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A B S T R A C T   

Background: Concentrations of outdoor ultrafine particles (UFP; <0.1 µm) and black carbon (BC) can vary greatly 
within cities and long-term exposures to these pollutants have been associated with a variety of adverse health 
outcomes. 
Objective: This study integrated multiple approaches to develop new models to estimate within-city spatial 
variations in annual median (i.e. average) outdoor UFP and BC concentrations as well as mean UFP size in 
Canada’s two largest cities, Montreal and Toronto. 
Methods: We conducted year-long mobile monitoring campaigns in each city that included evenings and week-
ends. We developed generalized additive models trained on land use parameters and deep Convolutional Neural 
Network (CNN) models trained on satellite-view images. Using predictions from these models, we developed 
final combined models. 
Results: In Toronto, the median observed UFP concentration, UFP size, and BC concentration values were 
16,172pt/cm3, 33.7 nm, and 1225 ng/m3, respectively. In Montreal, the median observed UFP concentration, 
UFP size, and BC concentration values were 14,702pt/cm3, 29.7 nm, and 1060 ng/m3, respectively. For all 
pollutants in both cities, the proportion of spatial variation explained (i.e., R2) was slightly greater (1–2 per-
centage points) for the combined models than the generalized additive models and a greater (approximately 10 
percentage points) than the deep CNN models. The Toronto combined model R2 values in the test set were 0.73, 
0.55, and 0.61 for UFP concentrations, UFP size, and BC concentration, respectively. The Montreal combined 
model R2 values were 0.60, 0.49, and 0.60 for UFP concentration, UFP size, and BC concentration models 
respectively. For each pollutant, predictions from the combined, deep CNN, and generalized additive models 
were highly correlated with each other and differences between models were explored in sensitivity analyses. 
Conclusion: Predictions from these models are available to support future epidemiological research examining 
long-term health impacts of outdoor UFPs and BC.   

Abbreviations: UFP, ultrafine particles; BC, black carbon; LUR, land use regression; CNN, convolutional neural networks; GAM, generalized additive models; MSE, 
mean squared error; RMSE, root mean squared error. 
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1. Introduction 

Ambient air pollution is a heterogenous mix of particles and gases 
that varies over space and time (de Hoogh et al., 2018; Hoek, 2017; 
Maciejczyk et al., 2021; HEI, 2022). Associations between exposure to 
fine particulate matter (PM2.5; diameter less than 2.5 µm) and a variety 
of adverse health outcomes have been well documented and have led to 
widespread regulations limiting ambient mass concentrations of PM2.5 
(Boogaard et al., 2019; Boogaard et al., 2022; U.S. EPA, 2019). There has 
been less research and regulatory action with respect to other forms of 
particulate matter such as ultrafine particles (UFP, <0.1 µm) and black 
carbon (BC). Emerging evidence suggests that long-term exposures to 
UFPs and BC are associated with adverse health outcomes such as car-
diovascular mortality and brain tumour incidence; however, exposure 
assessment in these studies is often a challenge owing to the high spatial 
variability of UFPs and BC compared to PM2.5 (Bouma et al., 2023; 
Magalhaes et al., 2018; Ohlwein et al., 2019; Weichenthal et al., 2020; 
HEI, 2022). 

A common approach to exposure modelling for UFPs and BC relies on 
mobile monitoring (Abernethy et al., 2013; Apte et al., 2017; Hankey 
and Marshall, 2015; Kerckhoffs et al., 2017; Messier et al., 2018; Wei-
chenthal et al., 2014; HEI, 2022; Lloyd et al., 2021). Due to resource 
constraints, past mobile monitoring campaigns were often less than a 
month long and restricted to weekdays, which can result in biased es-
timates of annual averages (Apte et al., 2017; Presto et al., 2021; Saha 
et al., 2019; HEI, 2022). Recent studies address this by collecting mobile 
monitoring data over extended periods of time (Blanco et al., 2022). 
Monitoring data are generally used to develop land use regression (LUR) 
models which use land use and traffic data from geographical infor-
mation systems (GIS) to predict spatial variations in pollutant levels 
(Hoek, 2017, Apte et al., 2017, Kerckhoffs et al., 2017, Hoek et al., 
2008). There are various approaches to LUR model development 
including linear regression and machine learning algorithms. The latter 
use the same GIS inputs as linear regression models, but may be able to 
find more complex relationships in the data (Bellinger et al., 2017). 
Directly comparing LUR model performance statistics across different 
studies is a challenge due to differences in monitoring and validation 
approaches, but comparisons of UFP LUR model development ap-
proaches within studies have found only modest differences in perfor-
mance (Kerckhoffs et al., 2019, Weichenthal et al., 2016). 

Instead of using GIS data, an emerging approach trains models on 
images of the urban environment. Street-level and satellite view (i.e. 
orthogonal) images can be a useful data source since they may contain 
information not found in traditional GIS databases and models may be 
able to learn complex associations between the urban environment and 
ambient air pollution levels (Weichenthal et al., 2019). In one approach, 
researchers have used various algorithms to extract specific types of 
features (e.g., greenspace or types of vehicles) from images and were 
able to estimate associations between these extracted features and 
ambient air pollution (Qi et al., 2022; Ganji et al., 2020; Xu et al., 2022; 
Liu et al., 2021). Alternatively, deep Convolutional Neural Networks 
(CNN) can be trained to directly predict air pollution levels by iteratively 
learning what combinations of features in the images are associated with 
the outcome of interest (Albawi et al., 2017, LeCun and Bengio, 1995). 
Once a such a CNN model is trained, it provides an estimate of ambient 
air pollution levels at a given location based only on digital images 
(Lloyd et al., 2021, Xu et al., 2022, Hong et al., 2019, Hong et al., 2020). 
CNN models have been trained on street-level or satellite view images to 
predict within-city spatial variation of various air pollutants in London, 
UK; Vancouver, Toronto, and Montreal, Canada; Los Angeles, USA; and 
Bucaramanga, Colombia (Lloyd et al., 2021, Hong et al., 2019; Hong 
et al., 2020; Sorek-Hamer et al., 2022). While LURs are more widely 
used and accepted, the CNN approach is an emerging tool that uses a 
separate data stream (i.e., images instead of GIS data) to complement 
existing methods and our recent research suggested that combined use 
of LUR and CNN models may outperform either approach on their own 

