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• The COVID-19 lockdown reduced PM2.5
and NO2 by >14 % in all the three urban
agglomerations.

• A sharp decrease (>25 %) occurred for
UHIInight in the three urban agglomera-
tions during the COVID-19 lockdown.

• The reduction of UHIInight is mainly due to
reduced human activities and air pollutant
emissions.

• Small-scale lockdowns do little to improve
the environment.
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COVID-19 has notably impacted the world economy and human activities. However, the strict urban lockdown poli-
cies implemented in various countries appear to have positively affected pollution and the thermal environment. In
this study, Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and aerosol op-
tical depth (AOD) data were selected, combined with Sentinel-5P images and meteorological elements, to analyze the
changes and associations among air pollution, LST, and urban heat islands (UHIs) in three urban agglomerations in
mainland China during the COVID-19 lockdown. The results showed that during the COVID-19 lockdown period
(February 2020), the levels of the AOD and atmospheric pollutants (fine particles (PM2.5), NO2, and CO) significantly
decreased. Among them, PM2.5 and NO2 decreased the most in all urban agglomerations, by >14 %. Notably, the con-
tinued improvement in air pollution attributed to China's strict control policies could lead to overestimation of the en-
hanced air quality during the lockdown. The surface temperature in all three urban agglomerations increased by>1 °C
during the lockdown, whichwasmainly due to climate factors, but we also showed that the lockdown constrained pos-
itive LST anomalies. The decrease in the nighttime urban heat island intensity (UHIInight) in the three urban agglom-
erations was greater than that in the daytime quantity by >25 %. The reduction in surface UHIs at night was mainly
due to the reduced human activities and air pollutant emissions. Although strict restrictions on human activities pos-
itively affected air pollution and UHIs, these changes were quickly reverted when lockdown policies were relaxed.
Moreover, small-scale lockdowns contributed little to environmental improvement. Our results have implications
for assessing the environmental benefits of city-scale lockdowns.
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1. Introduction

COVID-19, caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), was characterized as a global pandemic by theWorld Health
Organization (WHO) on 11March 2020 (WHO, 2020) after its discovery in
December 2019. By the end of November 2022, 637 million confirmed
cases and 6.6 million deaths were reported globally (WHO, 2022). In re-
sponse to this major public health emergency, national restrictions were
adopted in >100 countries. The world economy has reportedly shrunk by
13–32 % due to the pandemic (Mousazadeh et al., 2021), and despite digi-
tal teaching efforts, >1 billion students did not receive normal education
(Shulla et al., 2021). In addition, the restrictions on public transport, indus-
trial production, human activities, and social distancing have led to global
environmental changes (Lal et al., 2020), such as air pollution and urban
thermal environmental changes (Cao et al., 2022; Chakraborty et al.,
2021). This also provides the opportunity to study the environmental im-
pacts of notable human interference.

The aerosol optical depth (AOD) is a proxy of the atmospheric pollution
level, whichmeasures the attenuation of light by suspended particles in the
atmosphere (Xiang et al., 2022), and the AOD has been confirmed to de-
crease by 10 % due to the strict lockdown in 2020 (Fiedler et al., 2021).
A significant decrease in the AOD during the COVID-19 lockdown was ob-
served in North America and Europe (Parida et al., 2021a). Similarly, de-
creases in pollutant aerosols were detected in southwest (Chen et al.,
2020) and eastern (Lin et al., 2021) China. In addition, air pollutant
(PMx, NOx, CO, and SO2) concentration anomalies were first observed
due to the reduced human activities and factory emissions after the start
of the COVID-19 lockdown (El Kenawy et al., 2021; Hu et al., 2021). Several
studies have shown that the strict national lockdown policies have caused
significant reductions in air pollutants worldwide (Bauwens et al., 2020;
Yang et al., 2022a). During the worldwide urban lockdown, a significant
decrease in the daily NO2 concentration of 3–58 % was observed
(Benchrif et al., 2021). Notable declines were widely observed in China
(Agarwal et al., 2020), Pakistan (Ali et al., 2021), Germany (Cao et al.,
2022), France (Kovács, 2022), Malaysia (Abdullah et al., 2020), Chile
(Toro et al., 2021), and the USA (Bekbulat et al., 2021). Similarly, decreases
in fine particles (PM2.5) and CO were observed due to factory production
and traffic restrictions (Alqasemi et al., 2021; Hidalgo García and Arco
Díaz, 2022; Jamei et al., 2022). In contrast, the change in SO2 was ambigu-
ous (Hidalgo García and Arco Díaz, 2022; Tyagi et al., 2021), and even the
opposite trend inO3was observed (Cao et al., 2022). However, the air qual-
ity in some economically underdeveloped areas has not been improved be-
cause of the COVID-19 lockdowns (Mandal et al., 2022; Martinez-Soto
et al., 2021).

Changes in anthropogenic emissions and air pollutants can significantly
affect the land surface temperature (LST) (Qian et al., 2022). Despite the de-
crease in the radiative forcing of aerosols during the global COVID-19 lock-
down, the LST and air temperature did not show the expected rise and even
decreased in Europe and North America (Parida et al., 2021a). Similar situ-
ations have also occurred in Iran (Roshan et al., 2021) and India (Parida
et al., 2021b). This negative surface temperature anomaly can be partly ex-
plained by the evapotranspiration and cooling effects of the late harvest of
crops (Chakraborty et al., 2021), but the reason for the reduction in the LST
in urban areaswith fewer crops remains unknown. However, the positive or
negative changes in the LST in Chinese cities during the COVID-19 lock-
down remain to be quantified and characterized.

