 m resolution were delineated 
using a CNN-based LCZ model to identify LULC changes caused by urban 
expansion. Second, using the kernel-driven approach, 30 m resolution 
DLSTs were retrieved for 2004 and 2021. Third, using the aforemen-
tioned outputs, the LST variation due to built-type LCZs transformation 
was analyzed. 

Fig. 4. The normalization method used in this study to mitigate annual LST 
fluctuation. Gray line represents average LST of the same LCZ class during the 
study period, gray dotted line means basic average LST change owing to annual 
variation and red line indicates average LST affected by LCZ class change, and 
Red dotted line designates average LST difference due to LCZ change. 

S. Lee et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 122 (2023) 103408

7

4. Results 

4.1. Temporal LCZ change analysis with accuracy assessment. 

The Suwon LCZ maps for 2004 and 2021, along with noticeably 
changed locations (Site 1–3), are shown in Fig. 5; Table 4 illustrates the 

proportion of LCZ types in Suwon from the LCZ maps of 2004 (Fig. 5a) 
and 2021 (Fig. 5b). From 2004 to 2021, the total built-type LCZ area 
increased, whereas the total natural-type LCZs area decreased. Among 
the built-type LCZs, the prevalence of low-rise urban forms, specifically 
LCZ3, LCZ6, and LCZ9, decreased, whereas that of mid-rise (LCZ2 and 
LCZ5) and high-rise forms (LCZ1 and LCZ4) increased, suggesting a 

Fig. 5. Local Climate Zone (LCZ) maps in 2004 (a) and 2021 (b) with drastic changed locations (Sites 1–3). The black square delineates the areas shown in detail to 
compare land cover change. The images below bi-temporal LCZ maps indicate the specific site using Google Earth image (upper) and LCZs (below) over time. 
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trend of vertical expansion. Notably, the urban development in LCZ4 
(open high-rise) was the most extensive, with a 3.35% increase, followed 
by LCZ8 (large low-rise), with a 2.37% increase. A typical expansion at 
the urban fringe was observed at Sites 1 and 3 in Fig. 5, with conversions 
mainly from LCZ9 to LCZ4 and from LCZD to LCZ8, respectively. 
Interestingly, changes between built-up LCZs have also been identified 
(e.g., Site 2). In 2004, Site 2 was dominated by building forms LCZ2 or 
LCZ3; however, in 2021, a distribution of LCZ1 was found, indicating 
vertical growth. These results aligned with the LULC changes associated 
with population growth and urbanization in Suwon (https://www.suwo 
n.go.kr/stat/). 

Fig. 6 shows the classification accuracy for the bi-temporal LCZs with 
the Softmax probability for each LCZ class. The accuracy estimations for 
the LCZ maps of 2004 (Fig. 6a) and 2021 (Fig. 6d) were 88.89% and 
91.10% for OA, 75.39% and 81.27% for OAurb, and 94.62% and 96.35% 
for OAnat. A disparity in the probability range (i.e., the y-axis) between 
Fig. 6b and Fig. 6e was observed, which was presumably attributable to 

the sensor quality resulting from the technical methodology employed 
by Landsat 5 and Landsat 8 (Irons et al., 2012; Mishra et al., 2016). In 
both years, compared to natural-type LCZs (e.g., LCZA and D), relatively 
low mean and high variance of softmax probability values were shown 
in built-type LCZs (e.g., LCZs 1–3 and LCZs 5–8), where misclassification 
among them appeared due to heterogeneous urban surface structures 
(See also Supplementary Fig. S1). Only LCZs with a high level of con-
fidence remained after applying the proposed filtering method, showing 
a proportion of 50% or more for each LCZ (Fig. 6c and f). 

4.2. Evaluation and analysis for the downscaled LSTs 

The average DLST for each year with detailed spatial patterns is 
given in Fig. 7. In the validation results of these maps (Supplementary 
Fig. S2), the coefficient of determination (R2) values were greater than 
0.9 for all validation dates except for one (R2 is 0.85 on March 31, 2004), 
whereas the RMSEs were below one degree Celsius for all validation 

Table 4 
The proportion of the LCZ types in Suwon from 2004 to 2021 (%). The change indicates the proportion difference of LCZ types between 2004 and 2021 in Suwon.  