(Lloyd et al., 2021). In particular, we observed greatly reduced spatial 
heterogeneity in model performance in 10-fold cross-validation when 
LUR and CNN model predictions were combined compared to using the 
LUR model on its own (Lloyd et al., 2021). 

In this study, we conducted year-long mobile monitoring campaigns 
across Montreal and Toronto, Canada for ambient UFP number con-
centrations, mean UFP size, and BC mass concentration. These moni-
toring data were aggregated to 100 m road segments in order to 
represent annual medians (i.e. averages) at those road segments and the 
data were split into training, validation, and test sets for model devel-
opment. Using the aggregated monitoring data, we developed LUR 
models based on land use and traffic characteristics, and we developed 
CNN models using aerial images. Predictions from the LUR and CNN 
models were combined to generate high-resolution models of annual 
median ambient UFP number concentrations, mean UFP size, and BC 
mass concentrations. Predictions from these models are available for use 
in future research, including application in population-based cohorts to 
investigate the health impacts of long-term exposure to UFPs and 
possible effect modification by mean UFP size. 

2. Materials and methods 

2.1. Study setting 

The Montreal study area included all municipalities on the island of 
Montreal (population 1.9 million) and the Toronto study area was 
within the post-amalgamation political border of the city of Toronto 
(population 2.9 million). Both cities border major bodies of water, are 
surrounded by large suburban communities, and have similar climates 
(Table S1). 

2.2. Mobile monitoring study 

We conducted a year-long (September 2020 to August 2021) mobile 
monitoring campaign of outdoor UFP number concentrations, mean UFP 
size, and BC concentrations. Monitoring routes (Fig. S1) were designed 
to capture a wide variety of land use and road types. This was done by 
dividing the study areas into 100 m by 100 m grids, extracting land use 
parameters for each grid square, and conducting a principal component 
analysis to identify components that explain the greatest amount of 
variance in the data. These components were used in Silhouette (Rous-
seeuw, 1987) and Davies-Bouldin (Davies and Bouldin, 1979) method 
cluster analyses on the study area grid squares to identify sets of grid 
squares that, when grouped together explained the greatest amount of 
variance in land use. Routes were then selected along multiple road 
types within each of the clusters. To obtain measurements representa-
tive of annual medians, these pre-specified routes were repeatedly 
monitored at various times of day between 7 am and 11 pm, on all days 
of the week including weekends, and in all four seasons. We randomly 
selected the time of day, day of week, and the order in which routes were 
monitored each week. Each monitoring route took approximately 1 h 
and 3–15 routes were completed each week. Data collected while 
driving between routes was retained in order to maximize spatial 
coverage. 

2.3. Air pollution measurements 

UFP and BC monitors were time-synched with GPS monitors and 
sampled data at 1 s intervals. The BC monitor was a microAeth MA350 
(Aethlabs). The UFP monitors were the Naneos Partector 2 (Naneos) and 
Testo DiscMini (Testo). We conducted limited collocated measurements, 
but based on advice from Naneos we elected to not adjust for possible 
instrument differences. We treated data from both instruments as 
equivalent since both monitors measure UFPs using the same operating 
principles and were factory calibrated for the monitoring campaign. For 
each run, a BC monitor was mounted on the roof of the vehicle and a UFP 
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monitor was mounted inside the vehicle (Nissan Micra for Toronto and 
Nissan Rogue for Montreal). The UFP monitor mounted inside the 
vehicle had its sampling tube inlet extended out the rear passenger side 
window and pointed down to prevent water from entering the instru-
ment. The tube inlets were roughly 2 m above and in front of the vehicle 
tailpipes, but the vehicle emissions may have increased air pollution 
concentrations at the tube inlet. However, it is important to note that we 
observed UFP concentrations below 1,000 pt/cm3 and BC concentra-
tions below 50 ng/m3 suggesting that this contribution was not sub-
stantial. After each monitoring run, instruments were inspected and the 
data offloaded to local and cloud data storage. Files were inspected and 
data points associated with instrument error codes or implausible tem-
poral or spatial patterns (e.g. constant concentrations) were removed 
from the analysis. Values above and below the manufacturer’s reported 
limits of detection (listed in Table S2) were imputed with the upper and 
half of the lower limit of detection, respectively. 