Moreover, human heat emissions and air pollution decreased due to the
significant reduction in human activities during the COVID-19 lockdown,
which substantially impacted the urban heat island (UHI) phenomenon, a
local climate change phenomenon in which the temperatures in urban
areas are higher than those in rural surrounding areas owing to urbaniza-
tion. Driving force analysis of the UHI phenomenon has shown that imper-
meable hardened surfaces (instead of permeable natural landscapes),
background climate conditions and artificial heat emissions are major
influencing factors (Oke, 1973). Among them, anthropogenic heat emis-
sions, including the heat emissions originating from industrial plants,
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road transportation, commercial and industrial activities, domestic heating
and cooling, space heating, human metabolism and vehicle exhaust, were
the most sensitive major contributor to UHIs during the COVID-19 lock-
down, and these heat emissions usually contribute 15–50 W/m2 to the
urban local heat balance (Sobrino et al., 2008). The linkage between lock-
down measures and UHI variations can be quantified using in situ station
monitoring and satellite temperature observations. Although we investi-
gated the canopy heat island (CUHI) phenomenon, which is more essential
than the surface urban heat island (SUHI) phenomenon for public health
considerations (Oke et al., 2017), because the distribution of ground
weather monitoring stations is sparse and susceptible to the surrounding
conditions, it is difficult to obtain UHI information through actual in situ
measurements. Satellite remote sensing data provide conditions for repre-
senting SUHIs due to their extensive coverage and high accuracy (Voogt
and Oke, 2003). As a rapidly developing country, China now suffers from
the heat island phenomenon, and the UHI problem has attracted increasing
attention (Du et al., 2016;Wang et al., 2016). However, recent studies have
noted that SUHIs were positively affected during the COVID-19 lockdown,
namely, the strict human activity restrictions resulted in a significant de-
cline in SUHIs in China (Cai et al., 2021). However, enhanced daytime sur-
face urban heat islands (SUHIday) due to the strict lockdownmeasures were
also detected (Chakraborty et al., 2021). Although previous studies have
analyzed the changes in SUHIs during the COVID-19 lockdown in China
(Liu et al., 2022), the differences in SUHIs among urban agglomerations
and the impacts of pollutant emissions and changes in human activities
have not been explored.

As the first country to respond to the lockdown, the strict lockdown pe-
riod varied from region to region in China. This provides sufficient evidence
for the exploration of the differences between urban agglomerations under
different COVID-19 lockdown states. Over time, small-scale lockdown pol-
icies (single or neighboring cities) were implemented, which also provides
research support for the repeatability of the impacts of these lockdown
measures. Therefore, three urban agglomerations with different lockdown
times and development levels were selected in this study to address the fol-
lowing problems: (1) what are the impacts of the COVID-19 lockdown on
air pollution, LST, and SUHIs? (2) Are there differences in the influences
of the different urban agglomerations and lockdown levels on these three
elements? (3)What are the changes caused by the strict lockdownmeasures
that mainly affect SUHIs? Finally, this study could provide support for
short-term air pollution control and thermal environment improvement
policy formulation.

2. Materials and methods

2.1. Study area and time period

The differences of dry and wet regional background climatic conditions
in different urban agglomerations, which are areas with strong human ac-
tivities, serious air pollution and significant local climate of UHI, have
been shown to significantly affect both the AOD and UHI (Ayanlade et al.,
2019; Peng et al., 2011). Therefore, in this study, dry and wet zones were
divided according to the isoprecipitation line (Fig. 1a). Among them,
isoprecipitation line data were retrieved from the China Climate Zoning
Map compiled by the China Meteorological Administration based on cli-
mate data from 1951 to 1970. According to the existing data quality and
different dry–wet divisions, the Beijing-Tianjin-Hebei (BTH) and the
Yangtze River Delta (YR) urban agglomerations were selected, ranking
third and first, respectively, among all economic aggregates in China. Of
these urban agglomerations, BTH is mainly distributed in a semi-humid re-
gion, while YR is distributed in a humid region. As the second largest urban
agglomeration in western China, the Guanzhong (GZ) plain urban agglom-
eration is located in the same semi-humid region as the BTH urban agglom-
eration and was chosen as a comparative region due to the differences
in the economic development level and COVID-19 lockdown time with
the latter. Details of these urban agglomerations are shown in Text S1 &
Table S1.



Fig. 1.Distributions of the three urban agglomerations, a) the wet–dry boundary, b) elevation and core cities, and c) the land cover type (obtained from the European Space
Agency).
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The dates of COVID-19 closures in the three urban agglomerations are
provided in Table 1. The lockdown start time was identified as the start
date of the first-level public health emergency response (factory shutdown,
no gathering, and strict traffic control), and the end time coincided with a
reduction in the response level. Human activity restrictions were initiated
in all three city agglomerations at the end of January 2020, with those in
YR and GZ continuing until the end of February, while the strict city lock-
down in BTH continued until the end of April. Therefore, February 2020
was selected as the COVID-19 strict lockdown stage in this study, and
January, March, and April were selected for comparative analysis.

2.2. Data sources

In this study, surface temperature data were obtained via satellite to
study the impacts of the COVID-19 lockdown on the temperature and
SUHIs. Similarly, satellite-obtained AOD, air pollutant, and nighttime
light index data were combined with PM2.5 and meteorological element
product data to analyze the impacts of the lockdown measures on environ-
mental and anthropogenic emissions. The peripheral 5*5 pixel mean was
chosen to replace missing values, and the remaining vacant pixels were
discarded to ensure the accuracy of the results. The details of data
Table 1
Statistics on the COVID-19 lockdown dates in the three urban agglomerations.

