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A B S T R A C T   

Urban heat islands, where temperatures are elevated relative to non-urban surrounds, are near-ubiquitous in 
cities globally. Yet, the magnitude and form of urban heat islands in the tropics, where heat has a large morbidity 
and mortality burden, is not well understood, especially for those of urban informal settlements. We used 29 
years of Landsat satellite-derived surface temperature, corroborated by in situ temperature measurements, to 
provide a detailed spatial and temporal assessment of urban heat islands in Makassar, Indonesia, a city that is 
representative of rapidly growing urban settlements across the tropics. Our analysis identified surface urban heat 
islands of up to 9.2 ◦C in long-urbanised parts of the city and 6.3 ◦C in informal settlements, the seasonal patterns 
of which were driven by change in non-urban areas rather than in urban areas themselves. In recently urbanised 
areas, the majority of urban heat island increase occurred before land became 50% urbanised, whereas the 
established heat island in long-urbanised areas remained stable in response to urban expansion. Green and blue 
space protected some informal settlements from the worst urban heat islands observed across the city and 
maintenance of such space will be essential to mitigate the growing heat burden from urban expansion and 
anthropogenic climate change. Settlements further than 4 km from the coast and with Normalised Difference 
Vegetation Index (NDVI) less than 0.2 had higher surface temperatures, with modelled effects of more than 5 ◦C. 
Surface temperature measurements were representative of in situ heat exposure, measured in a subset of 12 
informal settlements, where mean indoor temperature had the strongest relationship with surface temperature 
(R2 = 0.413, P = 0.001). We advocate for green space to be prioritised in urban planning, redevelopment and 
informal settlement upgrading programs, with consideration of the unique environmental and socioeconomic 
context of tropical cities.   

1. Introduction 

Human populations are rapidly expanding and becoming increas-
ingly urbanised. More than half of the world’s population now lives in 
urban areas and this is expected to increase to nearly 70% by 2050 
(United Nations, 2019), accompanied by a near doubling of global urban 
land cover between 2015 and 2050 (Huang et al. 2019). The majority of 
this growth will occur in developing countries, particularly in Asia and 
Africa, home to most of the world’s fastest growing cities (Laurance et al. 
2015; United Nations, 2019). City growth in these contexts is often 
characterised by urban informal settlements which typically have poor 

quality infrastructure and services, and high exposure to environmental 
hazards (Ezeh et al. 2017). More than one billion people live in informal 
settlements globally, primarily in East and South-East Asia, a number 
which is expected to increase with continued population growth and 
urbanisation (UN-Habitat, 2015; United Nations, 2021a). 

The growth of cities drives local change in land cover, climate and 
hydrological cycles (Grimm et al. 2008). One of the most prominent 
outcomes of this environmental change is the urban heat island (UHI) 
effect (Seto & Shepherd, 2009; Bai et al. 2017). Urban heat islands are 
primarily caused by land cover changes, associated with urbanisation, 
which alter the surface energy balance and morphology (Oke, 1982; 

* Corresponding author. 
E-mail address: emma.ramsay1@monash.edu (E.E. Ramsay).  

Contents lists available at ScienceDirect 

Environmental Pollution 

journal homepage: www.elsevier.com/locate/envpol 

https://doi.org/10.1016/j.envpol.2022.120443 
Received 8 August 2022; Received in revised form 5 October 2022; Accepted 12 October 2022   

mailto:emma.ramsay1@monash.edu
www.sciencedirect.com/science/journal/02697491
https://www.elsevier.com/locate/envpol
https://doi.org/10.1016/j.envpol.2022.120443
https://doi.org/10.1016/j.envpol.2022.120443
https://doi.org/10.1016/j.envpol.2022.120443
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envpol.2022.120443&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Environmental Pollution 316 (2023) 120443

2

Arnfield, 2003). Such land cover change across a broad extent leads to 
high absorption and retention of radiant heat in urban areas, and thus 
increased ambient and surface temperature relative to surrounding 
non-urban areas (Bai et al. 2017). In consequence, these elevated tem-
peratures can exacerbate extreme heat (Founda & Santamouris, 2017; 
Zhao et al. 2018), which has adverse impacts on human health and 
wellbeing (Tan et al. 2010; Ebi et al. 2021a). Througout the tropics, 
UHIs compound year-round high temperature and humidity, which is of 
particuclar concern for vulnerable populations such as those living in 
urban informal settlements (Scott et al. 2017; Ramsay et al. 2021) who 
have limited capacity to adapt (Pasquini et al. 2020) and a large exisiting 
health burden (Ezeh et al. 2017; Lilford et al. 2017). 