Year LCZ 
1 

LCZ 
2 

LCZ 
3 

LCZ 
4 

LCZ 
5 

LCZ 
6 

LCZ 
8 

LCZ 
9 

LCZ 
A 

LCZ 
B 

LCZ 
D 

LCZ 
G 

2004  1.50  3.45  3.38  9.04  4.12  6.03  3.41  19.81  34.55  5.90  7.03  1.80 
2021  1.53  4.23  3.30  12.39  5.64  5.92  5.78  14.41  34.09  5.46  5.68  1.57 
Change  0.03  0.78  − 0.08  3.35  1.53  − 0.11  2.37  − 5.40  − 0.46  − 0.43  − 1.34  − 0.23  

Fig. 6. LCZ classification accuracy assessment results based on confusion matrices of Suwon in 2004 (a) and 2021 (d); softmax-based probability distribution in 2004 
(b) and 2021 (e) with non-filtering; and in 2004 (c) and 2021 (f) with filtering and proportion of remaining pixels. The probability threshold value was set at 94% 
for filtering. 
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dates. Compared with previous studies that used Landsat 8 to derive a 
30 m LST for 32 cities worldwide (Dong et al., 2020), our validation 
results guarantee that DLSTs can describe convincing levels of surface 
temperature across a wide range of urban forms in Suwon. 

The Landsat LSTs and DLSTs exhibited similar surface temperature 
distributions over the study period, with high LSTs over dense imper-
vious surfaces. However, when examining Sites 1 and 2, the difference 

between Landsat LSTs and DLSTs became evident when DLSTs provided 
a more detailed representation, capturing the sensitive variation in LST 
based on building form and characteristics. For example, the DLST 
effectively represents LCZ-type characteristics with affluent LST, not 
only at Site 1, where the built-type LCZs and natural-type LCZs coexist, 
but also at Site 2, where heterogeneous built-type LCZs are gathered (See 
also Fig. 5). This suggests that DLSTs can represent opulent thermals 

Fig. 7. Spatial distribution of average LST representing the study area in 2004 (upper) and 2021 (below). Each figure represents Landsat LST (left), and downscaled 
LST in this study (right). The enlarged images at Site 1 and Site 2 are shown. The upper images of each site describe the land cover characteristics in 2004 using 
Landsat LST (left) and downscaled LST (right) at the same location. The below images of each site depict 2021 in the same way. 
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over heterogeneous urban areas in addition to maintaining the general 
spatial pattern of Landsat LSTs. 

The thermal behavior of each LCZ type is shown in Fig. 8. Among the 
12 LCZ types in Suwon, LCZ8 and LCZ2 consistently maintained the 
highest LST values, whereas LCZG and LCZA had the lowest LST values 
without any differences in order (see their rankings in Fig. 8). However, 
it is worth noting that the built-up LCZs and LST characteristics in 2021 
are more prominent than those in 2004, and some LST ranks have un-
dergone changes. The spatial pattern of impervious surfaces affects the 
LST in various ways, and the LST tends to increase as the spatial con-
centration increases (Mathew et al., 2016; Zhang et al., 2009). The 
changes in the proportion of built-type LCZs observed during the bi- 
temporal period (Table 4) appear to be mirrored by the LCZ-LST char-
acteristics of 2021. 

4.3. LST variation by intra-urban transition 

Fig. 9 illustrates the mean LST values according to changes in built- 
type LCZs using the proposed filtering method based on softmax prob-
ability maps (Fig. 9a) and the original non-filtering method (Fig. 9b). As 
shown in Fig. 5, sporadic bidirectional urban growth occurred in the 
study area, resulting in statistically significant LST variability with 
diverse magnitudes of most LCZ changes in both analyses (Fig. 9). 
Notably, in LCZ8, which recorded the highest temperature ranking in 
both periods, the observed changes showed the highest values in both 
maximum change (2.8 ◦C and 2.2 ◦C from LCZ9 to LCZ8, in the proposed 
method and original method, respectively) and minimum change 

