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A B S T R A C T   

Spatial downscaling effectively produces high spatiotemporal resolution land surface temperature (LST) in urban 
areas. Although nighttime LST is an essential indicator in urban thermal research, few LST downscaling studies 
have focused on nighttime in fine resolution. This study proposed a novel approach using local linear forest (LLF) 
to downscale 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) nighttime LSTs to 250 m spatial 
resolution in three cities: Rome, Madrid, and Seoul. First, we used Least Absolute Shrinkage and Selection 
Operator (LASSO) to select a set of past clear-sky ASTER LSTs (ALST) which showed a high spatial correlation 
with the target MODIS LST. Downscaling models were then developed using input kernels of the selected ALSTs 
and eight auxiliary variables: normalized difference vegetation index (NDVI), elevation, slope, built-up area 
percentage, road density, population density, wind speed, and distance from the built-up weighted center of the 
study area. Three schemes were evaluated: scheme 1 (S1) using only auxiliary variables as input kernels with a 
random forest (RF) model; scheme 2 (S2) using selected ALSTs and auxiliary variables as input kernels with an 
RF model; and scheme 3 (S3) using input kernels as in S2 but with the LLF model. Validation was performed 
using bias-corrected ALSTs for seven reference dates in the three cities. LLF-based S3 showed the highest ac-
curacy with an average correlation coefficient (R) ~ 0.94 and Root Mean Square Error (RMSE) ~ 0.64 K while 
maintaining the dynamic range of the original LST at the finer resolution. The downscaled LST (DLST) based on 
S3 effectively depicted the nocturnal thermal spatial pattern in greater detail than the other two schemes did. The 
S3-based DLST also showed a relatively high spatial correlation with the in-situ nighttime air temperature within 
the cities. When compared to the original 1 km LST, S3-based DLST showed larger surface urban heat island 
intensity for the urban-type surfaces and a higher temporal correlation with nighttime air temperature.   

1. Introduction 

Due to the rapid population increase and city development, natural 
ground covers such as forests and bare soils have been replaced by 
impervious surfaces (Yuan and Bauer, 2007). High solar absorption and 
large thermal capacity and conductivity of pavements, buildings and 
other impermeable surfaces make the compact urban cores warmer than 
the surrounding areas. This is referred to as the urban heat island (UHI) 
effect, and its magnitude varies by the structure, density, and material of 
the urban surface (Stewart and Oke, 2012). Moreover, the heat absorbed 
during the daytime is released through the night at different rates for 
various surface types, resulting in different spatial patterns of temper-
ature during the day and night in cities (Azevedo et al., 2016). 

One of the most important data sources for urban climate monitoring 
is Land Surface Temperature (LST), retrieved from satellite thermal 
infrared sensors. Thanks to its relatively high continuity in the spatio-
temporal domain, LST is crucial in analyzing surface UHI (SUHI), 
investigating urban expansion and measuring heat stress in the cities 
(Weng et al., 2019; Zhao et al., 2020; Xian et al., 2021). Unfortunately, 
there is a well-known limitation in the active use of satellite LST in urban 
areas: the trade-off between temporal and spatial resolution. Moderate 
Resolution Imaging Spectroradiometer (MODIS) LST from Aqua and 
Terra satellites has been extensively used for urban climate studies due 
to its high temporal resolution (i.e., four times a day) with global 
coverage (Bechtel et al., 2019). However, it is difficult to see the thermal 
distribution in detail over urban areas using MODIS LST due to its coarse 
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spatial resolution (1 km). Recently, Landsat 8 LST with 100 m spatial 
resolution has been available as level-2 products. However, Landsat has 
a long revisit cycle (16 days) and the products are mostly available 
during the daytime. Landsat provided a small number of nighttime LST 
data only for specific regions. Onboard Terra, the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) generates LST 
with a high spatial resolution of 90 m. In particular, ASTER LST has been 
produced both daytime and nighttime globally for long-term periods (i. 
e., March 2000 to present). However, ASTER has a low temporal reso-
lution of more than 16 days and a relatively narrow swath width (60 km) 
so it is not easy to timely obtain LST that fully covers a region of interest 
at the same time. 

Downscaling techniques that improve the spatial resolution of the 
relatively coarse original data have been widely used to overcome the 
resolution trade-off between a single satellite sensor’s temporal and 
spatial scales. Various satellite-based products such as soil moisture and 
precipitation, as well as LST, have been produced at fine scale using 
downscaling techniques (Peng et al., 2017; Zhao et al., 2021; Abdolla-
hipour et al., 2022). Especially for the LST in urban areas, the kernel- 
driven method has been most effectively used among various down-
scaling approaches (Yoo et al., 2020a). The kernel-driven method uses 
fine-resolution input variables called kernels. The kernels are aggre-
gated to the resolution of a coarse LST, and a relationship between the 
kernels and the coarse-resolution LST is modeled. Putting the original 
fine-resolution kernels into this model can generate a fine-resolution 
LST. In the kernel-driven method, the selection of meaningful kernels 
is very important. The widely used kernels in LST downscaling are sat-
ellite spectral reflectance data and reflectance-based indices such as the 
normalized difference vegetation index (NDVI), normalized difference 
water index (NDWI), and normalized difference built-up index (NDBI) 
(Yang et al., 2017; Pan et al., 2018). Many studies have employed 
reflectance-based kernels collected concurrently with the target LST 
(Luo et al., 2021; Yang et al., 2019; Ebrahimy and Azadbakht, 2019). 
Other frequently used kernels include the digital elevation model (DEM) 
and the variables derived from DEM, such as slope, due to their high 
correlation with LST (Bartkowiak et al., 2019). To model the relation-
ship between input kernels and the target LST, various linear-based 
techniques have been used, including linear regression, ridge regres-
sion, and geographically weighted regression (Peng et al., 2019; Duan 
and Li, 2016). Some kernels, however, tend to have a nonlinear rela-
tionship with the target LST, especially on heterogeneous surfaces (e.g., 
urban areas). 