Urban heat islands have been relatively well characterised globally 
(Peng et al. 2012; Chakraborty & Lee, 2019), with advances in remote 
sensing techniques and data availability accelerating this characterisa-
tion (Kotharkar et al. 2018). Yet much of the focus remains on temperate 
regions of the world including Europe, North America and China (Zhou 
et al. 2018). Many studies are also limited to simplified comparisons of 
urban and non-urban areas, or single time-points, which do not suffi-
ciently capture intra-urban variation, temporal trends or local context 
(Tuholske et al. 2021). Spatial and temporal patterns of urban warming 
are heterogenous globally, with UHIs influenced by local climatic con-
ditions, city size and density (Imhoff et al. 2010; Li et al. 2017; Miles & 
Esau, 2020), and variation in urban land use, morphology and socio-
economic factors (Chen et al. 2006; Wang et al. 2019; Tepanosyan et al. 
2021). As cities grow, interactions between land use change and socio-
economic development will, therefore, drive changes in UHI magnitude, 
extent and impacts (Lee et al. 2019; Li et al. 2020). Indeed, evidence is 
mounting that in some cities, lower income neighbourhoods have 
disproportionately high exposure to UHIs (Buyantuyev & Wu, 2009; 
Chakraborty et al. 2019). Such neighbourhoods are likely to include 
informal settlements, which themselves may be exposed to higher UHIs 
due to dense housing and limited green space (Mehrotra et al. 2018; 
Wang et al. 2019), although this may be reduced if settlements are 
embedded in green or blue space (Jacobs et al. 2019). However, 
spatially explicit information about informal settlements is scarce (Sat-
terthwaite et al. 2020) and they have been insufficiently considered in 
UHI analyses. 

Ongoing urbanisation and informal settlement growth, coupled with 
the inherent health and socioeconomic burdens faced by informal set-
tlement residents as the climate warms (Scovronick et al. 2015; Sat-
terthwaite et al. 2020), make mitigating UHIs a growing priority for 
sustainable development. This priority is reflected in the increasing in-
terest and investment by development banks in nature-based solutions 
(Hamel and Tan, 2022; RISE & ADB, 2021), which are potentially the 
most feasible means to limit the extent and impacts of UHIs (Ranagalage 
et al. 2020; Li et al. 2022) and are a major focus of both the Sustainable 
Development Goals (United Nations, 2021b) and Planetary Health ap-
proaches (Whitmee et al. 2015). The effectiveness of UHI mitigation 
strategies does, however, depend upon the development of an explicit, 
localised understanding of the spatial and temporal patterns of UHI 
exposure in rapidly growing cities and their associated informal settle-
ments (Deilami et al. 2018; Nagendra et al. 2018). Better understanding 
of trends in urban development and UHIs will facilitate predictions of 
the potential for spatial expansion and intensification of UHIs (Sejati 
et al. 2019; Li et al. 2021), allowing new knowledge of spatio-temporal 
trends to be integrated into context-specific mitigation strategies. Un-
fortunately, localised understanding of the spatio-temporal patterns of 
UHI expansion in some of the world’s fastest growing cities is lacking, 
and informal settlements are severely underrepresented in the UHI 
literature. 

Therefore, we have three clear objectives for this study. First, to 
provide improved understanding of spatio-temporal trends of UHIs. 
Second, to demonstrate that UHIs not only develop together with urban 
expansion in tropical cities, but also affect urban informal settlements. 
Third, to offer empirical insight into what components of city 

development and nature-based solutions may help to mitigate UHI ef-
fects, especially for the urban poor who constitute the majority of 
informal settlement residents. 

We do so by quantifying spatial and temporal patterns of urbanisa-
tion and accompanying UHIs over the last 30 years in an exemplar, 
socioeconomically diverse, tropical South-East Asian city: Makassar, 
South Sulawesi, Indonesia. Indonesia is one of the most urbanised 
countries in Asia with 110 million people living in 60 cities (Gunawan 
et al. 2015) and 30% of the urban population living informally (United 
Nations, 2021a). Makassar is a medium-sized (<5 million people) city 
with a population of ~1.5 million people, in this way representing more 
than 90% of urban settlements globally (United Nations, 2018). 
Furthermore, Makassar is characterised by a diversity of informal set-
tlements distributed across much of its extent (French et al. 2021) and is 
the subject of a nature-based informal settlement revitalisation program 
proposed both for this city and for others (Leder et al. 2021). 

2. Materials and methods 

Local-scale UHI analyses require data at fine spatial and temporal 
resolutions. Ambient temperature is preferred for analysing urban heat 
impacts on humans. Yet climate data from traditional weather stations 
do not capture localised heat exposure in complex urban settlements 
(Scott et al. 2017; Ramsay et al. 2021) and are particularly scarce 
throughout the tropics (Zaitchik & Tuholske, 2021). Satellite data are 
therefore valuable for fine-scale spatial and temporal analyses where in 
situ data are unavailable (Zhou et al. 2018; Zhu et al. 2019), and have 
thus been used extensively to characterise UHIs across the globe (e.g., 
Peng et al. 2012; Estoque et al. 2017; Zhou et al. 2017; Chakraborty & 
Lee, 2019; Manoli et al. 2019). 

We therefore used the 40 year near-global record of multispectral 
spatial data from the Landsat satellite series, including Landsat 5 TM, 
Landsat 7 ETM+ and Landsat 8 OLI TIR between 1980 and 2020 (Wulder 
et al. 2019) to characterise urban land cover and analyse spatial and 
temporal trends in surface temperature in Makassar, Indonesia (Fig. 1). 
Landsat data comprise spectral bands in the visible, near infrared, short 
wave and thermal infrared spectra at a spatial resolution of 30 m 
(thermal bands are resampled to 30 m), with a 16-day temporal 
coverage of the earth’s surface (Markham & Helder, 2012; Roy et al. 
2014). Landsat satellites have an overpass time of approximately 10 a.m. 
Makassar local time (WITA; UTC+8). 