Urban agglomeration First-level public health emergency resp

Active (level I)

BTH January 25, 2020

YR January 25, 2020

GZ January 26, 2020

3

preprocessing are shown in the Supplementary File (Text S2). The data
sources are presented in Table 2, with detailed data descriptions given in
the following sections.

2.2.1. Air pollution data
Data on the AOD at 0.55 μm were obtained from the Google Earth En-

gine (GEE) database (MCD19A2 V6), a Moderate Resolution Imaging
Spectroradiometer (MODIS) Terra and Aqua combined Multiangle Imple-
mentation of Atmospheric Correction (MAIAC) land AOD Level 2 product
with a spatial resolution of 1 km (Lyapustin and Wang, 2018). The green
band (0.55 μm) AOD over land was selected in this research. In this
study, all daily AOD data in China were masked by the quality control
band (AOD_QA), and pixels containing both clouds and surfaces covered
with snow and ice were excluded. The AOD data in the GEE database
were calculated as the monthly mean using a weighted average.

PM2.5 data were obtained from Wei et al. (2021) using the Space-Time
Extra-Trees (STET) model, exhibiting a high accuracy (R2 = 0.86–0.90)
and a spatial resolution of 1 km, and the data covered all of China. Further-
more, NO2, CO, O3, and SO2 were obtained from the Sentinel-5P OFFL
products in the GEE database (Copernicus/S5P/OFFL/L3). The Sentinel-5
precursor satellite was launched by the European Space Agency on 13
onse Source

Relief/level down

April 30, 2020 http://www.hebei.gov.cn/

February 24, 2020
http://www.jiangsu.gov.cn/
https://www.zj.gov.cn/

February 28, 2020 http://www.shaanxi.gov.cn/

http://www.hebei.gov.cn/
https://www.zj.gov.cn/
https://www.zj.gov.cn/
http://www.shaanxi.gov.cn/


Table 2.
Details of the data acquisition process in the three city agglomerations from January 2016 to June 2022.

Data Resolutions Source

Air pollution
NO2, CO, O3, and SO2

(Sentinel-5P offline)
Spatial: 1113.2 m
Temporal: daily

https://s5phub.copernicus.eu

PM2.5 Spatial: 1 km
Temporal: monthly

Wei et al. (2021)

Aerosol optical depth (AOD)
(MCD19A2 version 6)

Spatial: 1 km
Temporal: daily
Band: green band (0.55 μm)

Lyapustin and Wang (2018)

Meteorological elements
Land surface temperature (LST)
(Aqua MYD11A1 version 6.1)
Daytime and nighttime LSTs

Spatial: 1 km
Temporal: daily

Wan et al. (2021)

Maximum air temperature (Tmx), minimum air temperature
(Tmn), precipitation (P), wind speed (WS), relative humidity (RH)

Spatial: 1 km
Temporal: monthly

National Earth System Science Data Center, National Science &
Technology Infrastructure of China
(http://www.geodata.cn)

Surface conditions
ERA5-Land Reanalysis
Solar radiation (SR), soil moisture (SM)

Spatial: 0.1° × 0.1°
Temporal: monthly

Copernicus Climate Change Service (C3S) Climate Data Store (CDS)
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.68d2bb30?
tab=overview)

Enhanced vegetation index (EVI)
(MOD13A2 version 6)

Spatial: 1 km
Temporal: 16-day

Didan (2015)

Land cover classification Spatial: 300 m
Temporal: annual

ESA CCI (https://cds.climate.copernicus.eu)

Digital elevation model (DEM)
(GTOPO30)

Spatial:
30 arc-seconds

U.S. Geological Survey (USGS)
(http://www.webgis.com/terr_world.html)

Human activity
Nighttime light (NL)
(VIIRS monthly cloud-free DNB VCM)

Spatial: 463.83 m
Temporal: monthly

Earth Observation Group
(https://eogdata.mines.edu/products/vnl/)
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October 2017 to monitor air pollution, and the data products could be
openly accessed in September 2018. As offline (OFFL) data, the accuracy
and coverage are better than those of near-real-time (NRTI) products, and
quality control was completed. Considering the length of the product time
series, we chose the daily Sentinel-5P OFFL products after January 2019,
with a weighted average to the monthly sequence.

2.2.2. Meteorological elements
Daily surface temperature products were generated from Aqua MODIS-

derived surface temperature products (MYD11A1, V6.1), as estimated by
using the split-window algorithm (Wan, 2008). Daytime (LST_Day_1 km)
and nighttime (LST_Night_1 km) LST data from January 2016 to June
2022 were obtained from the GEE database (Wan et al., 2021) (Table 2).
The LST error was eliminated by the quality control (QC) band, and the
monthly value was obtained via weighted averaging of the daily LST data
form the GEE database.

The monthly maximum and minimum temperatures were spatially
downscaled from the 30′ Climatic Research Unit (CRU) time series dataset
with the WorldClim climatology dataset using delta spatial downscaling
(Peng et al., 2019), with a spatial resolution of 1 km. The auxiliary data
in this study were not involved in the calculation of UHIs. Precipitation,
wind speed, and relative humidity data were all obtained from the down-
scaled ERA-5 dataset (Jing et al., 2016). The above types of data were val-
idated against ground-station data, indicating a favorable consistency (Jing
et al., 2016; Peng et al., 2019). The baseline climate conditions of the three
urban agglomerations are shown in Figs. S3 and S4.