2.4. Data Pre-Processing 

Air pollution and geospatial position data were joined by matching 
time stamps. Hourly median ambient weather conditions during moni-
toring were recorded at airport Automated Surface Observing Systems 
located within the study area (Table S3) were downloaded using the 
riem (Salmon and Anderson, 2016) package in version 4.1.2 of the R 
statistical computing environment (R Core Team, Vienna, Austria) and 
were matched to the monitoring data by time. Road networks in each 
city were divided into 100 m road segments. The median of all 1-second 
air pollution measurements along a given road segment (i.e. the grand 
median) and the median ambient weather conditions during monitoring 
were assigned to the centroid of the road segment. The median air 
pollution levels were our estimates of annual median ambient pollutant 
levels and are referred to as the “observed” values for the remainder of 
this text. The unit of analysis for this study was annual median ambient 
pollutant levels at the 100 m road segments (i.e., the temporal median of 
all monitoring data along each 100 m road segment; illustrated in 
Figs. S2 and S3). Road segments monitored on fewer than 6 separate 
days throughout the campaign were excluded from the analysis. This 
cut-off was a trade-off between improving temporal stability and 
retaining good spatial coverage. In total, mobile monitoring data were 
aggregated to 7051 and 5819 road segments in Montreal and Toronto, 
respectively. Six-digit geohash codes were assigned to each road 
segment based on their location and the road segments were randomly 
split by geohash code into training (70%), validation (15%) and test 
(15%) sets. The geohash geocoding system spatially splits the globe into 
cells, each with its own alphanumeric code. A cell with six-digit geohash 
code is approximately 1.2 km by 0.6 km. Stratifying the random split by 
geohash code (i.e., geospatial position) increases the independence of 
the test set and reduces the overlap of images from the training, vali-
dation, and test sets (split visualized in Figs. S4 and S5). The distribu-
tions of observed UFP number concentrations and BC concentrations 
were left-skewed thus log-transformed for model development. The 
distribution of observed mean UFP size was not skewed and not log- 
transformed. 

2.5. Image data for training convolutional neural networks 

For each road segment centroid, two aerial (i.e., satellite-view) im-
ages were downloaded from Google maps at different zoom levels (18 
and 19) using the ggmap (Kahle and Wickam, 2013) package in R. Zoom 
18 and 19 images covered areas of approximately 280 m × 280 m and 
140 m × 140 m respectively. We compiled our database using images 
from Google maps because it was an efficient approach to access stan-
dardized digital images with good quality control and it is an approach 
that any researcher can use for any study area in the world. Images were 
downloaded in 2021 in order to be temporally aligned with the moni-
toring campaign, though we did not have access to the specific date the 

images were captured. Images were downloaded with a resolution of 
604 × 640 × 3 pixels (three color channels) that was resized to 256 ×
256 × 3 to allow for larger training batch sizes and potentially faster 
CNN model training. Lastly the images were linked to the aggregated 
monitoring data. 

2.6. Land use and traffic 

Using an approach similar to previous studies, (Weichenthal et al., 
2016, Zalzal et al., 2019; Ripley et al., 2022; Hatzopoulou et al., 2017) 
land use and traffic parameters plausibly associated with ambient air 
pollution were extracted using ArcMap 10.8.1 (ESRI, Redlands, USA) 
from the following data sources: DMTI Spatial (Richmond Hill, CA), 
Emme (INRO, Montreal, CA), City of Montreal, City of Toronto, Cana-
dian National Pollution Release Inventory, Statistics Canada, Toronto 
Transit Commission, and Société de Transport de Montreal. Types of 
land use parameters were: land cover (e.g. industrial area), type of 
transportation infrastructure (e.g. length or highway or railroad), and 
points associated with emissions (e.g. distance to airport or number of 
restaurants). Table S4 describes all 78 spatial predictor variables 
examined in this study. Buffer sizes were 100 m, 200 m, and 300 m. 
Larger buffers were not considered because road segment centroids were 
100 m apart and UFP and BC concentrations can vary over very short 
distances. 

2.7. Land use regression model development 

Generalized additive models (GAM) (Hastie and Tibshirani, 1986, 
Wood, 2020) for each city were developed to predict spatial variations in 
annual median outdoor UFP number concentrations, mean UFP size, and 
BC concentrations in each city (six GAM LUR models). LUR variable 
selection and model training was done using training set data and 
following the same method for all three measures of air pollution. Me-
dian ambient temperature, relative humidity, and windspeed during 
monitoring along each road segment were included in all models to 
account for weather-related temporal variations in air pollution during 
the monitoring campaign. This “temporal adjustment” is a common 
approach when developing spatial models using mobile monitoring data 
(Hankey and Marshall, 2015, Jones et al., 2020, Montagne et al., 2015) 
and assumes a spatially constant temporal structure for each pollutant 
across each study area (i.e. the relationships between each meteoro-
logical condition and each pollutant are constant throughout each city). 
Our monitoring campaign was designed to be temporally-balanced, but 
due to the relatively low number of visits at certain sites (i.e., as few as 6 
visits), there were some temporal imbalances between sites and we used 
temporal adjustment to account for chance weather-related temporal 
variations in the monitoring data while developing purely spatial 
models. To select variables for inclusion in the LUR, air pollution levels 
were first regressed onto each land use variable (listed in Table S4) in 
univariable regressions. Using those results, variables associated with 
the air pollutant (95% confidence interval excluding the null) without 
being driven by outliers (predictor variable values greater than 2 stan-
dard deviations from the mean) became candidates land use variables 
for inclusion in the LUR. To reduce possible collinearity, pairs of 
candidate land use variables that were correlated with other candidate 
land use variables were identified (Spearman’s correlation >0.7) and in 
each pair, the land use variable with a higher MSE in the univariable 
regressions was excluded. The remaining candidate land use variables 
were used to train the multi-variable LUR model. The multi-variable 
LUR was trained as a GAM estimated using restricted maximum likeli-
hood. Thin plate splines were used on land use parameters and temporal 
adjustments to allow for non-linear slopes (limited to 3 basis functions to 
avoid overfitting). Additional spatial dependencies not captured by land 
use and traffic parameters were modelled by including road segment 
latitude and longitude in a tensor product smooth (Wood, 2020, Wood, 
2006). Models without latitude and longitude were developed as a 
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sensitivity analysis. All road segments were treated equally in the 
analysis and to explore the possible impact of the imbalance in moni-
toring time across road segments, LUR models were developed using 
road segments visited on 6 to 12 different days as well as only the road 
segments along the pre-planned monitoring routes (i.e., excluding data 
recorded when travelling between monitoring routes). 