2.1. Urban land cover change 

Supervised land cover classifications were performed by E.E.R. for 11 
time points between 1993 and 2019 to determine changes in urban land 
cover over time, and distinguish long-urbanised parts of the city and 
more recently urbanised areas (Fig. 2). Landsat Collection 1, Level 1 
imagery (U.S. Geological Survey, 2019) were downloaded and 
pre-processed (conversion to reflectance, DOS1 atmospheric correction) 
using the Semi-Automatic Classification Plugin (version 7.10.5; Con-
gedo, 2016) in QGIS (version 3.4.2; QGIS Development Team, 2018). 
Images within the dry season months (April to October) were manually 
selected for land cover classification to minimise seasonal variation in 
land cover and optimise availability of cloud-free images. Where data 
from more than one satellite were available, data from the most recently 
deployed satellite were used, except between 2003 and 2013, where 
Landsat 5 data were used in place of Landsat 7 data after the failure of 
the scan line corrector on Landsat 7 (Markham et al. 2004). 

The Semi-Automatic Classification Plugin (Congedo, 2016) was used 
to classify land cover at each time point based on remote-sensed visible 
spectrum and infrared Landsat bands (Landsat 5 and Landsat 7: Bands 
1–5 and 7, Landsat 8: Bands 2–7) using the maximum likelihood clas-
sification method. Clouds were masked manually by drawing polygons 
over areas affected by clouds or their shadows and then images were 
clipped to a study region which included the urban extent of the city as 
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well as a variety of non-urban land cover types for training. The clas-
sification algorithm was trained by manually selecting training areas 
from true and false colour composites of Landsat bands and assigning 
them to six broad land cover classes: water, urbanised, vegetation, 
cropland, wet-cropland/wetland and bare soil, based on visual assess-
ment and photointerpretation of the Landsat images. Training areas 

were a minimum of 60 pixels and a maximum of 1000 pixels, and were 
selected using the automatic region growing algorithm (Congedo, 2016) 
to group spectrally similar pixels together. A minimum of 10 training 
areas were selected for each land cover class and these were spread 
throughout the image to obtain a representative description of each class 
(Foody & Mathur, 2004). 

Fig. 1. Summary of methods showing data sources (grey), data processing (software used in dashed boxes) and analyses, indicating the figures corresponding to each 
stage. Code for analyses are available at https://doi.org/10.26180/21268050.v1. Acronyms: BDA = bulk download application, NIR = near infrared, R = red, NDVI 
= normalised difference vegetation index, RMA = ranged major axis, GAMM = generalised additive mixed model. 

Fig. 2. A) Urban land cover change in Makassar, 
Indonesia between 1993 and 2019 showing the urban 
core, urban change, non-urban and informal settle-
ment sampling areas. Informal settlement locations 
represent the general location of the settlement rather 
than the exact polygon. Map shows the first year a 
pixel was detected as urban based on 11 land cover 
classifications. Legend ticks represent land cover 
classification time-points. B) The distribution of 
urban land cover change in 31 informal settlements. 
Each pie chart represents the first year a pixel was 
detected as urban in one settlement.   
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Based on changes in urbanised land cover over time (Fig. 2A) we 
defined four spatial regions for UHI analysis (Fig. 2A):  

a) The urban core which was predominantly urbanised at the first land 
cover classification (June 23, 1993) and remained urbanised over the 
time period of this study  

b) An area of urban change which changed from predominantly non- 
urban to urbanised over the time period of this study  

c) Informal settlements (detailed below)  
d) A non-urban area for comparison which comprised primarily non- 

urban land cover types and remained predominantly non-urban for 
the entire time period of this study 

We manually defined the urban core, urban change and non-urban 
areas based on the land cover classifications (Fig. 2A), whilst minimis-
ing geographical and topographical differences which could confound 
temperature observations. Informal settlement locations in Makassar 
were identified from a list of candidate settlements for the Revitalising 
Informal Settlements and their Environments (RISE) Program (Leder 
et al. 2021). These settlements were visited and verified as informal 
settlements by K.B. and represent some of the most vulnerable urban 
dwellers (French et al. 2021). The initial list included 39 informal set-
tlement locations (including the 12 settlements in the RISE Program and 
the RISE demonstration site; RISE & ADB, 2021). Where settlements 
were less than 200 m from each other we grouped them as a single 
spatial unit, resulting in a final dataset of 31 settlements. The settle-
ments are geographically dispersed across the city, mainly on the pe-
riphery of the urban core and in more recently urbanised areas (Fig. 2A). 
We note that these settlements were selected with the potential to house 
nature-based infrastructure upgrades on-site (Leder et al. 2021), and 
thus are mainly low to medium density settlements. The settlements 
have a mean area of 0.019 km2, which is comparable to the global 
average of 0.016 km2 (Friesen et al. 2018). 