In recent years, machine-learning techniques have been used in LST 
downscaling over complex study regions (Li et al., 2019; Ebrahimy and 
Azadbakht, 2019). In particular, tree-based models such as random 
forest (RF) and extreme gradient boosting (XGBoost) usually have 
shown better downscaling performance than other machine learning 
regressors (Li et al., 2019; Sismanidis et al., 2021). However, the widely 
used tree-based models have a narrow prediction range near the dense 
distribution of the training samples to minimize the total prediction 
error (Liu et al., 2020). In fact, fine-resolution LST generally exhibits a 
larger temperature range than coarse-resolution LST. Unfortunately, the 
tree-based models cannot extrapolate the outer bounds of the range of 
the training data of coarse-resolution LST (Li et al., 2019). 

Nighttime LST is as important as daytime LST for understanding 
urban climatology. However, only a few studies have tried to downscale 
nighttime LST for urban areas to fine resolution (i.e., less than 1 km) 
based on the kernel-driven method (Wang et al., 2020a; Wang et al., 
2020b; Qi et al., 2020). They used the reflectance kernels obtained in the 
daytime, which do not directly affect the nighttime LST. In other words, 
the kernels which strongly represent nocturnal thermal properties were 
absent in the previous studies. 

This study attempts to downscale MODIS nighttime LSTs to 250 m 
spatial resolution in three mega-urban areas: Rome, Madrid, and Seoul. 
The proposed approach uses ASTER nighttime thermal data and auxil-
iary variables representing nocturnal thermal characteristics in urban 

areas as input kernels for downscaling. A new tree-based machine- 
learning technique called local linear forest (LLF), which leverages the 
strengths of RF and local linear regression, was applied to model the 
dynamic range of LSTs effectively. The objectives of this study are to 1) 
propose a novel nighttime LST downscaling approach using LLF, 2) 
evaluate the generalization of the proposed models from both quanti-
tative and qualitative aspects, and 3) explore the potential use of the 
downscaled LSTs for urban climate characterization such as SUHI 
analysis and air temperature monitoring. 

2. Study area and data 

2.1. Study area 

Rome, Madrid, and Seoul were chosen as the study areas. Rome, the 
capital city of Italy, is situated in the Italian Peninsula’s midwestern 
region. With 2.9 million citizens living on 1285 km2, Rome is the most 
densely populated city in Italy. Rome shows a Mediterranean climate 
with dry summers and humid winters. The city’s urban structure is 
monocentric, with buildings that are densely concentrated in the city 
center. 

Madrid, the capital of Spain, is a highly populated metropolis in the 
Iberian Peninsula. Madrid has an inland Mediterranean climate that is 
bounded on the east by a semi-arid climate. Madrid is Spain’s largest 
city, with 3.2 million people residing in a 604 km2 territory. The city 
encompasses the primary metropolitan region, consisting of a mono-
centric city core and independent municipalities that surround it. 

Seoul is the capital of South Korea, which is in the mid-western part 
of the Korean Peninsula. The Han River runs through the heart of the 
city, which is bordered by eight mountains. Seoul has a hot-summer 
humid continental climate. Seoul is a very populated city with 9.7 
million residents living in an area of 605 km2. Rapid urbanization since 
the 1980s has resulted in a high density of various types of buildings 
throughout the city. The three megacities are well-suited to evaluating 
the robustness of the proposed methodology since they reflect various 
geographic characteristics and unique urban architectures. The study 
boundaries were determined by covering the core central and sur-
rounding areas of each city (Fig. 1). 

2.2. Satellite LST data 

MODIS Terra nighttime LST with 1 km spatial resolution was used as 
the target variable for downscaling. MODIS LST is produced based on a 
generalized split-window algorithm (Wan and Dozier, 1996). Terra 
nighttime LST products from 2017 to 2020 for the three study areas 
(h17v04 for Madrid, h18v04 for Rome, and h28v05 for Seoul) were 
obtained from MOD11A1 Version 6 downloaded from NASA’s Earthdata 
Search (https://search.earthdata.nasa.gov). The nominal acquisition 
time of Terra nighttime LST is the local solar time of 10:30p.m. The root 
mean squared error (RMSE) of MODIS terra nighttime LSTs is less than 2 
K in most validation sites over the world (Duan et al., 2019). 