(-2.2 ◦C from LCZ8 to LCZ1 in the proposed method and − 1.9 ◦C from 
LCZ8 to LCZ4 in the original method, respectively) among all the 
changes. Furthermore, distinct LST changes were observed in LCZ2, 
LCZ4, and LCZ8, which showed a substantial increase in the LCZ pro-
portion compared to other built-type LCZs. In comparison to the LCZ 
compact types (LCZ 1–3) of the same height, changes toward the LCZ 
open types (LCZ 4–6) have a tendency toward negative temperature 
change, apparently due to the shape of open structures with surrounding 
vegetation, as reported in previous studies (Dian et al., 2020; Zhang 
et al., 2014; Zhu et al., 2019). In terms of LST variation due to vertical 
growth, the transition from LCZ low-rise types (LCZ3, LCZ6, and LCZ9) 
to LCZ high-rise types (LCZ1 and LCZ4) with the highest impervious 
surface fraction was smaller than the transition to LCZ mid-rise types 
(LCZ2 and LCZ5). This can be explained by previous research findings 
(Bechtel et al., 2019; Nassar et al., 2016; Perini and Magliocco, 2014), 
where high-rise buildings cast shadows that decrease the amount of 
solar radiation received by the surface compared with mid-rise 
buildings. 

In the comparison between the proposed filtering method (Fig. 9a) 
and the original non-filtering method (Fig. 9b), the general trend of 
thermal variation according to built-type LCZs changes was consistently 
represented, regardless of whether filtering was applied. However, two 
distinct differences are observed between the two methods. First, it was 
shown that the proposed filtering method resulted in slightly higher LST 
variability in the range of − 0.4 ◦C to 0.6 ◦C compared to the original 
non-filtering method. The other difference is that we observed a reversal 
in the strength of the LST variability when filtering was applied in the 

Fig. 8. Thermal variations of each LCZ type after filtering with a probability value of 0.94. The figure summarizes the maximum, minimum, median, average, and 
interquartile values of the LST characteristics of each LCZ class using boxplots and bar plots in 2004 and 2021. The number below LCZ type (x-axis) represents LST 
rank of each LCZ class. 
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analysis. When transitioning from LCZ2 to LCZ4 and from LCZ3 to LCZ4, 
the proposed filtering method showed − 1.6 ◦C and − 1.5 ◦C, respec-
tively, indicating a larger LST change in the former than in the latter. In 
contrast, the original method showed − 1.3 ◦C and − 1.4 ◦C, respec-
tively, with larger values observed in the latter. This inversion was also 
observed in the transition from LCZ8 to LCZ2 and LCZ3. Compared with 
the original non-filtering method, the results of the proposed filtering 
method more clearly demonstrate the thermal behavior changes corre-
sponding to the rank differences of each LCZ type (See Fig. 8), indicating 
contributions to the urban thermal environment analysis. 

5. Discussion 

With the advancement of remote sensing applications and the advent 
of LCZ classification schemes, diverse and in-depth urban climate 
research has been actively attempted. Many studies have utilized the 
LCZ scheme to analyze the impact of temporal LULC changes on urban 
thermal environments. However, this study differs from the previous 
studies in several ways. On the one hand, previous studies that observed 
temporal LULC changes using the LCZ mainly focused on horizontal 
expansion, transforming from natural areas to built-up areas (Han et al., 
2022; Wang et al., 2019). On the other hand, we analyzed the thermal 
behavior based on intra-urban conversion. In this study, dynamic 
changes were observed in the temporal evolution of urban structures 
caused by urbanization, including significant structural changes within 
built-up areas. The results of our research align with those of a previous 
study that proposed urbanization as a consequence of bidirectional 
expansion (Bounoua et al., 2018). However, it should be noted that 
vertical growth within the built-up areas has not been comprehensively 
studied in previous research on urbanization dynamics over time. Our 
analysis of the urban thermal environment based on intra-urban tran-
sitions provides a paradigm shift in our understanding. This reflects 
practical urbanization, which has been overlooked as horizontal 
urbanization. 

In contrast to previous studies that directly used LST products, this 
study generated 30 m LSTs using a kernel-driven downscaling method to 
analyze the thermal behavior due to dynamic transitions in heteroge-
neous urban areas. Although Landsat provides 30 m LST, its limitation 
lies in the cubic convolutional resampling method, which does not 
consider heat exchange processes in the urban environment (Xu et al., 
2020). Typically, a fine resolution that can observe the widths of 
building blocks is required in urban climate research (Bechtel et al., 
2012), and a high spatial resolution can improve the accuracy of urban 
thermal environment analyses (Stathopoulou and Cartalis, 2009). The 
generated DLST represents significant variations in surface temperature 

in heterogeneous areas and shows high consistency with Landsat LST in 
spatial patterns, enabling the analysis of thermal behavior in urban areas 
according to dynamic transitions. 