2.2. Land surface temperature 

From the Landsat satellite archive (Cook et al. 2014), we down-
loaded all available Landsat Collection 2, Level 2 imagery (aside from 
Landsat 7 after 2003; U.S. Geological Survey, 2020) for Makassar (path 
114, row 64) between 1970 and 2020 using the Earth Explorer Bulk 
Download Application (https://earthexplorer.usgs.gov/bulk/), totalling 
376 time points. Surface temperature and pixel quality rasters were 
extracted for each time point, scaled and converted from Kelvin to de-
grees Celsius (U.S. Geological Survey, 2020). Surface temperature ras-
ters were masked using the pixel quality raster by setting pixels 
identified as clouds or water to NA. We also extracted the red (R) and 
near-infrared bands (NIR) to calculate the Normalised Difference 
Vegetation Index (NDVI) as: 

NDVI =
(NIR − R)
(NIR + R)

(1) 

We randomly sampled 31 points within each of the spatial regions 
(urban core, urban change and non-urban; Fig. 2) and then buffered 
them (by a radius of 78 m or ~2.6 pixels) to approximately the same size 
as informal settlements (~21 pixels). This enabled us to achieve a 
balanced sampling design with the informal settlement locations and 
minimised the effect of spatial autocorrelation, by analysing a random 
sample of surface temperature observations rather than all pixels within 
each region (Buyantuyev & Wu, 2009). 

Landsat satellite data are limited by cloud cover, especially during 
the wet season (November to March) where few cloud free images are 
available. To maximise data availability for analyses we filtered surface 
temperature data in two stages. Time points with more than 25% 
missing data in the general study area (map area in Fig. 2A) and more 
than 10% of missing data in the sampling areas (Fig. 2A) were excluded. 
The remaining data were manually checked for cloud contamination not 

sufficiently masked by the pixel quality raster, by visualising the surface 
temperature rasters, resulting in 89 time points between 1991 and 2020 
available to be included in analyses. Data were filtered for a second time 
for each set of analyses, based on the data required for each model. We 
excluded time points where there were more than six missing samples 
from the 31 patches or informal settlements from any of the spatial re-
gions of interest for the analysis. 

Mean surface temperature and NDVI values were extracted for each 
sampling location (31 informal settlements and 31 randomly sampled 
patches in each of urban core, urban change and non-urban; Fig. 2) using 
the extract function in the raster package (Hijmans, 2020). Land cover 
from the 11 land cover classifications was also extracted for each and the 
percentage of urban pixels within the patch computed for each classi-
fication. The mean elevation, extracted from the Shuttle Radar Topog-
raphy Mission (Farr et al. 2007) was between 0 and 30 m for all 
settlements and random patches. 

Unless otherwise stated, all data processing was performed in R 
(version 4.05; R Core Team, 2021) using the dplyr (Wickham et al. 
2022), raster (Hijmans, 2020), sf (Pebesma, 2018) and rgeos (Bivand & 
Rundel, 2020) packages. 

2.3. Statistical analyses 

Generalised additive mixed models (GAMMs) were used to estimate 
spatial and temporal trends in surface temperature. Additive models can 
fit smooth non-linear trends (such as trends over time) and can handle 
irregular temporal spacing of samples (Simpson, 2018), thus making 
them suitable for our data. Random effects were incorporated to account 
for spatial autocorrelation. GAMMs were fit in R using the mgcv package 
(Wood, 2004) with random effects estimated in the nlme package (Pin-
heiro et al. 2021) using restricted maximum likelihood estimation 
(REML; Wood, 2011). Unless otherwise stated, smooth trends were fit 
with thin plate regression splines (Wood, 2003). Model selection was 
based on Akaike’s information criterion (AIC). 

First, we modelled long-term trends (1991–2020) in surface tem-
perature in the urban core, urban change and non-urban areas to un-
derstand if the magnitude of UHIs has changed over time with the 
growth of the city. Second, we modelled surface temperature in the 
urban change area separately to understand how change in urban land 
cover has driven changes in land surface temperature. Third, we quan-
tified and compared current (2017–2020) UHIs in the urban core and 
informal settlements. Finally, we modelled spatial predictors of surface 
temperature in informal settlements. We visualised temporal trends and 
quantified UHIs from fitted data with simultaneous confidence intervals 
computed by simulating from the posterior distribution of the model 
using the gratia package (Simpson, 2018; Simpson, 2022). 

2.3.1. Long-term trends 
We modelled surface temperature in the urban core and non-urban 

areas as smooth functions of the long-term trend as days since first 
sampling date (with the first sampling date being day one) and the 
seasonal (within year) pattern modelled as a cubic spline smooth of day 
of year. Each smooth trend was fitted separately for urban and non- 
urban data, which lowered AIC compared to models with one trend. 
Spatial plots of the normalised residuals indicated residual spatial 
autocorrelation in the model so we added a residual correlation struc-
ture, nested within each time point, which improved both visual in-
spection of plots and AIC. The optimal spatial correlation structure 
available in nlme was selected via AIC. 