2.8. Convolutional neural network model development 

CNN models for each measure of air pollution in each city were 
developed using satellite-view images at two different zoom levels (six 
CNN models). The keras package (Chollet, 2015) in Python was used to 
train models on the training set data (70%; 9300 images for Montreal 
and 7330 images for Toronto) and hyperparameter tuning was based on 
MSE in the validation set (15%). The Xception model architecture 
(Chollet, 2017) was used because it is a relatively small model that can 
accept a wide range of image sizes and has demonstrated high accuracy 
(Chollet, 2017). To reduce training time, we started with pre-trained 
models using ImageNet initial weights (Deng et al., 2009). The Nadam 
learning rate optimizer was used for updating weight parameters and 
minimizing the loss function because it has demonstrated relatively fast 
convergence when compared to other optimizers (Choi et al., 2020, 
Dozat, 2016). The initial learning rate was 0.0001 and was reduced if 
MSE in the validation set plateaued for 5 epochs. Batch size was 128 (32 
images per GPU) and models were trained for up to 100 epochs, though 
training stopped early if MSE in the validation set plateaued for 10 
epochs. Model weights that resulted in the lowest MSE in the validation 
were selected. The CNN models were trained using the aggregated 
mobile monitoring data (i.e., estimate annual medians) linked to digital 
satellite images downloaded in 2021. CNN predictions did not account 
for weather-related temporal variations in the monitoring data and to 
address this we used the same approach as a previous study (Lloyd et al., 
2021) whereby observed air pollution levels are regressed onto the CNN 
predictions in the validation set with median ambient weather condi-
tions during monitoring included in the model to account for weather- 
related temporal variations in air pollution (steps illustrated in 
Fig. S6). The coefficients from this regression were used to adjust CNN 
model predictions for temporal variations in the monitoring data. As 
sensitivity analyses, the LUR models were trained using the same 
approach for temporal adjustment (i.e., training the model in the 
training set without weather parameters and then adjusting for weather- 
related temporal variations in the validation set) and both LUR and CNN 
models were trained without any temporal adjustment. 

2.9. Combined model development 

For the primary analysis of this study, final combined models for 
each measure of air pollution in each city were developed by combining 
LUR predictions with the temporally adjusted CNN model predictions 
(six combined models). This was done using validation set data in a 
linear regression: 

yi = β0 + β1xLURi + β2xCNNi +∊i  

where y is the annual median outdoor pollution level and xLUR and xCNN 
are predictions from the LUR and CNN models respectively for the ith 

road segment (non-linear regression did not improve model perfor-
mance). These combined models captured all available information 
from both the LUR and CNN models. 

2.10. Model evaluation 

We developed city-specific LUR, CNN, and combined models to 
predict spatial variations of each pollutant within in each city. Models 
were trained on the training data (70%), the validation data (15%) were 
used for CNN hyperparameter tuning, temporal adjustment and 

combining the LUR and CNN models, and all models were evaluated 
using the test data (15%). We chose hold-out instead of k-fold cross 
validation because we had a relatively large sample size (i.e., less vari-
ance in sets) and we had a large number of models to develop. Though 
easier to implement, using a single hold-out set for model evaluation can 
result in unstable estimates of model performance. The unit of analysis 
for all models was annual median ambient pollutant levels at the 100 m 
road segments (i.e., the monitoring data aggregated to road segments). 
As a sensitivity analysis, multi-city models were developed by pooling 
data from both cities. Predictions (i.e., estimates) from each model were 
generated in the test set data and compared to observed values. RMSE 
and R2 were used to described model performance. Model residuals for 
all data were plotted and inspected for spatial clustering. To quantify the 
spatial clustering of residuals, Moran’s Index was calculated on the 
model residuals in the test set using inverse distance between road 
segments as the weights. 

2.11. Prediction surfaces 

The study areas were divided into 100 m × 100 m cells for the 
prediction surfaces. For each cell, land use and traffic parameters were 
extracted and used to generate LUR model predictions and satellite-view 
images at both zoom levels were downloaded to generate CNN models 
predictions. spatially invariant (i.e., constant) annual median tempera-
ture, humidity, and wind speed at local airports (i.e., the same data 
source used for weather conditions during monitoring) were used for 
each city when generating predictions. This assumes a spatially constant 
temporal structure across the study areas and also assumes that pre-
dictions of pollutant levels under average regional meteorological con-
ditions represent annual median outdoor pollutant levels. Surfaces from 
the combined models provided estimates of within-city spatial variation 
of annual ambient pollution. 

2.12. CNN model behaviour 

CNN models lack the easily interpretable coefficients of regression 
models; thus, we explored CNN predictions to investigate model 
behaviour. CNN prediction surfaces were inspected and compared LUR 
surfaces. Following an approach described by Sorek-Hamer et al. 
(2022), digital images were modified and CNN model predictions were 
compared to expected values. For example, pasting the image of a 
highway into the image of a residential area was expected to increase the 
predicted concentration with respect to the unmodified image of the 
residential area. The resulting prediction was compared to expectations 
to determine if the model behaved in a manner consistent with expec-
tations. Google periodically updates satellite-view images, and we 
generated CNN predictions using images from different time periods to 
explore the sensitivity of CNN models to time of year an image was 
captured (e.g., comparing predictions based on images captured during 
the summer when trees are full of green leaves to images captured 
during early spring when there are no green leaves). 