This study used ASTER nighttime LST (ALST) as the fine-resolution 
LST data. The Terra satellite’s ASTER thermal infrared (TIR) sensor 
delivers data in five bands between 8 and 12 μm spectral range, with a 
spatial resolution of 90 m. ALST has obtained from the ASTER level 2 
surface kinetic temperature product (AST_08), provided by NASA’s 
Earthdata Search (https://search.earthdata.nasa.gov). This product is 
retrieved from the five TIR bands through Planck’s Law, which uses 
emissivity values based on the Temperature-Emissivity Separation (TES) 
algorithm, with an error of less than 1.5 K (Gillespie et al., 1998). ASTER 
LST has been used to validate MODIS LST, and the bias between the two 
products is shown to be relatively low (0.2–1.5 K; Duan et al., 2017). The 
average local acquisition time for ALSTs was about 10:30p.m. for Rome 
and Seoul and about 11:00p.m. for Madrid. All available clear-sky ALSTs 
for each city from March 2000 to May 2021 were obtained. A total of 
twenty-two ALSTs for Rome, eighteen for Madrid, and five for Seoul 
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were acquired. The number of ALSTs collected per month is presented in 
Supplementary Fig. A1. 

2.3. Input kernels for LST downscaling 

Downscaling the nighttime LST in urban areas requires input kernels 
that are closely related to the nighttime thermal distribution. This study 
used ALSTs and eight auxiliary variables as input kernels. Considering 
the spatial scale of the input kernels, the target spatial resolution of 
downscaled LST was set to 250 m. It was also confirmed that the vari-
ation of nighttime LST was relatively stable within the 250 m grid in the 
three cities (average standard deviations are in the range of 0.30–0.45 K; 
See Supplementary Fig. A2). 

ALSTs were used as input kernels because these represent nocturnal 
thermal distribution in fine resolution. All available clear-sky ALSTs 
with 90 m resolution were mean-aggregated to 250 m. NDVI, which is 
related to vegetation density, was used as the input kernel. The rela-
tionship between NDVI and LST has been used to explain urban surface 
characteristics (Alexander, 2020). NDVI was produced from reflectance 
data (i.e., near-infrared (NIR) and red bands) acquired during the day-
time. Unfortunately, it is likely to be partially obscured by clouds during 
the daytime on the same day that clear-sky nighttime LST can be ob-
tained. Therefore, this study used 16-day MODIS NDVI (MOD13Q) with 
a 250 m resolution, obtained from NASA’s Earthdata Search (https://sea 
rch.earthdata.nasa.gov). For each date, the NDVI with a composite 
period that included the target date was used as the input kernel. 
Elevation and slope were chosen as kernels documenting the topo-
graphic characteristics of the study area. The effect of solar radiation 
varies by elevation and slope (Tovar-Pescador et al., 2006). Because the 
absorbed heat is released during the night, the two variables also indi-
rectly affect the distribution of nighttime LST. The 90 m resolution DEM 
from the shuttle radar topography mission (SRTM) (https://srtm.csi. 
cgiar.org) was used to obtain elevation. The 90 m DEM was mean 
aggregated to 250 m within the target grid area. The slope was calcu-
lated from 250 m DEM using the ArcGIS Spatial Analyst. We also used 
the ten-year average 250 m spatial resolution wind speed (Wind), 

provided by Global Wind Atlas (https://globalwindatlas.info), as the 
local climatology kernel. The spatial difference in wind speed affects the 
LST distribution within the city (Yamamoto and Ishikawa, 2018). 

Anthropogenic heat released from energy consumption by human 
activity increases the nocturnal SUHI magnitude (Liao et al., 2017). 
Thus, this study also used the 250 m resolution population density (Pop) 
from the Global Human Settlement population (https://ghsl.jrc.ec.eu 
ropa.eu/ghs_pop.php) as the input kernel. The amount of impervious 
surface contributes significantly to nighttime LST distribution in urban 
areas (Mallick et al., 2013). Two variables representing urban materi-
als—built-up percentage (Built) and road density (Road)—were used as 
input kernels. The 250 m Built kernel was acquired from the Global 
Human Settlement built-up grids (https://ghsl.jrc.ec.europa.eu/ghs_bu. 
php). To construct the Road kernel, line density was calculated from the 
Open Street Map (https://www.openstreetmap.org) road shapefile to 
250 m resolution. In general, cities tend to have higher LST near the city 
center. By putting the Built as a weight field, the distance from the built- 
up weighted Center (DisBWC) of the study area was calculated for each 
250 m resolution grid. 

2.4. LCZ and in-situ air temperature data 

To examine the potential for applications of the downscaled LST, 
Local Climate Zone (LCZ) and in-situ air temperatures were obtained for 
the three cities. LCZ is a universal classification system focusing on 
urban areas that can be used to characterize the urban thermal climate 
(Stewart and Oke, 2012). This study used LCZ to analyze the nocturnal 
SUHI patterns of the three cities. LCZ maps of Rome and Madrid with 
100 m spatial resolution were produced from bitemporal Landsat 8 data 
using a convolutional neural network (CNN) classifier by Yoo et al. 
(2019). The LCZ map of Seoul with 50 m resolution was produced from 
multiple data sources, including Sentinel-2A reflectance, Landsat 8 LST, 
and building datasets based on CNN by Yoo et al. (2020b). All of these 
LCZs were resampled to 250 m resolution using the majority rule. LCZ 
consists of ten urban types (LCZ1 to 10) and seven natural types (LCZA 
to G), and the full LCZ class name is shown in the legend of Fig. 1. 