We fitted the same model as above for surface temperature in the 
urban change and non-urban areas, with the addition of a smooth 
(tensor product) interaction between days since first sampling date and 
day of year to allow for the seasonal trend changing over time with land 
cover change. 
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2.3.2. Urban change 
Urbanisation occurred at different times across the urban change 

area (Fig. 2). We therefore wanted to model the temperature trend 
separately for each randomly sampled patch to understand how UHIs 
develop as land converts to urban. We fit models following Pedersen 
et al. (2019) which allowed long-term smooths to be estimated for each 
urban change patch. The best model included a global smooth for the 
overall long-term trend and patch-level smooths modelled as a t2 factor 
interactions which allowed the shape of the smooth to vary for each 
patch (Wood et al. 2012). The model included a seasonal smooth and a 
residual spatial correlation structure as detailed above. 

We identified significant periods of change in surface temperature by 
computing the first derivative of the estimated long-term trends for each 
patch using the method of finite differences, where the difference be-
tween two very close together values is an approximation of the first 
derivative (Simpson, 2018). We calculated the yearly mean derivative 
and compared these to the percentage of urban land cover in that year 
(interpolated linearly between land cover classification dates). Statisti-
cally significant periods of change were inferred where simultaneous 
confidence intervals of the derivative did not include zero (Simpson, 
2018). 

Data exploration revealed very different shaped trends which 
seemed to depend on different urban land use in the area of urban 
change, which is dominated by more industrial areas compared to the 
urban core (Surya et al. 2021). To differentiate between different land 
use types we calculated the mean area of building footprints (extracted 
from Open Street Map; OpenStreetMap contributors, 2022) intersecting 
each urban change patch. We classified patches as industrial land use 
where the mean building footprint size was greater than 250 m2 or as 
other urban land use when less than 250 m2. We then manually checked 
each patch using Google Earth Imagery and reclassified one patch as 
industrial where large buildings visible on Google Earth Imagery were 
missing from Open Street Map (see Figure S1 for examples of each land 
use type). 

2.3.3. Informal settlements 
To quantify UHIs in the urban core and informal settlements we 

modelled recent (2017–2020) surface temperature in the urban core, 
informal settlements and non-urban areas. As in previous models, the 
seasonal trend was modelled as a smooth cubic spline of day of year, 
separately for each group, and a residual spatial correlation structure 
was included, nested within each time point. Seasonal patterns in UHIs 
(ΔT) were quantified by computing differences between fitted trends 
(Simpson, 2022). Significant differences in temperature and thus UHIs 
were inferred where the simultaneous confidence interval of the dif-
ference did not include zero (Rose et al. 2012). 

To examine spatial variation in UHI magnitude among informal 
settlements we modelled surface temperature as a smooth function of 
the mean NDVI of the settlement, the mean NDVI within a 250 m radius 
surrounding the settlement, and the distance to the coast. As in previous 
models, the seasonal trend was modelled as a smooth cubic spline of day 
of year and a residual spatial correlation structure was included, nested 
within each time point. We fitted the same model with spatial predictors 
as linear parametric terms and only day of year as a smooth function. 

2.4. In situ temperature validation 

To understand the extent to which surface temperature is represen-
tative of conditions experienced by people living in informal settlements 
we compared satellite derived surface temperature to in situ temperature 
measurements in a subset of 12 informal settlements. Monitoring was 
undertaken as a part of the RISE Program (Leder et al. 2021) and is 
detailed in Ramsay et al. (2021). Hourly temperature was measured by a 
network of 780 iButton data loggers (Maxim Integrated, San Jose, Cal-
ifornia), with approximately 60 loggers in houses (six in each of ten 
houses) and five outdoors in each settlement. Data retrieval was limited 

by logger loss, logger failure and fieldwork limitations caused by the 
Covid-19 pandemic. To capture representative conditions in each set-
tlement we only included time periods where data were retrieved from 
at least two outdoor loggers at a settlement or loggers in at least two 
houses in a settlement (Table S1). 

In situ temperature data that met the above requirements overlapped 
with eight satellite overpass days (Table S1). For each settlement we 
calculated daily mean, minimum and maximum ambient temperature, 
separately for indoors and outdoors, and compared these to the mean 
surface temperature of the settlement on the same day. Minimum and 
maximum temperatures were derived by calculating the minimum 
(maximum) daily temperature for each logger and then taking the mean 
of the minimum (maximum) values across each settlement. 

We compared mean settlement surface temperature with in situ 
derived variables via ranged major axis regression using the R package 
lmodel2 (Legendre, 2018). Ranged major axis regression (or model II 
regression) aims to describe the relationship between x and y where both 
variables are not controlled by the researcher, and have natural varia-
tion and measurement error (Warton et al. 2006; Sokal & Rohlf, 2012). 
We assumed that the error variance was larger for surface temperature, 
but proportional to the variance, thus making ranged major axis 
regression a suitable method for our data. The significance of the ranged 
major axis slope was tested via permutation (n permutations = 999). 

3. Results 

3.1. Urban land cover change 

In Makassar, urban land cover increased by 175% (annual growth 
rate of 6.7%), from 65 km2 in 1993 to 179 km2 in 2019, across the map 
area in Fig. 2A. Urban growth occurred primarily to the North-East of 
the city, where we examined associated change in UHIs. In informal 
settlements, urban land cover was mixed between recent and long 
urbanised land (Fig. 2B). Overall, informal settlements comprised be-
tween 42.8% and 100% urbanised land cover based on the most recent 
land classifications (2018 and 2019). 