2.2.3. Nighttime light (NL)
Nighttime light data were obtained from the Earth Observation Group

(EOG) database. These data are produced by the Day–Night Band (DNB)
of the Visible Infrared Imager Radiometer Suite (VIIRS) of the Joint Polar-
orbiting Satellite System (JPSS) (Elvidge et al., 2013). VIIRS cloud mask
(VCM) products that completely excluded stray light were used in this
study, and flares generated by gas combustion were eliminated (Elvidge
4

et al., 2017). In this study, both air pollution and NL data were selected
as representations of human activities.

2.3. Methods

2.3.1. Calculation method of the mean and percentage change
To assess the anomalies of each element during the COVID-19 lock-

down, the difference between the 2020 (COVID-19 outbreak) and reference
period (2016–2019) means was calculated as follows:

ΔE ¼ E 2020ð Þ � E 2016∼2019ð Þ (1)

where ΔE is the anomaly of a given element during the lockdown, E (2020)
is the mean over the strict restriction period in 2020 (January to April), and
(2016–2019) is the mean of the same months during the reference period.
Thus, the change in the element percentage can be derived as follows:

ΔE ¼ ΔE=E 2016∼2019ð Þ � 100% (2)

where ΔE is derived from Eq. (1).

2.3.2. Urban/rural division and SUHI calculation
In this study, the simplified urban-extent (SUE) algorithm was used to

define urban–rural ranges (Chakraborty and Lee, 2019). The main steps
are as follows:

1) According to the digital elevation model and land cover classification
products, combined with the municipal administrative boundaries of
China (https://www.resdc.cn), urban and built-up pixels exceeding
the median elevation of ±50 m were removed.

2) Urban and built-up pixels within the reserved areas of all boroughswere
identified as urban areas.

3) The other pixels within the administrative boundaries (excluding water
bodies, ice and snow, and forest pixels) were identified as rural areas.

https://www.resdc.cn
https://s5phub.copernicus.eu
http://www.geodata.cn
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.68d2bb30?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.68d2bb30?tab=overview
https://cds.climate.copernicus.eu
http://www.webgis.com/terr_world.html
https://eogdata.mines.edu/products/vnl/
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Urban–rural division details are shown in Fig. S1. The urban–rural
boundary derived by the SUE algorithm can reduce the UHI anomalies
caused by buffer size differences, and the reliability has been verified (Liu
et al., 2022).

Based on the divided urban and rural areas and LST data, the SUHII can
be determined as follows:

SUHII ¼ �LSTUrban � �LSTRural (3)

where and are the mean urban and rural LSTs, respectively, during the
study period. The difference in the intensity of the SUHI between the
COVID-19 lockdown and reference periods can be obtained with Eq. (1).

3. Results

3.1. Changes in the AOD and air quality during the lockdown

TheAOD showed significant differences among the three urban agglom-
erations in February 2020 relative to the reference period (Fig. 2). Both GZ
and YR exhibited high proportions of negative anomalies, at 88.35 % and
93.54 %, respectively (Table 3). In contrast, BTH showed a positive mean
change in the area of 74.48 %, and the AOD mean increased by 0.09. In
March, the number of pixels indicating negative anomalies in BTH and
YR increased, and a significant decrease signal (BTH: −0.12; YR: −0.18)
of the AOD mean was observed. There was a positive anomaly in central
Fig. 2.AOD (a Feb., bMar.) and PM2.5 (c Feb, dMar) anomalies in 2020 compared to the
(The box plot shows the change in the average AOD & PM2.5 in the three urban agglom
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GZ during the same period (44.79 %), which also led to a slight increase
in the overall average AOD (+0.01).

It has been shown that PM2.5 is highly correlated with the AOD (Chu,
2006; Yang et al., 2022b), and the distributions of the PM2.5 anomalies in
BTH and YR has some similarity to AOD (Fig. 2). However, the decreasing
amplitude and pixel proportion of PM2.5 in the two urban agglomerations
were higher than those of the AOD (Table 3), which may suggest that the
effect of the lockdown on PM2.5 was greater than that on the AOD. In con-
trast, the negative PM2.5 anomaly in GZ during the lockdown period was
not closely associated with the change in the AOD. This inconsistency
may be related to the frequent sand and dust weather conditions in GZ
(You et al., 2015). Dustyweather can lead to a higher proportion of respira-
ble particles (PM10) than that of PM2.5 (Neff et al., 2013), resulting in a pos-
itive AOD anomaly not driven by PM2.5.

The negative AOD and PM2.5 anomalies in 2020 (February and March)
with respect to the 2016–2019 mean exhibited similar distributions
(Fig. 2). However, the interannual mean change in each urban agglomera-
tion was notable. Despite certain interannual fluctuations, the highest neg-
ative PM2.5 anomaly was observed during the strict lockdown period
(February 2020) relative to 2016–2019 (Fig. 2, line chart), and the AOD
also showed similar changes. The reductions in human activities and emis-
sions caused by the COVID-19 lockdown may have contributed to this phe-
nomenon (Parida et al., 2021a). However, in March, when the lockdown
policies in YR and GZ were relaxed (Table 1), negative AOD and PM2.5

anomalies were still observed in these two urban agglomerations relative
to 2019. Therefore, the interannual AOD and PM2.5 changes in January
2016–2019mean in the urban agglomerations during the effective lockdown period
erations).



Table 3
AOD anomalies and percentages of pixels with different trends (up and down) in 2020 relative to the 2016–2019 mean. ⁎ indicates passing the p < 0.05 significance test.