3. Results 

3.1. Monitoring 

We conducted over 700 h of mobile monitoring, of which data from 
over 500 h were retained for model development. Monitoring data were 
retained for 12,870 road segments (7051 in Montreal and 5819 in 
Toronto) that were visited on at least 6 different days during the 
campaign. Median observed pollutant levels on road segments moni-
tored on fewer than 6 different days were considered temporally un-
stable and not representative of annual outdoor medians, thus they were 
excluded from the analysis (Tables S5–S6 and Figs. S7–S8 compare 
retained and discarded monitoring data). Approximately 0.5% of the 
recorded data was outside of instrument detection ranges and was thus 

M. Lloyd et al.                                                                                                                                                                                                                                   



Environment International 178 (2023) 108106

5

imputed. Road segments (100 m) were visited on a median of 10 
different days (sd = 8) and monitored for a median total duration of 63 s 
(sd = 640). As shown in Table 1, Toronto had slightly higher median 
observed concentrations of UFP and BC and larger median observed UFP 
size. Table S7 shows descriptive statistics for the training, validation, 
and test sets. Tables S8 and S9 show the months and days of the week 
that monitoring occurred. Observed UFP and BC concentrations during 
monitoring were slightly lower than observed values during previous 
campaigns in Montreal and Toronto (Table S10; Weichenthal et al., 
2016, Weichenthal et al., 2016, Minet et al., 2018), likely due to this 
campaign including evening and weekends whereas the previous 
campaign focused on rush-hour periods during weekdays. 

3.2. Model performance 

Variables selected for each LUR model are listed in Table S11. 
Nineteen, 22, and 16 land use and traffic variables were selected into the 
Montreal UFP concentration, UFP size and BC concentrations LUR 
models, respectively. Fourteen, 18, and 13 land use and traffic variables 
were selected into the Toronto UFP concentration, UFP size and BC 
concentrations LUR models, respectively. Correlations between predic-
tor variables are shown in Figs. S9–S14. All city-specific model R2 and 
combined models coefficients are in Table 2 (RMSE in Table S12). All 
models had generally similar performance, with combined models 
having the highest R2 though it was only slightly higher than the LUR R2. 
LUR and CNN model predictions were highly correlated (Table S13 
shows Pearson r and for all models it was near 0.8), but the LUR models 
had higher R2. The LUR predictions also had slightly larger coefficients 
in the combined models, thus made somewhat greater contributions to 
the combined models than the CNN predictions. All city-specific models 
had higher R2 than the multi-city models trained on pooled data 
(Table S14). LUR temporal adjustment in the validation set instead of 
the training set and omitting the temporal adjustment of LUR and CNN 
models had very little impact on model R2 (Tables S15 and S16). Maps of 
median meteorological conditions during monitoring show some spatial 
variation (Fig. S15) and response curves for meteorological terms in the 
models (Figs. S16 and S17) show relatively modest associations with 
pollutant concentrations across the monitoring sites. Restricting the 
training data to road segments visited 6 to 12 times and restricting it to 
only the pre-planned monitoring routes both had very little impact on 
model R2 (Table S17 and Fig. S18). 

3.3. Model bias 

Table 3 shows median differences between observed values (i.e., 
aggregated monitoring data) and model predictions in the test set and 
compared to the range of observed values of each pollutant, the mean 
differences were relatively small. The median differences for all the 
Montreal UFP concentration models were similar, but the Toronto LUR 
on average slightly underpredicted compared to observed values, 
whereas the Toronto CNN and combined models slightly overpredicted. 
For BC concentrations, all models slightly underpredicted on average. 
This contrast in LUR and CNN UFP concentration model behaviour be-
tween cities was explored further in scatter plots of observed and pre-
dicted UFP number concentrations (Fig. 1) and plots of LUR and CNN 

predictions (Fig. 2, Figs. S19–S21, Table S18, and Table S19). The 
Toronto CNN and combined UFP concentration models generated more 
predictions above 45,000 pt/cm3 than the Toronto LUR model. 
Conversely, the Montreal LUR model generated a greater number of 
elevated UFP concentration predictions than the CNN or combined 
model. This diverging pattern in UFP concentration predictions was 
much less pronounced when using multi-city CNN and LUR models that 
were trained on both Montreal and Toronto data (Figs. S22–S25). This 
suggests that the CNN UFP concentration model trained on Toronto data 
alone may have learned features specific to Toronto that were associated 
with very elevated UFP concentrations (Fig. S26). BC mass concentra-
tion and UFP size predictions did not exhibit the diverging patterns 
observed for UFP concentrations in Fig. 1 (Figs. S27–S29). The Toronto 
LUR UFP concentration predictions exhibited unexpected clustering, but 
the Toronto CNN model predictions did not (Fig. S30). This was in part 
due to some of the test set data being clustered along major highways 
(Figs. S31 and S32) that had distinctly elevated values of vehicle traffic 
(Fig. S33) which was an important variable the LUR model (Fig. S34). 
The same clustered test set did not lead to clustered CNN model pre-
dictions because CNNs are not trained on distinct categories of param-
eters, but instead learn complex features in digital images. Slopes and 
intercepts of the scatter plots are listed in Table S20. Model errors were 
mapped and although they did not appear to be spatially clustered 
(Figs. S35–S38), the test of Moran’s Index (Table S21) for all models 
rejected the null hypothesis that there was no spatial clustering of 
residuals. 