3.2. Urban heat islands 

3.2.1. Urban core 
The urban core, which represents long-urbanised parts of the city 

(Fig. 2A), experienced significant UHIs across a typical year (modelled 
with data between 2017 and 2020), with a strong seasonal dependence 
(Fig. 3; Table S2). The UHI averaged 4.5 ◦C across the year, reaching as 
high as 9.2 ◦C in February, but becoming a “cool island” by as much as 
− 6.8 ◦C in October (Fig. 3). Importantly, this seasonal pattern was due to 
elevated temperature in the non-urban area rather than a decrease in 
temperature in the urban core (Fig. 3A). Such seasonal trends are 
consistent across our analyses where surface temperature in urban areas 
varies little seasonally, but seasonal changes in UHIs are driven by 
variation in non-urban areas. UHIs in the urban core have remained 
relatively stable over the last 30 years, with long-term trends in surface 
temperature showing little change (Fig. 4A). 

3.2.2. Urban change 
Modelled long-term trends in surface temperature in the area of 

urban change reveal how UHIs have grown with urban expansion 
(Fig. 4B). Trends differ by month as the GAMM allowed the seasonal 
pattern to vary with the long-term trend as land cover changed (Fig. 4B; 
Table S2). Overall, surface temperature increased over the last 30 years, 
particularly between January and June where UHIs are largest in the 
urban core (Fig. 4). In February, for example, the UHI increased from 
1.7 ◦C in 1991 to 10.2 ◦C in 2020 (Fig. 4B). 

Long-term trends modelled for each randomly sampled patch 
(Table S2) were much more mixed, accounting for the wide confidence 
intervals in Fig. 4B. The area of urban change is dominated by industrial 
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land use which is not typical of the urban core (Surya et al. 2021). 
Trends in industrial areas (mean building footprint >250 m2), were 
mixed with periods of both significant increase and decrease, identified 
from the derivative of the trend (Fig. 5). Trends in other urban areas 
(mean building footprint <250 m2), which encompass suburban areas, 
were much more consistent, showing steady increase in surface tem-
perature, including a period of significant increase (Fig. 5). Across other 
urban patches, 73% of years where surface temperature increased 
(positive derivative) occurred before a patch was 50% urbanised, indi-
cating that UHIs establish early on as urban land is converted (Fig. 5B). 

3.2.3. Informal settlements 
UHIs in informal settlements followed a similar seasonal pattern to 

the urban core but were on average 1.9 ◦C lower (Fig. 3). UHIs still 
exceeded 4 ◦C (averaging 2.6 ◦C) for much of the year and reached as 
high as 6.3 ◦C in February and as low as − 7.8 ◦C in October. The average 
NDVI within settlements, and surrounding settlements, as well as dis-
tance to the coast were important predictors of surface temperature 
among informal settlements (Fig. 6; Table S2), explaining nearly 40% of 
the deviance (adj-R2 = 0.385). Settlements further from the coast had 
higher surface temperatures, with larger warming effects when further 
than 4 km and larger cooling effects when within 1 km of the coast 
(Fig. 6). The NDVI of a settlement had the largest effect, where settle-
ments with NDVI less than 0.2 were considerably warmer (effect of more 
than 5 ◦C) than those with NDVI greater than 0.2. For comparison, the 
mean NDVI of randomly sampled patches in the urban core was 0.22 
between 2017 and 2020 (ranging between 0.20 in October and 0.26 in 
January). The NDVI of the 250 m surrounding each settlement had a 
smaller effect but settlements surrounded by land with higher NDVI, 
indicating more green space, were cooler. The inclusion of NDVI as a 
predictor negated the minimal seasonal effect in informal settlements 
(Fig. 3A; Fig. 6), indicating that seasonal changes in vegetation are 
responsible for much of the seasonal variation in surface temperature. 
The direction of effects was consistent when predictors were modelled as 
linear parametric terms (Table S3; adj-R2 = 0.411). 

Satellite-derived surface temperature was most strongly related to 
mean indoor temperature (R2 = 0.413, P = 0.001) in informal settle-
ments, though relationships with indoor minimum, indoor maximum, 

outdoor maximum and outdoor mean temperature were also positive 
and significant (Fig. 7). In all cases, the slope of the line was greater than 
one, where small increases in ambient temperature are associated with 
larger change in surface temperature. Although the relationship is not 
one to one, this does suggest that satellite-derived UHIs can predict heat 
stress experienced by residents of informal settlements, under cloud-free 
conditions, where elevated surface temperature is representative of hot 
ambient conditions. 