Fig. 1. Study area of three cities. The background layer is the 250 m resolution Local Climate Zone (LCZ). These LCZ maps of three cities were adopted from Yoo 
et al. (2019) for Rome and Madrid, and Yoo et al. (2020b) for Seoul. The location of in-situ weather stations was displayed for each city. 
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Air temperatures from 2017 to 2020 were gathered from various 
types of weather stations in three cities after a quality assessment. The 
nighttime air temperature at 10:30p.m., which is closest to the Terra 
MODIS nighttime acquisition time, was extracted for the three cities. 
The distribution of weather stations and the process of the temperature 
data, including quality checks, are explained in Supplementary B. 

3. Methods 

3.1. Random forest and local linear forest 

This study used two machine learning models for LST downscaling: 
RF and LLF. RF is a well-known ensemble-based machine learning model 
for data classification and regression (Breiman, 2001). It comprises 

multiple independent decision trees (generally more than 500) to avoid 
overfitting issues through two random processes. RF randomly selects 
both a subset of samples and features for splitting at a node with 
allowing duplication (bagging) in a given training set in each decision 
tree. The final output of RF is calculated by the ensemble mean of all tree 
results for regression. 

RF is regarded as a useful model for many regression tasks thanks to 
its relatively high performance and low sensitivity to the parameters 
compared to other techniques (Odebiri et al., 2020; Sahoo et al., 2020). 
However, RF cannot extrapolate target values outside the range of the 
training data. Friedberg et al. (2021) recently suggested a new tree- 
based technique called LLF, which improves the weakness of RF on 
extrapolation. From an LLF perspective, RF is considered an adaptive 
kernel method in high dimensions. Specifically, LLF uses the fraction of 

Fig. 2. Flowchart of the LST downscaling approach proposed in this study. The procedures are divided into two sections: ALST kernel selection, and downscaling 
and evaluation. 
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trees in which the training sample falls into the same terminal node as 
the predicted point as the weights to fit a local linear regression. A 
detailed explanation of LLF is provided in Supplementary C. In this 
study, The “grf” add-on package (version 2.0.2) was used to implement 
RF and LLF in R statistical software with default model training 
parameter settings. 

3.2. LST downscaling 

The overall procedure for the nighttime LST downscaling consists of 
two main parts: 1) ALST kernel selection and 2) downscaling and eval-
uation (Fig. 2). This study assumes that there are nights with a similar 
spatial distribution of LST among multiple dates, considering there is 
less solar effect at nighttime. All 250 m resolution ALSTs were mean 
aggregated to 1 km. Among all available clear-sky ALSTs, we selected 
those that showed a high spatial correlation with the MODIS nighttime 
LST of the target date, based on the Least Absolute Shrinkage and Se-
lection Operator (LASSO) (Tibshirani, 1996) feature selection technique 
(Supplementary D). To select the appropriate ALST kernels for each 
date, this study applied LASSO to the data for each target date. All 1 km 
ALSTs were fed into the LASSO as explanatory variables, and the MODIS 
nighttime LST of each date was used as a response variable. 

All input kernels, including the selected ALSTs and eight auxiliary 
variables, were aggregated to 1 km resolution. Three downscaling 
schemes were developed based on different input kernels and regression 
models. The first scheme (S1) uses only auxiliary variables as input 
kernels in the RF model. The second scheme (S2) uses not only auxiliary 
variables but also the selected ALSTs together as input kernels in the RF 
model. Comparison between S1 and S2 allows us to identify the effect of 
ALSTs as input kernels. The third scheme (S3), which is the main scheme 
of this study, uses the same input kernels as S2, but the regression model 
in S3 is LLF. In S3, the selected ALST kernels were used as the linear 
correction variables in LLF prediction. With S2 and S3, we can compare 
the downscaling performance of LLF to RF. The models were developed 
separately for each target date, using 1 km MODIS nighttime LST as 
target variables. Then, the original fine resolution input kernels of each 
scheme were fed into the developed models. The 250 m resolution 
downscaled LSTs (DLST) were finally produced for every target date in 
each scheme. 

Independent ALST and air temperature data were used to evaluate 
the DLST. Due to the lack of large homogeneous and isothermal sites, in- 
situ LSTs suitable for validating satellite data were rarely available in 
urban areas. Consequently, the only viable options for evaluating urban 
DLST are cross-validation with independent satellite data or a “upscal-
ing-downscaling” scheme, as described by Dong et al. (2020). Here, the 
first option was used, and the 250 m DLST was compared with seven 
independent ALSTs (Table 1) that were not used in the model develop-
ment. These seven representative dates demonstrate a high correlation 
between the MODIS and ASTER LST (correlation coefficient (R) greater 
than 0.9; see Supplementary Table A1). 

ASTER and MODIS LSTs on the same dates might be dissimilar 
because of different sensor characteristics and retrieval algorithms 
(Hutengs and Vohland, 2016). To mitigate these incosistencies, this 
study modeled the linear relationship between the 1 km aggregated 
ASTER LST and MODIS LST (i.e., LSTMODIS = a * LSTASTER + b) for each 
date. The obtained coefficients (see Supplementary Table A1) were then 
applied to the 250 m ASTER LST. The bias-corrected independent ALSTs 

were then used as reference data in the accuracy assessment. Four 
widely known metrics, such as R, root mean square error (RMSE), 
relative RMSE (rRMSE; ratio of RMSE to the standard deviation of the 
observed values) and mean absolute error (MAE) were calculated to 
compare each scheme’s downscaling performance using bias-corrected 
reference ALSTs. 