This study suggests a probabilistic filtering method to eliminate the 
uncertainty caused by low OAurb in an LCZ-based urban thermal envi-
ronmental analysis. Although the overall accuracy of LCZ mapping has 
significantly improved with the integration of AI technology and various 
data, OAurb still fails to meet the accuracy required for thematic map-
ping in previous studies. Consequently, in some regions, a compromise 
in the accuracy is required (Wang et al., 2018; Zhao et al., 2020). The 
proposed probabilistic filtering approach can remedy the accuracy issue 
and was proven to be effective in reaching OAurb with the required ac-
curacy for analysis (Supplementary Fig. S3). However, because the 
proposed method has only been validated in one city, further research is 
needed, and the optimal probability threshold may vary depending on 
the study area. 

Additionally, the proposed filtering method can be used as an 
alternative to reduce the uncertainty caused by misclassification. As 
shown in Fig. 9, the proposed filtering method showed a similar trend, 
but some differences were revealed when compared with the original 
non-filtering method. The rationale of the proposed filtering method can 
be explained as follows. First, the results in Fig. 8 are consistent with 
previous studies (Han et al., 2022; Wang et al., 2019) in those distinct 
differences in LST between built-type LCZs and natural-type LCZs were 
observed, with higher LST occurring in built-type LCZs and lower LST in 
natural-type LCZs, suggesting that there were no significant issues with 
the LCZ and LST results. However, as shown in Fig. 5, low probabilities 
were mainly distributed over built-type LCZs, and the required accuracy 
of OAurb is confirmed in Supplementary Fig. S3 by applying the proposed 
filtering method. In other words, the original non-filtering analysis may 
contain uncertainty caused by misclassification. Based on these discus-
sions, it can be inferred that the proposed filtering method, which cap-
tures more abundant thermal fluctuations in accordance with LCZ-LST 
attributes, has the potential to yield rational outcomes and enhance the 
sophisticated analysis of the urban thermal environment. Owing to the 
inherent LCZ classification errors caused by the absence of height data, 
the proposed filtering method could not entirely eliminate uncertainties 
in the analysis. Nevertheless, these improved distinctions may facilitate 
the advancement of sophisticated analyses of urban heat environments. 

Owing to cloud contamination and noise in the satellite images used 
for the study area, the number of Landsat images obtained per year for 
LST retrieval remained limited. One possible approach to address this 
issue involves reconstructing LST under cloud cover (Fu et al., 2022; Zhu 
et al., 2022). However, uncertainty is associated with reconstructed LST 
data (Mo et al., 2021); hence, we did not apply restructured LST in this 

Fig. 9. Thermal variations by built-type LCZ transformation with the proposed filtering method (a) and original non-filtering method (b). The values in the figure 
represent the mean LST difference between 2004 and 2021. Bold values denoting the mean LST difference are significant based on the Z-test at the 95% confidence 
level (p < 0.05). 
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study. Further investigation needs to be conducted to determine 
whether reconstructed LST can be applied in future studies of dynamic 
changes in urban thermal environmental patterns. Despite certain lim-
itations, this study provides a baseline for a novel approach to urban 
climate in the era of artificial intelligence. 

6. Conclusion 

This study presents a new methodology for observing the impact of 
feasible LULC changes due to rapid urbanization on the urban thermal 
environment. To observe realistic bidirectional expansion at a detailed 
scale between 2004 and 2021, we generated 30 m resolution temporal 
LCZ maps and DLSTs. In addition, to reduce the analysis uncertainty 
caused by a low OAurb, we proposed a novel analysis approach that 
extracts softmax-based probabilities from the LCZ classification model 
along with LCZ classes to remove areas with low classification confi-
dence. Consequently, LST fluctuations due to intra-urban structural 
transition were observed, and the following conclusions were drawn. 
Noticeable variability in the LST was associated with changes in the 
proportion of LCZ types. In terms of vertical expansion, the transition to 
the compact mid-rise type showed the largest increase in LST, whereas 
the conversion to the open high-rise type resulted in a decrease in LST 
among the built-type LCZs. Applying the proposed filtering method fa-
cilitates the derivation of reasonable LST variability by eliminating re-
gions with a low level of classification confidence. We expect that the 
proposed hybrid AI approach can be successfully applied to other global 
cities and will help us understand the urban thermal environment driven 
by dynamic land-cover change. In subsequent studies, it will be neces-
sary to analyze the effects of urban thermal behavior according to sea-
sonal characteristics and day-night variations in response to dynamic 
changes. 
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Sobrino, J.A., Jiménez-Muñoz, J.C., Paolini, L., 2004. Land surface temperature retrieval 
from LANDSAT TM 5. Remote Sens. Environ. 90 (4), 434–440. 