4. Discussion 

Over the past 30 years urban land cover in Makassar has nearly 
tripled, accompanied by the spatial expansion of UHIs, which affect 
large parts of the city, including informal settlements. Annual increase in 
urban land cover of 6.7% exceeded global rates of 3.5% over the same 
time period, although was less than estimates of 10.8% for Indonesia as a 
whole, which included larger cities (He et al. 2018). Urban heat islands 
in Makassar averaged 4.5 ◦C annually in the urban core, and 2.6 ◦C in 
informal settlements, although with seasonal fluctuations they reached 
maxima of 9.2 ◦C and 6.3 ◦C above non-urban surface temperature, 
respectively. These well exceed annual average satellite-derived surface 
UHIs of 1.3 ◦C in the tropics (Chakraborty & Lee, 2019) or 1.2 ◦C in Asia 
(Peng et al. 2012), reported by global studies which make simplified 
comparisons between urban and non-urban pixels within an urban 
extent. Our results are more in line with surface UHIs between 5 ◦C and 
8 ◦C detected in South-East Asian megacities, Bangkok, Manila & Ho Chi 
Minh, during the dry season (Tran et al. 2006). They highlight that 
smaller cities, and informal settlements within these, are not exempt 
from UHIs, and the likely impacts thereof, that have been observed in 
larger cities. Exposure to elevated temperature has direct effects on 
health and wellbeing (Mendez-Lazaro et al. 2018; Ebi et al. 2021b), 
exacerbates socioeconomic stressors (Tran et al. 2013), especially for 
informal settlement residents, and is expected to continue doing so. The 
anthropogenic heat burden has already been responsible, on average, for 
37% of warm-season heat-related deaths globally (Vicedo-Cabrera et al. 
2021). 

In contrast to previous studies (Chakraborty et al. 2019; Jacobs et al. 
2019), which identified elevated UHIs in lower income neighbourhoods 

Fig. 3. A) Fitted seasonal trends in surface temperature (2017–2020) with 95% confidence intervals. Ticks above x-axis represent sampling time points. B) Urban 
heat islands (ΔT) in the urban core and informal settlements. Shading above or below the fitted line indicates significant differences in surface temperature. 
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within cities, we found that UHIs in informal settlements were on 
average 1.93 ◦C lower across a year than the urban core (representative 
of formal settlements), although other informal settlements, not 
included in this study, may experience a higher heat burden if located in 
densely urbanised parts of the urban core. Despite the smaller magni-
tude of UHIs overall, residents of informal settlements are especially 
vulnerable to heat due to poor quality housing, a large existing health 
burden and occupational heat exposure (Tran et al. 2013; Ezeh et al. 
2017). Green space in, and surrounding settlements, along with prox-
imity to the coast appeared to protect some informal settlements from 
the worst UHIs. Green space has a cooling effect both through shading 
and evapotranspiration (Aflaki et al. 2017), although the cooling po-
tential from evapotranspiration is upper bounded by high humidity in 
the tropics (Yu et al. 2018; Manoli et al. 2019; Cuthbert et al. 2022). 
Meanwhile, large water bodies, including oceans and lakes, have a 
cooling effect due to the temperature differential between land and 
water producing cool onshore breezes during the day (Bonan, 2002; 
Adams & Smith, 2014; Cai et al. 2018). Settlements with NDVI close to 
that of the urban core (~0.2) were around 5 ◦C warmer than settlements 
with more green space. Settlements within 2 km of the coast also had 
lower temperatures, with cooling effects of up to 5 ◦C (Fig. 6), although 
these settlements may be at higher risk of other environmental hazards 
such as flooding or sea-level rise (Satterthwaite et al. 2020). Based on 
the relationship with mean indoor temperature, surface temperature 
differences of 5 ◦C, from proximity to green or blue space, could 
represent indoor cooling or heating of more than 1 ◦C. 

It is typically thought that UHIs increase in magnitude as a city 

increases in size and population (Li et al. 2017; Zhou et al. 2017; Men-
taschi et al. 2022), though this effect is smaller in tropical cities (Manoli 
et al. 2019). We found that UHIs in long-urbanised areas in Makassar 
have remained stable since at least the 1990s, in line well-researched 
cities such as London (Jones & Lister, 2009), but have expanded into 
recently urbanised areas, following patterns observed across Europe 
(Trusilova et al. 2009) and Africa (Li et al. 2021). Patterns of UHI 
development in recently urbanised areas varied with urban land use. 
Industrial areas unexpectedly declined in surface temperature as patches 
became urbanised, likely due to the form of industrial buildings which 
have light coloured, high albedo roofs that reflect heat, and the large size 
of which can create shade and reduce impervious ground surfaces 
(Connors et al. 2012). By contrast, in other urban patches, which include 
suburban areas, UHIs develop early on as land becomes urban, with 
nearly three quarters of surface temperature increase occurring before a 
patch became 50% urbanised, after which trends stabilised. Given that 
70% of new urban land through to 2050 is projected to occur in the 
tropics (Huang et al. 2019), a large portion of which is likely to include 
informal settlements (Satterthwaite et al. 2020), the spatial extent of 
UHIs is likely to increase substantially. It may, therefore, be preferable 
to prioritise development, including heat mitigation strategies, of 
partially urbanised land where UHIs have already developed. Reducing 
urban sprawl not only limits the spatial expansion of UHIs but also has 
positive effects for biodiversity by reducing habitat loss (Simkin et al. 
2022). 