In addition to independent ALSTs, air temperatures were also used to 
evaluate the DLST data. This evaluation is predicated on the assumption 
that nighttime air temperatures and LST exhibit generally similar spatial 
patterns (Yoo et al., 2018), when the surface radiation budget is reduced 
to longwave fluxes only. To perform this evaluation, the LST products (i. 
e., DLST for each scheme, MODIS LST, and bias-corrected ALST) 
employed in this work were compared with in-situ air temperatures for 
seven reference dates and the spatial correlation coefficient (R) was 
calculated. 

3.3. Deriving mean annual surface temperature and SUHI analysis 

Based on the evaluation of the three schemes, the best-performing 
scheme was then used to downscale all clear-sky (<1% cloud percent-
age) 1 km nighttime MODIS LSTs during the study period (2017–2020) 
to 250 m resolution. To identify thermal surface characteristics under 
largely cloud-free conditions and compare the LST patterns at various 
spatial scales, annual temperature cycle parameters (ACP) have been 
effectively used (Bechtel, 2015). The mean annual surface temperature 
(MAST), which is one component of ACP, was estimated for the 1 km 
MODIS LSTs and 250 m DLSTs for each year, based on the annual 
temperature cycle model (Supplementary Equation A1). The analysis of 
LST distribution was performed for the three cities through the con-
structed MASTs with different spatial resolutions (i.e., 1 km and 250 m). 

In addition, we compared the nocturnal SUHI intensity between the 
constructed 1 km and 250 m MASTs using the LCZ map of each city. 
Based on the previous SUHI studies, LCZD (featureless landscapes of low 
plants) was selected as a reference class of natural-type LCZ (Bechtel 
et al., 2019). Only the LCZ classes, which accounted for more than 1% of 
the entire study area in each city, were used for this analysis. The SUHI 
intensity for each LCZ class was calculated using equation (1): 

SUHILCZX = LSTLCZX − LSTLCZD (1)  

where LSTLCZX is the mean MAST value for LCZX (e.g., LCZ1 and LCZ2). 
Because the LCZ map has a 250 m spatial resolution, the 1 km MAST was 
resampled to 250 m with a nearest neighbor before calculating the SUHI 
intensity. 

3.4. Temporal correlation analysis between daily DLSTs and nighttime in- 
situ air temperatures 

In general, LST and air temperature show a high temporal correlation 
at nighttime (Tomlinson et al., 2012). We further tested whether the 
degree of this correlation varies according to the spatial resolution (i.e., 
250 m and 1 km) of LST. At each weather station, the temporal corre-
lation (R) between the nighttime air temperature and the LST value of 
the grid (where the station is located) was individually calculated for 
250 m DLSTs and 1 km MODIS LSTs. Here all clear-sky LSTs during the 
study period were used in the calculation. 

4. Results and discussion 

4.1. LST downscaling evaluation 

The validation results based on reference ALST data are presented in 
Figs. 3–5 for Rome, Madrid, and Seoul, respectively. Compared to S1, S2 
using the selected ALSTs as input kernels showed a distinct increase in 
performance for all validation dates. In particular, the R-value of S2 was 
close to 0.93 for all three cities. The RMSE and MAE of S2 also 

Table 1 
The list of reference dates for ASTER land surface temperature (ALST) used for 
validation.  

City Reference date 

Rome 8 October 2019, 6 July 2020, and 16 August 2020 
Madrid 8 October 2017, 20 December 2017, and 21 June 2018 
Seoul 18 March 2017  
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significantly decreased (about 0.32 K and 0.25 K, respectively) 
compared to S1, where the RMSE of S2 was less than 1 K for all dates. 
Notably, S2 was better at predicting high LSTs than S1 was, considering 
that the predictions of S2 are densely concentrated near the identity line 
(i.e., y = x) for high values. In general, high LSTs appear in dense 
impervious surfaces in a city (Yuan and Bauer, 2007). Therefore, S2 
better captures the SUHI phenomena, which is a thermal difference 
between the urban and the surrounding areas. Qi et al. (2020) used the 
Landsat daytime reflectance and the thermal infrared data as input 
kernels to downscale nighttime LSTs. Nighttime LST, however, shows a 
different spatial pattern from that of daytime, especially in urban 
landscapes (Zhao et al., 2017). The results of S2 suggest that it is 
essential to use input kernels that can effectively represent the nocturnal 
thermal patterns in downscaling the nighttime LST. 