3.4. Prediction surfaces 

Fig. 3 shows the UFP number concentration LUR, CNN, and com-
bined model prediction surfaces for Toronto (A) and Montreal (B). Fig. 4 
shows the combined model surfaces for UFP size and areas with small 
particle sizes were areas with generally higher UFP concentrations. 
Combined model BC concentration prediction surfaces shown in Fig. 5 
and other models shown in Figs. S39–S44. Differences between LUR and 
CNN prediction surfaces are in Figs. S45–S47 and show that for major 
highways, the Montreal CNN model consistently generated higher UFP 
number concentration predictions than the LUR model, whereas for 
Toronto it was the opposite. This contrast in prediction surfaces was 
consistent with the model behaviour observed in the test set and dis-
cussed in the Model Bias section (Figs. S19–S25). LUR surfaces appeared 
more spatially smooth than CNN surfaces, but removing latitude and 
longitude from LUR models resulted in less spatial smoothing 
(Figs. S48–S50) and reduced the very elevated UFP number concentra-
tion predictions in North-Western Toronto. CNN model predictions 
using modified images were generally consistent with our expectations 
(e.g., the CNN UFP concentration prediction using an unmodified image 
of a Montreal residential area was 7935 pt/cm3, but when we modified 
the image by inserting the image of a major highway, the CNN predic-
tion increased to 25,259 pt/cm3; Figs. S51–S54). However, there were 
some predictions on modified images that did not meet our expectations 
such as when a BC concentration prediction using the image of a Mon-
treal residential area increased by 99 ng/m3 after the image of a forest 
was inserted (Fig. S52). The handful of predictions that did not meet our 
expectations may indicate a source of error in model predictions, but this 

Table 1 
Mobile Monitoring Campaign Descriptive Statistics by City.  

Pollutant City Median (IQR) 5th – 95th Percentile Number of 100 m Road Segments 

UFP number concentration (pt/cm3) Toronto 16,172 (14,991) 6895 – 53,710 5819 
Montreal 14,702 (13,549) 4868 – 46,063 7051 

Mean UFP Size (nm) Toronto 33.7 (7.7) 23 – 44 5819  
Montreal 29.7 (10.1) 19 – 46 7051 

BC mass concentration (ng/m3) Toronto 1225 (1151) 447 – 3197 5348 
Montreal 1060 (1006) 277 – 2789 7112  
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sensitivity analysis using modified images is likely an inadequate test of 
the complex relationships learned by the CNN models. Some CNN pre-
dictions appeared to be somewhat sensitive to the season in which im-
ages were captured, but the impact of season on estimated air pollution 
levels was approximately normally distributed around zero 
(Figs. S55–S57), suggesting a reduction in prediction precision rather 
than biased predictions. Figs. S58–S81 show several explorations of CNN 
model behaviour including comparisons with LUR predictions. 

4. Discussion 

In this study, we developed new high-resolution exposure models to 
predict within-city spatial variations in outdoor UFP number 

concentrations, mean UFP size, and BC mass concentrations for Cana-
da’s two largest cities. This analysis improves on our earlier models 
(Weichenthal et al., 2016, Weichenthal et al., 2016) by increasing the 
spatial coverage of the monitoring campaign, increasing the total 
monitoring time, extending the monitoring period over an entire year, 
randomly sampling all days of the week and most times of day, and 
incorporating information from digital satellite-view images into model 
predictions using convolutional neural networks. The increased spatial 
and temporal coverage of this monitoring campaign compared to our 
previous effort likely resulted in a more representative sample of the 
within-city spatial variations of annual median ambient air pollution. 
Model R2 values cannot be directly compared across studies, but the R2 

values of our LUR, CNN, and combined models fell within the range of 

Table 2 
Model performance in test set and combined model coefficients. *UFP number concentration and BC concentration log-transformed for model development.  

City Pollutant R2 in Test Set Combined Model Coefficients 

LUR CNN Combined Intercept LUR CNN 

Montreal UFP PNC* (pt/cm3)  0.59  0.49  0.60  − 0.25  0.57  0.46 
UFP Size (nm)  0.48  0.41  0.49  1.49  0.52  0.44 
BC Conc.* (ng/m3)  0.58  0.50  0.60  − 0.13  0.52  0.50 

Toronto UFP PNC* (pt/cm3)  0.71  0.66  0.73  − 1.34  0.65  0.49 
UFP Size (nm)  0.56  0.43  0.55  − 2.34  0.56  0.51 
BC Conc.* (ng/m3)  0.60  0.53  0.61  − 0.69  0.72  0.38  

Table 3 
Mean difference between observed and predicted values in the test set and the 5th to 95th percentile range of observed values used for model development (i.e., the 
aggregated monitoring data).  

Pollutant Model Median Difference (5th, 95th percentile) Observed 5th-95th Percentile Range 

Montreal Toronto Montreal Toronto 

UFP PNC (pt/cm3) LUR − 338 (− 11332, 17177) 533 (− 12285, 22961) 41,195 46,815 
CNN − 232 (− 8948, 24100) − 1530 (− 18211, 16988) 
Combined − 125 (− 8924, 21220) − 770 (− 20864, 16063) 

UFP Size (nm) LUR − 0.35 (− 9.18, 10.14) − 0.06 (− 6.37, 6.8) 27 21 
CNN − 0.79 (− 10.17, 11.83) 0.72 (− 6.64, 8.75) 
Combined − 0.8 (− 9.64, 10.2) 0.54 (− 5.96, 7.37) 