Urban agglomeration
(month)

AOD PM2.5

Anomaly
& change %

Up
(%)

Down
(%)

Anomaly
& change %

Up
(%)

Down
(%)

BTH (Feb.) +0.09⁎ (+32.61 %) 74.48 25.52 −9.28⁎ (−14.89 %) 37.97 62.03
YR (Feb.) −0.11⁎ (−28.07 %) 6.46 93.54 −23.69⁎ (−42.20 %) 0 100
GZ (Feb.) −0.05⁎ (−15.15 %) 11.65 88.35 −18.70⁎ (−28.08 %) 0 100
BTH (Mar.) −0.12 ⁎ (−31.38 %) 5.26 94.74 −23.07⁎ (−40.25 %) 0 100
YR (Mar.) −0.18 ⁎ (−33.19 %) 17.22 98.28 −19.24⁎ (−39.21 %) 0 100
GZ (Mar.) −0.01 (−2.41 %) 44.79 55.21 −16.59⁎ (−32.15 %) 0 100
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and April were considered (Fig. S5). In the three urban agglomerations, ob-
vious and persistent negative PM2.5 anomalies occurred in January and
April from 2016 to 2020, which may be related to the strict air pollution
control measures introduced by China in 2013 (Zhou et al., 2022). The fac-
tors impacting the AOD are complex, and in addition to the possible effects
of human activities, positive precipitation and relative humidity anomalies
can affect AOD changes (Fig. 4). This leads to complex interannual fluctua-
tions in the AOD and anomaly distributions that differ from those of PM2.5.

Compared to 2019, negative NO2 and CO anomalies were observed in
the three urban agglomerations in February 2020 (Fig. 3). Among them,
the negative average percentage of NO2 changed significantly, at >25 %
in all urban agglomerations (Table S2). However, this phenomenon did
not last until March 2020 (policy easing), and although it still declined
from the 2019 level, the magnitude was reduced. The source of NO2 is
mainly a high-temperature combustion process (motor vehicle exhaust, en-
gineering boilers, etc.). The COVID-19 lockdown (level I), resulting in a
large number of factory shutdowns and motor vehicle bans (Wang and
Su, 2020), was the main reason for the decline in NO2 in February 2020.
For the same reason, negative CO anomalies also occurred in the three
urban agglomerations, namely, −8.97 % (BTH), −4.25 % (YR) and
−10.54 % (GZ). Both the negative NO2 and CO anomalies declined in
March, which could be attributed to the increased emissions due to policy
easing. During the COVID-19 lockdown, the O3 anomalies were the oppo-
site to those of the other pollutants. The main reason was the sharp decline
in NO2, which exceeded the volatile organic compound (VOC) concentra-
tion (Li et al., 2020), resulting in a decline in the titration effect on O3.
The distribution of SO2 anomalies in February 2020 exhibited obvious
north–south differences. A significant drop in SO2 during the lockdown
was observed in YR, consistent with the findings of several studies (Hu
et al., 2021; Li et al., 2020; Wu et al., 2021), due to the reduction in factory
and automobile activities. The increase in SO2 in the northern urban
Fig. 3. Distribution of the atmospheric pollutant anomalies betwe
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agglomerations may be due to the lowwind speed and high relative humid-
ity (Zhao et al., 2020). Overall, during the strict lockdown period (Febru-
ary), the concentrations of several air pollutants were significantly
affected by the reduced human activities. However, this influence state
did not last after policy relaxation.

3.2. Changes in the LST and meteorological elements during the lockdown

According to the difference in lockdown policies, the study period was
divided into February and March to compare the LST under different lock-
down levels. The spatial distributions of the nighttime and daytime LST
anomalies (°C) in the three urban agglomerations during the lockdown pe-
riod in 2020 (1 February–31 March) with respect to the 2016–2019 mean
are shown in Fig. 5. The LST (daytime) in February 2020 in the three
urban agglomerations increased by 1.04 °C (BTH), 1.97 °C (YR) and
3.27 °C (GZ) relative to the reference data (2016–2019). Notably, severe
negative (over −5 °C) LST anomalies occurred in the middle of the BTH
(Fig. 5a). Similar to the daytime LST, the nighttime LST in February was
dominated by positive anomalies. Both BTH and GZ exhibited >3 °C of
warming, while in 12 % of the area of YR, negative anomalies were ob-
served (Fig. 5b). Negative LST (daytime) anomalies in March covered the
central part of GZ, the northern part of YR, and most of BTH. Only BTH
showed a lower average LST (daytime) among the three urban groups
than that over the past four years. The nighttime LST anomalies were not
obvious inMarch (changes<1 °C). The southern part of BTH and the north-
ern part of GZ showed negative changes, while the other areas mostly ex-
hibited positive anomalies.

To analyze the air temperature during the day and at night, Tmx and Tmn

were selected in this study. As the meteorological elements are closely re-
lated to the LST (Benali et al., 2012), the air temperature anomalies exhib-
ited a similar distribution to that of the LST anomalies (Fig. 4; Tmx and Tmn
en 2020 and 2019 (a Feb., b Mar.) based on Sentinel-5P data.



Fig. 4.Meteorological element anomalies in 2020 with respect to the 2016–2019 mean in BTH, YR, and GZ from 1 February–31 March (a February, b March).
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(a)). During the day and at night in February 2020, relative to 2016–2019,
positive temperature anomalies were observed in all three urban agglomer-
ations. However, in contrast to the LST, the highest positive temperature
anomalies occurred in YR. In addition to the difference in influencing fac-
tors between LST and air temperature, the difference in daily data collec-
tion time may also be the cause of this phenomenon. The daily transit
time of AQUA satellites is fixed at 1.30 AM and 1.30 PM, and Tmx and
Tmn are not guaranteed to synchronize with this time (Wan et al., 2021).
In March, the temperature and LST consistently changed in BTH and YR.
However, the negative LST anomalies in GZ exhibited the opposite trend
to the temperature change.