Stathopoulou, M., Cartalis, C., 2009. Downscaling AVHRR land surface temperatures for 
improved surface urban heat island intensity estimation. Remote Sens. Environ. 113 
(12), 2592–2605. 

Stewart, I.D., Oke, T.R., 2012. Local climate zones for urban temperature studies. Bull. 
Am. Meteorol. Soc. 93 (12), 1879–1900. 

Tomlinson, C.J., Chapman, L., Thornes, J.E., Baker, C., 2011. Remote sensing land 
surface temperature for meteorology and climatology: a review. Meteorol. Appl. 18 
(3), 296–306. 

Trigo, I.F., Monteiro, I.T., Olesen, F., Kabsch, E., 2008. An assessment of remotely sensed 
land surface temperature. J. Geophys. Res. Atmos. 113 (D17). 

Unger, J., Lelovics, E., Gál, T., 2014. Local Climate Zone mapping using GIS methods in 
Szeged. Hungarian Geographical Bulletin 63 (1), 29–41. 

Verburg, P.H., Neumann, K., Nol, L., 2011. Challenges in using land use and land cover 
data for global change studies. Glob. Chang. Biol. 17 (2), 974–989. 

Verdonck, M.-L., Okujeni, A., van der Linden, S., Demuzere, M., De Wulf, R., Van 
Coillie, F., 2017. Influence of neighbourhood information on ‘Local Climate 
Zone’mapping in heterogeneous cities. Int. J. Appl. Earth Obs. Geoinf. 62, 102–113. 

Wang, R., Cai, M., Ren, C., Bechtel, B., Xu, Y., Ng, E., 2019. Detecting multi-temporal 
land cover change and land surface temperature in Pearl River Delta by adopting 
local climate zone. Urban Clim. 28, 100455. 

Wang, C., Middel, A., Myint, S.W., Kaplan, S., Brazel, A.J., Lukasczyk, J., 2018. Assessing 
local climate zones in arid cities: the case of Phoenix, Arizona and Las Vegas, 
Nevada. ISPRS J. Photogramm. Remote Sens. 141, 59–71. 

Weng, Q., Lu, D., 2008. A sub-pixel analysis of urbanization effect on land surface 
temperature and its interplay with impervious surface and vegetation coverage in 
Indianapolis, United States. Int. J. Appl. Earth Obs. Geoinf. 10 (1), 68–83. 

Xia, H., Chen, Y., Song, C., Li, J., Quan, J., Zhou, G., 2022. Analysis of surface urban heat 
islands based on local climate zones via spatiotemporally enhanced land surface 
temperature. Remote Sens. Environ. 273, 112972. 

Xian, G., Shi, H., Auch, R., Gallo, K., Zhou, Q., Wu, Z., Kolian, M., 2021. The effects of 
urban land cover dynamics on urban heat Island intensity and temporal trends. 
GIScience & Remote Sensing 58 (4), 501–515. 

Xu, J., Zhang, F., Jiang, H., Hu, H., Zhong, K., Jing, W., Yang, J.i., Jia, B., 2020. 
Downscaling ASTER land surface temperature over urban areas with machine 
learning-based area-to-point regression Kriging. Remote Sens. (Basel) 12 (7), 1082. 

Yang, J., Wang, Y., Xiu, C., Xiao, X., Xia, J., Jin, C., 2020. Optimizing local climate zones 
to mitigate urban heat island effect in human settlements. J. Clean. Prod. 275, 
123767. 

Yoo, C., Han, D., Im, J., Bechtel, B., 2019. Comparison between convolutional neural 
networks and random forest for local climate zone classification in mega urban areas 
using Landsat images. ISPRS J. Photogramm. Remote Sens. 157, 155–170. 

Yoo, C., Im, J., Park, S., Cho, D., 2020. Spatial downscaling of MODIS land surface 
temperature: Recent research trends, challenges, and future directions. Korean J. 
Remote Sensing 36 (4), 609–626. 

Yoo, C., Im, J., Cho, D., Lee, Y., Bae, D., Sismanidis, P., 2022. Downscaling MODIS 
nighttime land surface temperatures in urban areas using ASTER thermal data 
through local linear forest. Int. J. Appl. Earth Obs. Geoinf. 110, 102827. 