S3 showed the best performance among the three schemes for all 
dates in the three cities (Figs. 3–5). Compared to the prediction of S3, 
those of S1 and S2 were concentrated near specific upper and lower 
values (i.e., narrow dynamic ranges). This is because RF predicts the 
values within the trained coverage to minimize the mean squared error. 
Interestingly, LLF-based S3 predicted LST with high linearity, especially 
for both extremes, much better than S2. The effect of the local linear 
adjustment in LLF using the selected ALST kernels was evident in the S3 
results. The S3 performance with the average R of 0.94, RMSE of 0.64 K, 
and MAE of 0.50 K for the three cities is much better than those of the 
previous studies which tried to downscale nighttime LST. Qi et al. 
(2020), for example, downscaled the MODIS nighttime LST to 100 m 
resolution for Suzhou, China, resulting in R of 0.90, RMSE of 1.76 K and 
MAE is 1.48 K. Wang et al. (2020a) produced 30 m resolution nighttime 

Fig. 3. Scatterplots of the downscaled and bias-corrected ASTER reference LST of three schemes for the validation dates in Rome. The increasing density of the paired 
samples is indicated by a color scheme ranging from blue to red. The regression line is represented by red solid lines and the identity line by grey dashed lines; #ALST 
is the number of ALST selected as input kernels. 
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LST from MODIS LST for the subregion of Singapore, with a performance 
of RMSE of 3.50 K and MAE of 2.81 K. Although the study area and 
target spatial resolutions are different among the studies, the suggested 
S3 proved to show excellent downscaling performance. In particular, the 
proposed S3 showed high linearity for both extremes resulting in slopes 
~ 1 and low biases for all three cities. 

Fig. 6 shows the spatial distribution of DLSTs of reference ALSTs and 
three schemes (S1–S3) for one validation date. Overall, all three schemes 
showed obvious urban–rural LST gradients where the high LSTs appear 
near the city center and become lower toward the periphery. The 
gradient of S1, however, appears relatively smooth compared to those of 
S2 and S3. Moreover, some regions in S1 could not effectively predict the 
temperature pattern, such as areas bounded by the black box in each 
city. 

Remarkably, the DLST of S2 and S3 also showed different spatial 
patterns. For example, S2 tended to predict the temperature as lower 

than the reference ALST for regions with dense buildings (LCZ1-3 areas 
in Fig. 1) in the three cities. S2 also failed to predict LST accurately for 
regions where the temperature should appear lower than the predicted 
values (e.g., the surrounding rural regions bounded by a black box). The 
reduced dynamic ranges at the downscaled LST using a tree-based model 
also appear in the existing study (Qi et al., 2020). On the other hand, S3 
showed a relatively similar LST distribution with reference ALST, 
compared to S2. 

The spatial distribution of the bias for the three schemes is depicted 
in Fig. 7, along with their error frequency for the extreme LST values. S1 
had a wide error distribution where large positive and negative biases 
appeared for urban and natural type surfaces, respectively, for the three 
cities. Bias distribution for both S2 and S3 showed a relatively narrow 
range compared to that of S1. While no distinct bias differences between 
S2 and S3 were found in overall spatial distribution, S3 had the highest 
frequency of near-zero error for the extreme LST values (see right 

Fig. 4. Same as Fig. 3 but for Madrid.  
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Fig. 5. Same as Fig. 3 but for Seoul.  

Fig. 6. Spatial distribution of nighttime LST on 8 October 2019 in Rome, 20 December 2017 in Madrid, and 18 March 2017 in Seoul. The maps of the bias-corrected 
reference ALST and downscaled LSTs for scheme 1 (S1), scheme 2 (S2), and scheme 3 (S3) are shown. 
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diagrams in Fig. 7). These results agree with Figs. 3–5, in which S3 using 
the LLF model can predict the extremely low and high LST values better 
than S2. 

The number of the selected ALSTs used in the models varied by the 
validation dates (Figs. 3–5). We further tested S2 and S3 when only one 
among the selected ALSTs was used for each validation date. Supple-
mentary Table A2 presents the S2 and S3 performance when one of the 
selected ALSTs was used. Even when only one ALST was used, S2 
showed higher accuracy for all validation dates compared to S1 (See 
Figs. 3–5). This suggests that S2 could meaningfully improve the S1 
performance, even when using one ALST as an input kernel. Moreover, 
S3 still showed the highest performance among the three schemes. The 
linear adjustment used in the LLF model proved effective even for using 
just one ALST as an input kernel. It is not surprising that S2 and S3 in 
Supplementary Table A2 using one ALST showed lower performance 
than those of S2 and S3 using all available ALSTs as input kernels. This 
implies that as the number of selected ALSTs increases, the accuracy of 

S2 and S3 is likely to improve. 
Several previous kernel-driven downscaling studies, particularly for 

the daytime LST, used residual corrections to the DLSTs produced by 
machine learning models (Yang et al., 2017; Wang et al., 2020b; Bart-
kowiak et al., 2019). Supplementary Table A3 shows the downscaling 
accuracy for the validation datasets using the residual correction 
method suggested by Hutengs and Vohland (2016). After residual 
correction, the S1 performance improved, which is consistent with the 
results of Hutengs and Vohland (2016) that used MODIS reflectance 
kernels to downscale daytime LSTs. In most validation dates, however, 
the S2 and S3 performance deteriorated after residual correction (see 
Supplementary Table A3 and Figs. 4–6). One possible explanation is that 
the residual correction method assumes invariance of the residual terms 
(i.e., the difference between aggregated DLST and original MODIS LST) 
within the local region (Liu et al., 2020). However, this assumption may 
be inappropriate in heterogeneous landscapes, such as urban areas, 
where the downscaling performance is already sufficiently good prior to 

Fig. 7. Spatial distribution of the bias of schemes 1–3 (S1-S3) and error frequency diagrams for extreme values (right) for dates corresponding to Fig. 6. Bias was the 
difference between the bias-corrected reference ALST and DLST for each scheme. Extreme LSTs were defined as those with values below 5th percentile or above the 
95th percentile for each study area. 
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residual correction. The S2 and S3 that used the selected ALSTs as input 
kernels were able to produce reasonably accurate nighttime DLSTs in 
urban areas without additional residual correction. 