Precipitation and relative humidity can negatively affect the LST. The
thick cloud clusters during precipitation events and the high humidity
levels before and after rainfall are important factors hindering thermal radi-
ation surface absorption (Du et al., 2016). In February, the central part of
the BTH showed a slight increase in precipitation, while the relative humid-
ity exhibited a severe positive anomaly from the reference data
(2016–2019). Moreover, the positive anomalies of these two meteorologi-
cal elements in the middle of GZ and the northern YR part in March
corresponded to the decrease in the LST. Strong winds help dilute and
spread aerosols (Cugerone et al., 2018), allowing more radiant energy to
reach the surface. Therefore, the wind speed anomaly distributionwas sim-
ilar to the LST anomaly distribution (Fig. 4; WS).

3.3. SUHI anomalies caused by the COVID-19 lockdown

The UHII anomalies in each city within the three urban agglomerations
during the strict COVID-19 lockdown period (February 2020) relative to
the 2016–2019 mean are shown in Fig. 6. The daytime SUHIs in YR and
GZ in February 2020 were significantly lower than those over the past
four years, decreasing by 2.48 and 1.01, respectively, and over 90 % of
the cities exhibited negative anomalies. This phenomenon could presum-
ably be attributed to the reduction in anthropogenic heat emissions. Al-
though the reduction in pollution could increase the solar radiation
7

absorbed by the surface, it exerted a certain promotion effect on SUHIs
(Jin et al., 2010). However, this effect could not offset the negative SUHI
anomalies caused by the reduction in anthropogenic heat emissions. Com-
pared to those in GZ and YR, during the strict lockdown phase, the daytime
SUHI changes in the central cities of BTH could not be explained. Despite
the significant drop in human activities (Fig. S6), the SUHIs in the central
cities of BTH showed positive anomalies. At the same time, the AOD and
PM2.5 in this area showed increasing trends (Fig. 2), which could not ex-
plain the positive SUHI anomalies. After studying the changes in the surface
temperatures in the urban and rural areas (Table S3), an anomaly was dis-
covered. Compared to that during the past four years, the urban surface
temperature did not significantly change during the COVID-19 lockdown,
while the rural surface temperature sharply decreased. This phenomenon
may be due to the delay in winter crop harvesting during the lockdown,
which caused significant cooling in rural areas through evapotranspiration
(Chakraborty et al., 2021), leading to larger urban–rural temperature
differences.

All three urban agglomerations showed significant downward trends in
nighttime SUHIs in 2020 February relative to 2016–2019, with >95 % of
the cities showing a decline (Fig. 7). Among them, the negative SUHI anom-
aly in GZ was the largest (−2.25), followed by those in BTH and YR, at
−1.72 and−0.64, respectively. Significant reductions in human activities
(Fig. S6) and air pollution (Figs. 2 and 3) may have contributed to the de-
cline in SUHIs. The human activities of daily life emit large amounts of
heat, soot, and greenhouse gases into the atmosphere. First, the atmosphere
is directly affected by anthropogenicwaste heat, causing the temperature to
rise with corresponding feedback to the land surface (Du et al., 2016); sec-
ond, dust and greenhouse gases cover urban areas, resulting in increased
surface longwave radiation absorption (Arnfield, 2003).

During the city lockdown relaxation phase, the nighttime SUHIs in all
cities of BTH decreased relative to the 2016–2019 mean (Fig. S7), but the
decrease was only 0.21 (Fig. 7). Contrary to BTH, the daytime and night-
time SUHIs in YR and GZ mostly showed positive anomalies, which were
0.17 and 0.15 higher, respectively, than the average value over the past
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four years. With the relaxation of the epidemic prevention policies
(Table 1), the increase in human activities positively impacted the SUHI
phenomenon (Peng et al., 2011). It should be noted that before the
COVID-19 lockdown policy was relaxed, BTH still showed a small positive
NL anomaly in March (Fig. S6), and similar anomalies also occurred in
Wuhan (Deng et al., 2022), which may be related to the resumption of
the production activities of key factories in early March and the return to
work of nonlocal personnel.

Before and after the strict city lockdown, the daytime and nighttime
SUHIs in the three urban agglomerations did not show the same negative
anomalies as those observed in February 2020 (Fig. S7). This indicates
that the impact of the COVID-19 lockdown on SUHIs only lasted for a
month and soon disappeared after the restrictions on human movement
were lifted. Furthermore, the ΔSUHI values of the core cities and other cit-
ies in the three urban agglomerations during the COVID-19 lockdown are
shown in Table S4. The ΔSUHI value of the core cities at night in February
2020 was not significantly higher than that of the other cities. However, in
March 2020, this balance was upset. The drop in SUHIs at night in Beijing
and Tianjin was significantly greater than that in the other cities (over
65 %), indicating that the lockdown exerted a more pronounced impact
on these two megacities. As the core cities in BTH, a high COVID-19 lock-
down level was also maintained in these two cities in March, which may
be the reason for the negative SUHI anomalies. The opposite was observed
in GZ, where the SUHIs in the core cities increased more significantly than
those in the other cities after lockdown policy easing, which is due to the
more rapid urban development in the core cities in recent years (http://
www.shaanxi.gov.cn/).
Fig. 5. Daytime and nighttime LST anomalies (°C) in 2020 with respect to the 2016–2
nighttime, c Mar. daytime, d Mar. nighttime). The box plot shows the change in the av
significance test.
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4. Discussion