Zawadzka, J., Corstanje, R., Harris, J., Truckell, I., 2020. Downscaling Landsat-8 land 
surface temperature maps in diverse urban landscapes using multivariate adaptive 
regression splines and very high resolution auxiliary data. Int. J. Digital Earth 13 (8), 
899–914. 

Zhang, Y., Odeh, I.O., Han, C., 2009. Bi-temporal characterization of land surface 
temperature in relation to impervious surface area, NDVI and NDBI, using a sub- 
pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 11 (4), 256–264. 

Zhang, H., Qi, Z.F., Ye, X.Y., Cai, Y.B., Ma, W.C., Chen, M.N., 2013. Analysis of land use/ 
land cover change, population shift, and their effects on spatiotemporal patterns of 
urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 44, 121–133. 

Zhang, B., Xie, G.-d., Gao, J.-x., Yang, Y., 2014. The cooling effect of urban green spaces 
as a contribution to energy-saving and emission-reduction: a case study in Beijing, 
China. Build. Environ. 76, 37–43. 

Zhao, C., Jensen, J.L., Weng, Q., Currit, N., Weaver, R., 2020. Use of local climate zones 
to investigate surface urban heat islands in texas. GIScience & Remote Sensing 57 
(8), 1083–1101. 

Zhao, C., Weng, Q., Wang, Y., Hu, Z., Wu, C., 2022. Use of local climate zones to assess 
the spatiotemporal variations of urban vegetation phenology in Austin, Texas, USA. 
GIScience & Remote Sensing 59 (1), 393–409. 

Zhu, X., Duan, S.-B., Li, Z.-L., Wu, P., Wu, H., Zhao, W., Qian, Y., 2022. Reconstruction of 
land surface temperature under cloudy conditions from Landsat 8 data using annual 
temperature cycle model. Remote Sens. Environ. 281, 113261. 

Zhu, X. X., Hu, J., Qiu, C., Shi, Y., Kang, J., Mou, L., ... & Wang, Y. 2019. So2Sat LCZ42: A 
benchmark dataset for global local climate zones classification. arXiv preprint arXiv: 
1912.12171. 

S. Lee et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S1569-8432(23)00232-7/h0170
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0170
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0175
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0175
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0175
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0175
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0180
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0180
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0180
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0185
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0185
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0185
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0190
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0190
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0190
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0190
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0195
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0195
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0200
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0200
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0200
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0210
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0210
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0210
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0215
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0215
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0220
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0220
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0220
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0225
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0225
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0230
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0230
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0235
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0235
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0235
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0235
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0240
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0240
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0240
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0240
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0245
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0245
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0245
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0250
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0250
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0250
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0255
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0255
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0255
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0260
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0260
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0265
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0265
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0265
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0270
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0270
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0270
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0280
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0280
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0280
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0285
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0285
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0285
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0290
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0290
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0290
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0290
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0300
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0300
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0300
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0305
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0305
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0310
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0310
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0310
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0310
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0310
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0310
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0310
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0310
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0315
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0315
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0320
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0320
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0320
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0325
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0325
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0330
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0330
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0330
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0335
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0335
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0340
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0340
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0345
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0345
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0350
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0350
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0350
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0355
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0355
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0355
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0360
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0360
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0360
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0365
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0365
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0365
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0370
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0370
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0370
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0375
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0375
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0375
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0380
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0380
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0380
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0385
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0385
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0385
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0390
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0390
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0390
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0395
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0395
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0395
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0400
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0400
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0400
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0405
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0405
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0405
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0405
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0410
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0410
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0410
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0415
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0415
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0415
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0420
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0420
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0420
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0425
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0425
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0425
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0430
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0430
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0430
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0435
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0435
http://refhub.elsevier.com/S1569-8432(23)00232-7/h0435

	A hybrid machine learning approach to investigate the changing urban thermal environment by dynamic land cover transformati ...
	1 Introduction
	2 Study area and data
	2.1 Study area
	2.2 Satellite observation data
	2.3 Land cover map data
	2.4 Local climate zones reference data

	3 Methodology
	3.1 LCZ mapping using convolutional neural Networks
	3.2 Spatial downscaling of Landsat LST
	3.3 Thermal environment analysis strategy

	4 Results
	4.1 Temporal LCZ change analysis with accuracy assessment.
	4.2 Evaluation and analysis for the downscaled LSTs
	4.3 LST variation by intra-urban transition

	5 Discussion
	6 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