Table 2 shows the spatial correlation between each LST product and 
nighttime in-situ air temperatures for the seven reference dates. ALST 
has a higher correlation with air temperature than MODIS LST does for 
all reference dates. This implies that fine resolution LSTs exhibit spatial 
patterns more similar to those of air temperature in urban areas. S2 and 
S3 exhibit significantly superior spatial performance to S1 in all cases, 
which corresponds to the validation results based on the reference ALST 
shown in Figs. 3–5. S3 demonstrates a slightly higher correlation with 
air temperature than S2, producing comparable results with ALST. 

4.2. Applicability of the proposed method 

4.2.1. Producing DLSTs for multiple dates 
At least one ALST was selected on more than 95% of the days in all 

Table 2 
The spatial correlation (R) between each LST product (MODIS LST, bias- 
corrected ALST, and the three schemes’ DLSTs) and in-situ nighttime air tem-
perature for seven reference dates.  

Rome MODIS ALST S1 S2 S3 

8 October 2019 0.543 0.616 0.574 0.616 0.618 
6 July 2020 0.539 0.654 0.495 0.570 0.579 
16 August 2020 0.611 0.643 0.557 0.633 0.639  

Madrid MODIS ALST S1 S2 S3 

8 October 2017 0.491 0.679 0.470 0.661 0.687 
20 December 2017 0.407 0.563 0.357 0.512 0.522 
21 June 2018 0.766 0.777 0.526 0.721 0.723  

Seoul MODIS ALST S1 S2 S3 

18 March 2017 0.703 0.818 0.713 0.828 0.831  

Fig. 8. Spatial distribution of four-year average nighttime MAST from 1 km MODIS LSTs (a, c, e) and 250 m DLSTs based on scheme 3 (b, d, f) for the three cities. 
DLSTs in S3 were generated only for the dates when at least one ALST was selected by LASSO. 
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three cities by LASSO for the clear-sky nighttime MODIS LSTs from 2017 
to 2020 (Supplementary Table A4). When there were many available 
ALSTs in Rome, three or more ALSTs were selected on about 60% of the 
days. In general, the temporal changes of spatial distribution for the 
nighttime LSTs appeared quite stable in urban areas (Hu and Brunsell, 
2013). The ALST selection method suggested in this study proved to be 
suitable for downscaling nighttime LST for multiple dates. 

Fig. 8 shows the four-year average MAST calculated using clear-sky 
daily nighttime MODIS LST and S3-based DLST from 2017 to 2020. In 
both 1 km and 250 m MAST for all three cities, higher LST appeared in 
urban core areas, while the urban periphery had relatively lower LST. 
The 250 m MAST, however, showed the LST distribution in greater 
detail than the 1 km MAST. In particular, some built-up regions, 
including urban centers and suburban clusters, showed distinctively 
high LST in the 250 m data. This implies that the fine-resolution LST (i. 
e., DLST) could help extract local hot spots more precisely in cities than 
the LSTs with relatively coarse resolution (Sidiqui et al., 2016). 

4.2.2. Applicability for urban climate monitoring 
Table 3 shows the SUHI intensity for each LCZ calculated from 1 km 

and 250 m MASTs, respectively. Positive SUHI appeared in the built 
types (LCZ2-6 and 8) for all three cities in both 1 km and 250 m MASTs. 
Notably, compact types (LCZ2 and 3) showed stronger intensity than 
open types (LCZ4-6). This finding is consistent with the results of the 
previous studies that nocturnal SUHI intensity demonstrates a high 
correlation with building compactness (Dian et al., 2020; Bechtel et al., 
2019). Compared to 1 km, 250 m MAST showed larger SUHI for most 
built type LCZs, and smaller SUHI for natural type LCZs. This implies 
that various urban and natural structures are mixed within coarse grids 
(i.e., MODIS 1 km), resulting in the underestimation of the SUHI in-
tensity of the built-type surfaces (Bechtel et al., 2019). 

Table 4 shows the average temporal correlation between nighttime 
LST and air temperature for the 1 km MODIS LST and 250 m DLST. The 
250 m DLST showed a higher temporal correlation with the nighttime 
air temperature than the MODIS 1 km LST. The 250 m DLST shows a 
relatively similar temporal pattern with air temperature, even for pe-
riods with relatively small temperature change (i.e., DJF and JJA). 