4.1. Impact of the COVID-19 lockdown measures on the air quality

The reductions in human activities and dust emissions caused by the
COVID-19 lockdown have significantly improved the global atmospheric
environment (Lal et al., 2020). Under these restrictive measures, the
AOD, PM2.5, NO2, and CO levels decreased during the lockdown in the
three urban agglomerations (Figs. 2 and 3). However, the SO2 and O3 levels
did not significantly improve. Similar results were also obtained by Cao
et al. (2022) and Agarwal et al. (2020). In this study, negative AOD and
PM2.5 anomalies occurred in February 2020 relative to 2019. Short-term
climate change may have contributed to the decline (Fig. S8). Although
AOD has a strong correlation with PM2.5, as a product describing the light
reduction of aerosol, AOD is also significantly affected by other natural fac-
tors, such as air humidity, except by particulate matter. This property also
leads to the failure to fully match the changing trend of AOD and PM2.5

(Fig. S5). However, the long-term trend shows that PM2.5 reduction occurs
not only during this period but also before and after the COVID-19 lock-
down (Fig. S5). Moreover, this downward trend has continued since 2016
(Fig. 2). The reason for this continuous reduction in pollution is the imple-
mentation of strict pollution control policies in China since 2013 (https://
www.gov.cn/). With the elimination of high-energy-consumption and
high-pollution industries and the designation of stricter corporate sewage
standards, environmental pollution has been significantly improved. Persis-
tent improvements in air pollution may lead to overestimation of the im-
pact of the COVID-19 lockdown on the atmospheric environment.
019 mean in BTH, YR, and GZ from 1 February–31 March (a Feb. daytime, b Feb.
erage LST in the three urban agglomerations and ⁎ indicates passing the p < 0.05

http://www.shaanxi.gov.cn/
http://www.shaanxi.gov.cn/
https://www.gov.cn/
https://www.gov.cn/
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Therefore, after simple linearfitting of the PM2.5 concentrations in the three
urban agglomerations in recent years, PM2.5 anomalies likely caused by city
closure in February 2020 were confirmed based on the predicted values:
−1.04 μg/m3 (BTH), −18.61 μg/m3 (YR), and −7.27 μg/m3 (GZ). There-
fore, this has at least led to an overestimation of >10 % of the pollution im-
provements in these urban agglomerations. The strict restrictions have
indeed significantly improved air pollution, but the rebound after policy re-
laxation was also very rapid, especially for NO2 and CO (Fig. 3b). This re-
quires policymakers to carefully consider human activity constraints
when formulating policies.

4.2. Impact of the COVID-19 lockdown measures on the LST

The COVID-19 pandemic has exerted a life-changing shock on society
and has led to sweeping urban lockdowns in >100 countries. As a result,
there were significant reductions in human activities worldwide during
the lockdown (Ali et al., 2021; Cai et al., 2021), which may impact the cli-
mate.Much of the discussion regarding the climate impact of the COVID-19
lockdown has focused on the temperature. Much research and evidence
have indicated that the strict travel restrictions have led to a significant
drop in the surface and air temperatures (Pal et al., 2022; Parida et al.,
2021a). However, this is contrary to the results in this study since almost
all cities in the three urban agglomerations exhibited positive LST anoma-
lies during the lockdown (Fig. 5). Similar results were also obtained in
East Java, India (Purwanto et al., 2022).

In this study, the LST and air temperature in the three urban agglomer-
ations showed upward trends during the lockdown period relative to the
2016–2019 average. Only the central part of BTH exhibited negative
Fig. 6. Three urban agglomerations: (a) Daytime and (b) nighttime surface urban heat i
lockdown with respect to the 2016–2019 mean.
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daytime LST anomalies (Fig. 5), which were mainly distributed in rural
pixels (Table S3). Therefore, there is insufficient evidence to verify that
China's lockdown due to the COVID-19 epidemic has negatively impacted
the LST. The precipitation and relative humidity in the three urban agglom-
erations increased, and the wind speed decreased. These are all related fac-
tors that may induce a temperature drop. According to the correlation
heatmap (Fig. S8), the change in the LST during the lockdown was not
only associated with air temperature variation but also correlated with
the RH to a high degree. This is caused by the radiation obstruction effect
of water vapor during the day and the thermal insulation effect at night
(Wang et al., 2016). In contrast, Tmx did not show a significant correlation
with RH and P, so LSTD had amore pronounced downward trend when the
two factors rose significantly, which also explained the unusual difference
between February LST and Tmx in the middle of BTH (Figs. 4 & 5). Simi-
larly, the difference in the influence of each element on LSTN and Tmn, as
well as the gap in recording time, may lead to a certain negative correlation
between them. In addition, a nonsignificant negative correlation appeared
between the LSTD and AOD. Smaller aerosol optical thicknesses character-
ize lower radiative forcing, which may impose some positive effect on the
daytime LST.