BC Concentration (ng/m3) LUR 51 (− 617, 1087) 71 (− 812, 1282) 2512 2750 
CNN 91 (− 511, 1331) 44 (− 818, 1312) 
Combined 75 (− 462, 1156) 40 (− 1031, 1202)  

Fig. 1. Comparing observed to predicted UFP particle number concentrations (PNC) in Toronto (A) and Montreal (B) with legends showing model performance in the 
test set. Figs. S27–S29 show comparisons for each pollutant in 6-panel plots instead of the 2-panel plots shown here. 
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published R2 values from other studies that developed linear regression 
LUR models, machine learning LUR models, or CNN models trained on 
images of the urban environment (Lloyd et al., 2021, Kerckhoffs et al., 
2019, Hong et al., 2020, Weichenthal et al., 2016, van Nunen et al., 
2017). The magnitude of the bias observed in our models was similar to 
the bias reported by other studies as well (Hankey and Marshall, 2015, 
Lloyd et al., 2021, Kerckhoffs et al., 2019, Weichenthal et al., 2016, 
Montagne et al., 2015, van Nunen et al., 2017). This consistency of 
model performance and bias suggests that each approach in this study 
could be useful for estimating within-city spatial variations in air 
pollution. A further improvement over our earlier models was the 
development of mean UFP size models that generally predicted small 
mean UFP sizes in areas of elevated UFP concentrations, which is 
consistent with our understanding of particle growth (i.e. fresh emis-
sions consisting of high concentrations of very small particles) (Kittelson 
et al., 2022, Kwon et al., 2020). The development of mean UFP size 
models is important because particle size may play a role in UFP toxicity 
(Huang et al., 2021; Moreno-Ríos et al., 2022; Shang et al., 2021) and 
has the potential to confound the relationship between UFP concentra-
tions and adverse health outcomes (i.e., smaller particles may be more 
harmful and are typically present in higher concentrations) (Weichen-
thal et al., 2022). Collectively, this investigation produced a number of 
interesting results. 

First, we observed high within-city spatial variations in outdoor UFP 
concentrations, mean UFP size, and BC concentrations during moni-
toring. This is consistent with findings from other studies that report 
outdoor UFP and BC concentrations having much greater within-city 
spatial variation than outdoor PM2.5 concentrations (Alonso-Blanco 
et al., 2018; Apte et al., 2017; Chambliss et al., 2020; Presto et al., 2021; 
Evans et al., 2019; HEI, 2022). The high-resolution models we devel-
oped explained more than half of the observed spatial variation in UFP 
and BC concentrations in the test sets. Due to their relatively low R2, 
applying the UFP size models in a health study may introduce mea-
surement error and reduce the precision of estimated health effects. 
City-specific models performed better than multi-city models trained on 
pooled data, which is consistent with the documented difficulty of 
transferring models between study areas (Hoek, 2017, Zalzal et al., 

2019, Allen et al., 2011). The CNN models performed somewhat worse 
than the LUR models, but they took advantage of an alternative data 
stream (i.e., images instead of GIS data) and may be learning complex 
associations that are not present in GIS data alone (Fig. S26). Combined 
models performed better than any LUR or CNN models on their own, 
though with only a modest increase in R2 compared to the LUR models. 
This is consistent with the results from a similar study (Lloyd et al., 
2021) and suggests that CNNs trained on images can be useful for pre-
dicting within-city spatial variations in outdoor air pollution, especially 
when combined with LUR models. Nonetheless, CNNs can learn unin-
tended associations between image features and underlying structures in 
the data which can affect generalizability (Bowyer et al., 2020; Zech 
et al., 2018; Ribeiro et al., 2016). An example of an underlying structure 
is images in a database that are captured during different seasons. Our 
CNNs appeared to be somewhat sensitive to the time of year images were 
captured (Figs. S55–S57) which likely introduced some random error 
into our estimates. Nevertheless, CNN models are likely most useful in 
places lacking large curated databases of land use and traffic informa-
tion as recently demonstrated in Bucaramanga, Colombia (Lloyd et al., 
2021). 

Secondly, for each pollutant the LUR and CNN models generated 
similar prediction surfaces, yet there were several interesting differences 
(Figs. 3 - 4 and Figs. S45–S47). For instance, the LUR model prediction 
surfaces were generally smoother than those from CNN models. This was 
due in part to the inclusion of latitude and longitude in the LUR models 
(Figs. S48–S50). Latitude and longitude vary incrementally throughout 
the study area and smoothed the LUR predictions, whereas each CNN- 
generated prediction was based solely on digital images that covered 
up to 280 m × 280 m of the earth’s surface (i.e., the CNN prediction for a 
given point was naïve of any information beyond the edge of the image 
centered on that point). UFP and BC concentrations can vary greatly 
over very short distances (Apte et al., 2017, Presto et al., 2021, Evans 
et al., 2019; Alonso-Blanco et al., 2018; Chambliss et al., 2020) and it is 
possible LURs may have over-smoothed the spatial variations in certain 
areas (Figs. S67 and S77). In other areas however, the CNN being naïve 
of information beyond the limits of the images may have resulted in 
under-smoothing (Figs. S68 and S74). Combined model prediction 