Across our results, seasonal patterns of UHIs were driven by 
increased temperature in September and October in non-urban areas, 

Fig. 4. Fitted long-term trends in surface temperature for each month with 95% confidence intervals in A) the urban core and non-urban areas and B) urban change 
and non-urban areas. Fitted trends were computed for the 15th day of each month. Ticks above the x-axes represent sampling time points included in the model. 
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Fig. 5. A) Fitted long-term trends in surface temperature in randomly sampled urban change patches, split by industrial and other urban areas. Fitted trends were 
computed on the 183rd day of the year. Ticks above the x-axes represent sampling time points included in the model. B) Yearly mean derivative of the long-term 
trend and the percentage urban land cover of the patch in that year. Significant periods of change, identified from the derivative of the trend, are highlighted 
in purple. 

Fig. 6. Modelled effects of predictors of surface temperature in informal settlements for A) distance to coast, B) seasonal trend, C) mean NDVI of a settlement and D) 
mean NDVI within 250 m radius surrounding the settlement. Ticks above the x-axes represent sampling points included in the model. 
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whilst surface temperature in urban areas was relatively stable year- 
round (Fig. 3; Fig. 4). This is in line with previous work suggesting 
that the magnitude of UHIs is largely controlled by greening in non- 
urban areas, which increases the temperature differential with urban 
areas (Yao et al. 2019). For example, we observed the largest UHIs in the 
wet season when non-urban, primarily agricultural, areas are most green 
(See Figure S2 for monthly plots of non-urban NDVI in Makassar). To-
wards the end of the dry season, in September and October, however, 
NDVI declines substantially (Figure S2) as crops are harvested and soil 
moisture declines (Pandey et al. 2014; Kumar et al. 2017). Whilst this 
technically creates an urban ‘cool island’, relative to the extremely high 
surface temperatures recorded from predominantly bare earth in the 
non-urban area (mean 50.7 ◦C in September and October, from modelled 
data), surface temperatures in urban areas remained stable and high 
(mean 46.6 ◦C in September and October). 

Our results highlight the importance of intra-urban analyses to un-
derstand spatio-temporal patterns of UHIs and accurately quantify 
exposure. Mixed long-term trends with urban land use would otherwise 
be obscured by coarser resolution data or simplified urban – non-urban 
comparisons. Fine scale data is also essential for understanding UHIs in 
informal settlements. Even the Moderate Resolution Imaging Spectror-
adiometer (MODIS), one of the most common sources of remote sensed 
surface temperature data (Kotharkar et al. 2018), with a spatial reso-
lution of 1 km2 is too coarse to detect patterns across informal settle-
ments which have an average size of 0.016 km2 (Friesen et al. 2018). 
Whilst satellite derived surface temperature is not a perfect represen-
tation of heat stress experienced by people (Venter et al. 2021), we show 
that it has a reasonable, although not one to one relationship, with in situ 
temperature measured in 12 informal settlements. Impetus is growing 
for local meteorological monitoring to capture microclimate across 
complex landscapes, including cities (Zaitchik & Tuholske, 2021). Such 

data can be collected through low-cost sensor networks (as used here) 
which have been successful in the informal settlement context (Scott 
et al. 2017; Ramsay et al. 2021; Van de Walle et al. 2022) and can be 
used to corroborate and supplement remote-sensed data (Venter et al. 
2020). Indeed, such information is essential to understand the magni-
tude and mechanisms of UHIs in informal settlements globally, and the 
interactions they may have with climate warming and changing tem-
perature extremes (Chapman et al. 2017). 

5. Conclusions 

If the ambitions of the Sustainable Development Goals and Planetary 
Health movements are to be met, heat mitigation must be prioritised and 
targeted where large UHIs intersect with vulnerable communities. Our 
results demonstrate large UHIs across a socioeconomically diverse 
tropical city, which emerge rapidly as land is urbanised. Given that UHIs 
tend to stabilise after land becomes 50% urbanised, the development of 
partially urbanised areas should be prioritised to spatially constrain 
UHIs, with consideration of maintaining green space, which mitigates 
the worst UHIs. Informal settlements, which are often the subject of 
redevelopment and upgrading programs, represent an opportunity to 
explicitly consider green space and other heat mitigation strategies such 
as ventilation and reflective surfaces (Nutkiewicz et al. 2018; Kimemia 
et al. 2020). Upgrades, whether nature-based or otherwise, should bal-
ance the socioeconomic benefits of built infrastructure, such as roads, 
with the need to maintain green space. Nature-based solutions offer a 
compromise where infrastructure upgrades, such as constructed wet-
lands to improve water and sanitation, can provide co-benefits of heat 
mitigation by maintaining green and blue space (Wong et al. 2020; 
Leder et al. 2021; Hamel & Tan, 2022). Such localised interventions will 
be essential for not only improved local conditions but ongoing climate 

Fig. 7. Ranged major axis regression and 95% confidence intervals (dashed) of daily in situ ambient temperature variables and satellite-derived surface temperature 
in a subset of 12 informal settlements with the regression equation, p-values and R2. The regression equation is not shown where P > 0.05 and R2 close to zero. 
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resilience (Estrada et al. 2017), especially given the already high 
anthropogenic heat mortality burden (Vicedo-Cabrera et al. 2021) and 
forecasts for average global temperature increases of at least 2 ◦C over 
the coming decades (Meinshausen et al. 2022). 
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