4.3. Novelty and limitations 

This is the first study that we are aware of that utilizes LLF to 
downscale LST. The proposed approach is novel in that it uses as input 
kernels feature-selected ALSTs of other dates that have a spatial distri-
bution similar to the target date LST. The ALST kernels were important 
in maintaining the dynamic range of the original LST by acting as linear 
adjusted variables in the LLF model. The proposed method was evalu-
ated for three cities, each with its own distinct geographic and climatic 
characteristics. Many previous LST downscaling studies—mostly for the 
daytime LST—used a single city as the study area (Yang et al., 2017; Qi 
et al., 2020; Wang et al., 2020a), and conducted accuracy assessment 

using data for a small number of dates (i.e., only one day; Yang et al., 
2017; Qi et al., 2020), limiting the generalization of their methods. The 
validity of the proposed downscaling method was established through 
testing on multiple dates in three cities with varying characteristics. This 
study is also significant because it demonstrated the broad applications 
of the DLSTs—UHI intensity analysis and air temperature monitoring at 
nighttime in urban areas. 

A major limitation of this study is that the method relies heavily on 
the availability of ALSTs. There are many cloudless ALSTs in cities with 
dry climates such as Rome and Madrid, but only a few clear-sky ALSTs in 
humid cities such as Seoul. Cloud gap-filling algorithms, particularly for 
MODIS LST, have been recently developed (Zhao and Duan, 2020; 
Zhang et al., 2021; Cho et al., 2022). If these techniques are applied to 
high-resolution LST such as ASTER LST, it is expected that gap-filled LST 
can be used as input. In addition, a number of fine-resolution thermal 
data have become available, such as those collected by the ECOsystem 
Spaceborne Thermal Radiometer Experiment on Space Station (ECO-
STRESS). While these thermal data have the acquisition times different 
from the MODIS LST, they could be considered candidates for ALST 
input kernels. Auxiliary input kernels also introduce some limitations. 
The uncertainty inherent in each input kernel affects the downscaling 
accuracy. For example, the wind kernel, a ten-year average wind speed 
containing long-term climate characteristics, may not accurately 
represent the wind field characteristics of cities for the target study 
period. In addition, uncertainty in the DEM and slope kernels might 
increase when fine resolution (i.e., 90 m) data were aggregated to 250 
m. 

5. Conclusion 

This study presents a new nighttime LST downscaling method in 
which 250 m DLST is generated from 1 km MODIS nighttime LST in 
Rome, Madrid, and Seoul. We developed and compared three down-
scaling schemes (S1-S3). When comparing the three schemes using the 

Table 3 
SUHI intensity of each LCZ class based on four-year average MAST from MODIS LSTs (1 km) and scheme 3-based DLSTs (250 m) for the three cities. Diff implies the 
difference between the intensity of 250 m and 1 km MAST for each LCZ class. The unit of SUHI intensity is Kelvin (K).  

SUHI Rome Madrid Seoul 

LCZ 1 km 250 m diff 1 km 250 m diff 1 km 250 m diff 

2  3.04  3.53  0.49  2.61  2.89  0.28  3.14  3.27  0.13 
3        2.74  2.87  0.14 
4        2.24  2.42  0.18 
5  1.56  1.84  0.27  1.93  2.36  0.44  1.65  1.68  0.03 
6  0.65  0.69  0.04  0.86  1.10  0.24  1.18  1.15  − 0.03 
8  1.10  1.35  0.25  1.04  1.16  0.12  1.12  1.17  0.05  

A  0.82  0.79  − 0.03     0.59  0.56  − 0.03 
B  0.17  0.11  − 0.06  0.01  0.00  − 0.01  0.39  0.35  − 0.04 
C     0.06  − 0.03  − 0.09     

Table 4 
Temporal correlation coefficients (R values) between daily clear-sky LSTs and 
nighttime air temperatures for four different seasons (i.e., December to Febru-
ary—DJF, March to May—MAM, June to August—JJA, September to Novem-
ber—SON) for the three cities. One (1) km and 250 m represent the LSTs of the 1 
km MODIS LSTs and scheme 3-based DLSTs, respectively.   

Rome Madrid Seoul 

Season 1 km 250 m 1 km 250 m 1 km 250 m 

DJF  0.882  0.890  0.912  0.923  0.944  0.954 
MAM  0.943  0.949  0.961  0.969  0.964  0.964 
JJA  0.725  0.728  0.742  0.759  0.747  0.759 
SON  0.982  0.984  0.980  0.984  0.978  0.978  

Average  0.883  0.888  0.899  0.909  0.908  0.914  
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bias-corrected ALSTs for seven reference dates, S3, the best performing 
scheme, yielded very promising results, with R ~ 0.94 and RMSE ~ 0.64 
K for all three cities. S3, which used the selected ALSTs and eight 
auxiliary input kernels: NDVI, DEM, Slope, DisBWC, Road, Pop, Built- 
up, and Wind through the LLF model, predicted LST much better than 
other schemes, especially for both extremes. The S3-based DLST showed 
relatively accurate and reasonable spatial distribution, resulting in 
distinct urban–rural nocturnal thermal gradients. S3-based DLST 
showed larger SUHI intensity on urban surfaces and a higher temporal 
correlation with nighttime air temperature than 1 km MODIS LST did. 
This study revealed that the LLF machine learning model could improve 
the downscaling accuracy, compared to RF, by using the selected ALST 
as linear adjustment kernels to maintain the dynamic range of the 
original LST. We believe that the proposed approach can be successfully 
applied to other global cities and that it will help us see the nocturnal 
SUHI phenomena in various aspects, such as different types of urban 
forms. 
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