We could speculate that the different response times of countries to the
COVID-19 epidemic may be the reason for the difference in the obtained
conclusions. China's strict lockdown began at the end of January 2020,
while most other countries started human movement restrictions after
mid-March (Ali et al., 2021; Cao et al., 2022; Parida et al., 2021a). This re-
sults in different seasonal conditions and atmospheric circulation factors.
During the strict city closure period in China, the LST was mainly affected
by the rising background temperature and exhibited a positive anomaly
sland anomalies in the urban areas (divided by the SUE algorithm) during the 2020



Fig. 8. Feature importance of the influencing factors of the nighttime SUHIs in the
three urban agglomerations obtained via random forest regression (nighttime light
(NL), PM2.5, and AOD are used to characterize the changes in human activities and
heat emissions. The minimum temperature (Tmn), precipitation (P), wind speed
(WS), and solar radiation (SR) represent climate change. Soil moisture (SM) and
the enhanced vegetation index (EVI) are used to characterize surface conditions).
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(Text S4). However, the COVID-19 lockdown has resulted in reductions in
human activities and heat emissions, restricting the rise in the LST. This
has led to a significantly smaller increase in the LST in urban areas than
in rural areas (Table S5). Therefore, the COVID-19 lockdown may not be
the main factor leading to the decline in the LST, but it imposed a clear in-
hibitory effect on the positive LST anomalies in cities.

4.3. Impact of the COVID-19 lockdown measures on SUHIs

During the strict COVID-19 lockdown, the SUHIs in the three urban ag-
glomerations significantly dropped (Fig. 6), and similar negative anomalies
were widely distributed worldwide (Ali et al., 2021; Liu et al., 2022; Parida
et al., 2021a). In this study, we showed that the COVID-19 lockdowns se-
verely reduced human activities and heat emissions (Fig. S6). To explore
the causes of the changes in SUHIs during the lockdown period, random for-
est regression was applied to each city to examine the impacts of the
changes in human activities and climate and surface conditions on the
nighttime SUHIs (the influencing factors of daytime SUHIs are very com-
plex (Liu et al., 2022) and have not been studied). Due to a similar mecha-
nism to precipitation, the relative humidity was not considered. The results
showed that NL, which characterizes human activities, attained the highest
importance, and PM2.5 also ranked high (Fig. 8). This verifies that the re-
ductions in human activities and emissions caused by the COVID-19 lock-
down are an important reason for the observed changes in SUHIs. Similar
conclusions were also given by Liu et al. (2022) and Shikwambana et al.
(2021). In addition, changes in solar radiation and soil moisture play a
nonnegligible role in SUHI reduction.

The COVID-19 lockdown effectively alleviated SUHIs, which is likely a
promising measure for policymakers to remediate the urban thermal envi-
ronment. However, it should be noted that the SUHIs in all urban agglom-
erations exhibited rapid rebounds upon lockdown policy easing (Fig. 7).
The same SUHI trend also occurred in Pakistan (Ali et al., 2021). It is obvi-
ous that the changes due to the COVID-19 lockdown in the urban thermal
environment were short-lived. This leads to the following important ques-
tion: will SUHIs always decline due to the implementation of strict
Fig. 7. Percentages of upward and downward pixels (histogram) and changes (line)
in the SUHI intensity (SUHII) in the three urban agglomerations from January 1–
April 31, 2020 with respect to the 2016–2019 mean (a daytime, b nighttime).
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lockdown measures? To explore this issue, eight cities with a second lock-
down period were selected (Table S6). To eliminate the impact of strict
city closure, the mean SUHIs over the last four years except 2020 were se-
lected for comparison (Fig. 9). The results were unexpected: in contrast to
during the strict lockdownperiod in February 2020,five cities did not expe-
rience a reduction in SUHIs during their individual lockdowns. The three
cities with declines in SUHIs were all distributed in the BTH urban agglom-
eration. An interesting phenomenon is that the three cities with decreasing
SUHI trends are adjacent and experienced the same lockdown times. After
thefirst large-scale lockdown, China began to implement refinedCOVID-19
prevention and control measures, i.e., epidemic risk areas were more accu-
rately delineated (http://www.nhc.gov.cn/). This ensured the necessary
production and life activities to a certain extent, resulting in nonsignificant
changes in SUHIs. In addition, due to heat exchange between neighboring
cities, lockdown policy implementation in adjacent cities can only impose
favorable inhibitory effects on SUHIs. This shows that the notable negative
SUHI anomalies caused by the strict lockdown in 2020 may be difficult to
replicate. Therefore, activity restrictions should be carefully considered
when specifying policies to manage the urban thermal environment.
Fig. 9. Nighttime SUHI anomalies (°C) before, during, and after individual
lockdowns with respect to the recent four-year mean in eight cities (as a
comparison, the length of time before and after each city lockdown is one month).

http://www.nhc.gov.cn/
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5. Conclusion

The COVID-19 lockdown has greatly affected people's lives and the
urban environment. During the most stringent Level I response period,
the air pollutants PM2.5 and NO2 significantly decreased in all three urban
agglomerations, exceeding 14%. In addition, SUHIs significantly decreased
(>25 %) during the lockdown period regardless of the climate conditions
and economic level. The negative SUHI anomalies were mainly due to the
reduced human activities and heat emissions. However, rapid SUHI re-
bound occurred after lockdown policy easing. When travel restrictions are
not adopted in neighboring cities, the SUHI suppression effect of the lock-
down may be offset by intercity heat exchange.

In this study, we found that if background climate variations or long-
term trend rates are ignored, the impact of the COVID-19 lockdown may
be miscalculated. Therefore, the identification of long-term trend changes
and anomalies is very important for the study of city closure impacts.

Our findings suggest that human behavior-based policies can directly,
immediately and significantly affect the reduction and recovery of air pol-
lution levels and SUHIs. However, these impacts are temporary and require
intercity alliances in terms of policy formulation to achieve effective and
sustained urban environmental improvements.
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