Fig. 2. Comparing test set LUR UFP number concentration predictions to CNN predictions in Montreal and Toronto (A) with histogram of observed values for 
reference (B). For high UFP number concentration (e.g., near 45,000 pt/cm3), the Montreal CNN predictions appeared to the systematically lower than the Montreal 
LUR predictions, whereas it was the opposite in Toronto. Predictions for road segments with observed UFP number concentration values greater than 45,000 pt/cm3 

are indicated with a grey circle in A) and were found on major highways (Fig. S32). The mean difference in predicted UFP number concentration between the 
Montreal LUR and Montreal CNN was 271 pt/cm3 (5th, 95th percentile: − 5469, 12,175). For Toronto it was − 2232 pt/cm3 (5th, 95th percentile: − 17,070, 6114). 
Pearson correlation coefficient of the LUR and CNN model predictions was 0.80 for Montreal and 0.86 for Toronto. 
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Fig. 3. Toronto (A) and Montreal (B) UFP particle number concentration (PNC) prediction surfaces for the LUR, CNN, and combined models (100 m × 100 m 
resolution). Figs. S58–S81 show an exploration of the Toronto CNN surface dark green bands and other areas of interest. Figs. S48–S50 show LUR model surfaces 
without latitude and longitude, which were generally more similar to the CNN surfaces. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. 4. Toronto (A) and Montreal (B) combined model UFP size prediction surfaces (100 m × 100 m resolution). LUR and CNN model surfaces are in Figs. S39–S41.  
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surfaces appeared to integrate the smoothness of the LUR surfaces with 
the sharp gradients of the CNN surfaces (Fig. 3), which may be a useful 
compromise between the two approaches. Furthermore, mapping the 
difference between LUR and CNN model predictions highlighted inter-
esting contrasts. For example, on major highways the Montreal LUR 
model consistently predicted higher UFP number concentrations than 
the Montreal CNN model whereas in Toronto it was the opposite 
(Figs. S19–S25 and S45–S47). In general, combining LUR and CNN 
predictions resulted in only a modest increase in overall model perfor-
mance compared to the LUR models alone, but may help generate more 
robust predictions throughout the modelling areas by taking advantage 
of information from both land use data and digital images. Indeed, in our 
previous study conducted in Colombia, spatial variations in model errors 
were lower for CNN models than for LUR models (Lloyd et al., 2021). 

A strength of this study was the large scope of the monitoring 
campaign and mobile monitoring was an efficient approach to maximize 
spatial coverage, though a limitation was relatively low monitoring time 
per road segment compared to stationary monitoring (Kerckhoffs et al., 
2017, van Nunen et al., 2017). On average, road segments were visited 
on 10 different days for a total of roughly 60 s of monitoring. Although 
researchers have successfully developed models based on similar levels 
of monitoring, (Messier et al., 2018, Kerckhoffs et al., 2017) longer 
monitoring times would likely provide more stable estimates of annual 
median ambient UFP and BC levels and reduced temporal imbalances 
between sites which may have eliminated the need for temporal 
adjustment of the models and the assumption of spatially constant 
temporal structures across the study areas. Additionally, mobile moni-
toring was conducted using internal combustion engine vehicles which 
may have contributed to the monitoring vehicle emissions being 
measured. Furthermore, monitoring was conducted on roads and major 
highways, which likely resulted in our measured values of air pollution 
being higher than the air pollution values immediately outside resi-
dences. Though we monitored on-road, we still observed low UFP levels 
at many monitoring sites (e.g. over 400 sites with median values less 
than 5000 pt/cm3) and our approach did not preclude the identification 
of such locations. Nonetheless, future monitoring campaigns could 
address these limitations by following the approach used by Blanco et al. 
(2022), which involved monitoring from stationary vehicles parked at 
pre-specified sites on the sides of non-highway roads (Blanco et al., 
2022). If applied to a health study, our models would likely overestimate 
the absolute value of residential outdoor concentrations and thus 
investigating absolute ambient air pollution thresholds using our esti-
mates could be challenging. Nonetheless, the spatial contrasts between 
residential exposures would still be informative and useful in epidemi-
ological analyses examining the long-term health impacts of these 

exposures. Another strength of this study was the incorporation of in-
formation from digital images to improve predictions, however the 
application of CNNs can be challenging. Firstly, CNNs require a large 
amount of training data and may not be applicable for smaller moni-
toring campaigns. CNNs also do not have the easily interpretable co-
efficients of linear regression models, thus we explored CNN model 
behaviour using several approaches (Figs. S51–S81). Lastly, quality 
control of digital images is an extremely important and potentially 
resource intensive step (Santos et al., 2021, Pelletier et al., 2017) when 
training CNN models. For example, past applications of CNNs have 
erroneously learned structural flaws in the data when training models on 
images from multiple databases (Noseworthy et al., 2020, Heaven, 
2019). Using R to download Google Maps satellite images was an effi-
cient approach to compile a high-quality database of digital images, but 
we could not control the exact timing of image capture. This led to some 
images being from different seasons during the year-long campaign and 
likely had a small impact on CNN model predictions. Future studies 
should consider allocating resources to establishing high-quality data-
bases of digital images for CNN model training and possibly developing 
methods to take advantage of seasonal differences in digital images to 
generate robust estimates of spatial variations in air pollution. 

5. Conclusion 

We conducted a year-long monitoring campaign and developed new 
high-resolution models of within-city spatial variation in annual median 
(i.e. average) outdoor UFP number concentrations, mean UFP size, BC 
concentrations for Canada’s two largest cities. The best Toronto models 
had R2 values in the test set of 0.73, 0.55, and 0.61 for UFP concen-
trations, UFP size, and BC concentration, respectively. The best Mon-
treal models had R2 values in the test set of 0.60, 0.49, and 0.60 for UFP 
concentration, UFP size, and BC concentration models respectively. The 
CNN models had somewhat lower R2 values than the LUR models, but 
still showed good performance and had the advantage that they did not 
need an extensive database of land use information. These models are 
available for use in future research, including application in population- 
based cohorts to investigate the health impacts of long-term exposure to 
these pollutants. 
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